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Abstract

The distribution of rationals on the unit interval is filled with surprises. As a
child, one is told that the rationals are distributed “uniformly” on the unit interval.
If one considers the entire setQ, then yes, in a certain narrow sense, this is true.
But if one considers just subsets, such as the subset of rationals with “small” de-
nominators, then the distribution is far from uniform and full of counter-intuitive
surprises, some of which we explore below. This implies thatusing “intuition”
to understand the rationals and, more generally, the real numbers is a dangerous
process. Once again, we see the footprints of the set-theoretic representation of the
modular groupSL(2,Z) at work.

This paper is part of a set of chapters that explore the relationship between the
real numbers, the modular group, and fractals.

1 Distributions Of Rationals on the Unit Interval

The entire field of classical calculus and analysis is based on the notion that the real
numbers are smoothly and uniformly distributed on the real number line. When one
works with a particular representation of the rational numbers, say the dyadic repre-
sentation, where each rational is represented by a sequenceof binary digits, one gets,
’for free’, a measure that goes with that representation. Inthe case of the dyadics, that
measure is the idea that all strings of binary digits are uniformly distributed on the unit
interval. This statement is so blatently obvious and taken for granted that it in fact
impedes the understanding of measure. But this will be the topic of this chapter.

There are several different ways of representing the rationals (and thier closures),
and these are (as we will see shortly) inequivalent. One way is to represent them with
p-adic, or base-p expansions of digits. Another way is to represent them as rationals,
that is, as ratios of integers. Each of these representations will result in a uniform distri-
bution of reals on the real number line, when one takes the apropriate limit of allowing
p-adic strings with an infinite number of digits, or allowingfractions with arbitrarily
large denominators. However, if we work with just finite subsets of p-adic expansions,
or finite sets of rationals, one finds that the distributions are far from uniform, and are
inequivalent to each other. In particular, this implies that the notion of measure on the
real number line has a certain kind of ambiguity associated with it.
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The next thing that one finds is that the modular groupSL(2,Z) becomes manifest,
being the symmetry group that connects together the different representations of the
rationals. However, insofar as there is no such thing as a ’real number’ except as
defined by the closure of the rationals, using a specific representation of the rationals,
one has that the real numbers themselves have a modular groupsymmetry, if only
because the underlying representations in terms of p-adic expansions and ratios have
this symmetry.

We develop the above wild-sounding claim a bit further in later chapters; here,
we show one very simple way in which the modular group, and thus Farey Fractions,
manifest themselves on the real number line. We do this by (incorrectly) counting
rationals, and then wildly scrambling to find the correct wayof counting.

1.1 Simple Counting

Lets begin by trying to enumerate the rationals, and seeing how they fall on the real
number line. Start by listing all of the fractions with denomintors from 1 to N, and
numerators between 0 and the denomintor. Clearly, many of these fractions will be
reducible, i.e. the numerator and denominator have common factors, and thus, in this
simple-minded enumeration, some rationals are counted multiple times. In particular,
we’ll count 0 over and over again: it will be in the list as 0/1,0/2, 0/3 and so on.
Likewise, 1 will appear in this list over and over: as 1/1, 2/2, 3/3, etc. We’ll have
1/2 also appearing as 2/4, 3/6 and so on. Although this enumeration of the rationals
clearly over-counts, it has the advantage of being extremely simple: it is a subset of the
rectangular latticeZ×Z. Its the canonical grade-school example of how the rationals
are enumerable.

How are these rationalsp/q distributed on the real number line? In fancy terms,
what is the distribution of this lattice on the real number line? Or, what is the measure
induced by the projection of the latticeZ×Z onto the real number line? Unfortunately,
using words like “measure” implies the taking of a limit to infinity. Lets stick to the
simpler language: we want to make a histogram of the rationals. Lets draw some
graphs.

The figure 1 shows this enumeration, up to a denominator of K=4000, carved up
into N=720 bins, and normalized to unit density. That is, ifn/720≤ p/q < (n+1)/720,
then we assign the fractionp/q to then’th bin, and so the graph is a histogram. We
might expect this graph to have a huge peak at the bin n=360: after all, this bin will
hold 1/2 and 2/4 and 3/6 and in general should have a big surfietcoming from the
degeneracy at 1/2. One mght expect peaks at 1/3, and 1/4 and etc, but smaller.

Indeed, there is a big upwards spike at 1/2. But there seems tobe a big downwards
spike just below, at bin 359, seemingly of equal and oppositesize. This is the first
surprise. Why is there a deficit at bin 359? We also have blips at 1/3, 1/4, 1/5, 1/6, but
not at 1/7: something we can hand-wave away by noting that 720is 6 factorial. (When
one attempts 7!=5040 bins, one finds the peak at 1/7 is there, but the one at 1/11 seems
to be missing; clearly having the number of bins being divisible by 7 is important.).
The other surprising aspect of this picture is the obvious fractal self-similarity of this
histogram. The interval between 1/3 and 1/2 seems to reprisethe whole. The tallest
blip in the middle of this subinterval occurs at 2/5, which isthe Farey mediant of 1/2
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Figure 1: Distribution of Simple Rationals into 720 Bins

The above is a density graph of the rationals that occur in thesimple enumeration,
binned into 720 bins, up to a denominator of N=4000. The normalization of the bin
count is such that the expected value for each bin is 1.0, as explained in the text.
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and 1/3. Why are we getting something that looks like a fractal, when we are just
counting rationals? More tanalizingly, why does the fractal involve Farey Fractions?

We suspect that something peculiar happens because the over-counting at 1/2,
2/4’ths etc. falls on exactly the boundary between bins 360 and 359. In fact, any
fraction with a denominator that is a multiple of 2,3,4,5, or6 will have this problem;
fractions that have a multiple of 7 in the denominator don’t seem to have this problem,
perhaps because they are not on a bin boundary. We can validate this idea by binning
into 719 bins, noting that 719 is prime. Thus, for the most part, almost all fractions
will clearly be in the “middle” of a bin. We expect a flatter graph; the up-down blips
should cancel. But it shouldn’t be too flat: we still expect a lot of overcounting at 1/2.
See below:

Wow, thats flat! How can this graph possibly be so flat? We should be massively
overcounting at 1/2, there should be a big peak there. Maybe its drowned out by the
blips at 0 and 1: we are, after all histograming over 8 millionfractions, and we expect
statistical variations to go as one over the sqaure-root of the sample size. So lets graph
the same data, but rescale more appropriately. This is shownbelow:
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Hmm. Curious. There is indeed a peak at 1/2. But there are alsodeficits symmetri-
cally arranged at either side. This is still confusing. We might have expected peaks, but
no deficits, with the baseline pushed down, to say, 0.999, with all peaks going above,
so that the total bin count would still average out to 1.0. Butthe baseline is at 1.0, and
not at 0.999, and so this defies simple intuition. Notice alsothat the fractal nature is
still evident. There are also peaks at 1/3, 1/4, 1/5 and 1/6. But not at 1/7’th. Previously,
we explained away the lack of a peak at 1/7’th by arguing aboutthe prime factors of
720; this time, 719 has no prime factors other than itself; thus, this naive argument
fails. What do we replace this argument with?

Well, at any rate, lets compare this to the distribution we “should have been using
all along”, where we eliminate all fractions that are reducible. That is, we should count
each rational only once. This mkes a lot more sense, if we are to talk of teh distribution
of rationals on the real number line. This is graphed below, again, binned into 719 bins,
for all irreducible rationals with denominator less than orequal to 4000:
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Wow! We no longer have a peak at 1/2. In fact, it sure gives the distinct impression
that we are undercounting at 1/2! Holy Banach-Tarski, Batman! What does it mean?
Note also the graph is considerably noiser. Compare the scales on the left for a rela-
tive measure of the noise. Part, but not all, of the noise is due to the smaller sample
size: we are counting fewer fractions: 4863602 are irreducible out of the simple list of
8002000. However, matching the sample sizes does not seem tosignificantly reduce
the small-amplitude noise: qualitatively speaking, the binning of irreducible fractions
seems much noisier.

Let us pause for a moment to notice that this noise is not due tosome numerical
aberation due to the use of floating-point numbers, IEEE or otherwise. The above
bincounts are performed using entirely integer math. That is, for every pair of integers
p, q, we computed the integer bin numbern and the integer remainder 0≤ r < N such
thatnq = pN + r holds as in integer equation, whereN was the number of bins. This
equation does not have ’rounding error’ or ’numerical imprecision’.

Curiously, binning into a non-prime number of bins does seemto reduce the (small-
amplitude) noise. Equally curiously, it also seems to erasethe prominent features that
were occuring ath the Farey Fractions. This is exactly the opposite of the previous
experience, where it was bining to a prime that seemed to ’erase’ the features. Below
is the binning into 720 bins.
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Following the usual laws of statistics and averages, one expects that increasing the
sample size reduces the noise. This is true in an absolute sense, but not a relative sense.
The graph below shows 720 bins holding all irreducible rationals with denominators
less than 16000. The absolute amplitude has been reduced by over a factor of ten
compared to the previous graphs; this is not a surprise. We are counting 77809948
irreducible rationals, as opposed to 4863602 before: our sample size is nearly 16 times
larger. What is perhaps surprising is that there is relatively far more power in the higher
frequencies. There are also still-visible noise peaks near1/2, 1/3, and 2/3’rds, as well
as at 0 and 1.
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Let reiterate that the noise in this figue is not due to floating-point errors or numer-
ical imprecision. Its really there, deeply embedded in the rationals. As we count more
and more rationals, and bin them into a fixed number of bins, then we will expect that
the mean deviation about the norm of 1.0 to shrink and shrink,as some power law.
It is in this sense that we can say that the rationals are uniformly distributed on the
real-number line: greater sample sizes seemingly leads to more uniform distributions,
albeit with strangely behaved variances. But even this statement is less than conclu-
sive, because it hides a terrible scale invarience. We have one more nasty histogram to
demonstrate.
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This one shows irreducible fractions with denominators less than 16000, which, as
we’ve mentioned, represents a sample size almost 16 times larger than the first sets
of graphs. We bin these into four times as many bins: 2880=4x720. Compare the
normalized scale on the vertical axis to the corresponding picture for the smaller sample
size and smaller number of bins. The vertical scales are identical, and the sizes of the
peaks are identical. Each bin, on average, holds four times as many rationals (16 times
as many rationals, 4 times as many bins). We’ve increased oursample size, but the
features are not ’washing out’: they are staying constant insize, and are becoming
more distinct and well-defined.

1.1.1 Some Notes about Histogramming

In light of the fact that the above graphs have some surprising features, we take a
moment to try to be precise about what we mean when we say “histogram” and “nor-
malize”.

Lets go back to the first figure. The total number of rationals in the histogram is
K(K +1)/2 = 4000×4001/2= 8002000, a little over eight million: a decent sample
size. Each bin will have some countCn of these rationals. We want to talk in statistical
terms, so we normalize the bin count asDn = NCn/(K(K +1)/2), so that the average
value or expected value ofDn is 1.0. That is, we have, by definition,

N

∑
n=0

Dn = N (1)

The act of bining a rationalp/q requires a division; that is, in order to determine if

9



n/N ≤ p/q < (n +1)/N, a division is unavoidable. However, we can avoid numerical
imprecision by sticking to integer division; using floatingpoint here potentially casts
a cloud over any results. With integer division, we are looking for n such thatnq ≤
N p < (n + 1)q; performing this computation requires no rounding or truncation. The
largest such integers we are likely to encounter in the previous sections are 2880×
16000≈ 50M, for which ordinary 32-bit math is perfectly adequate; there is no danger
of overflow. If one wanted to go deeper, one could use arbitrary precision libraries;
for example, the Gnu Bignum Library, GMP, is freely available. But the point here is
that to see these effects, one does not need to work with numbers so large that arbitrary
precision math libraries would be required.

1.2 Some Properties of Rational Numbers

So what is it about the rational numbers that makes them behave like this? Lets review
some basic properties.

We can envision an arbitrary fractionm/n made out of the integersm andn as
corresponding to a point[m,n] on a square lattice. This lattice is generated by the
vectorse1 = [1,0] ande2 = [0,1]: these are the vectors that point along the x and y
axes. Every point on the lattice can be represented by the vector me1+ne2 = [m,n] for
some integersm andn. This grid is a useful way to think about rationals: by looking
out onto this grid, we can “see” all of the rationals, all at once.

Theorem: The latticeΛ = {[m,n] : m,n ∈ Z} is a group under addition. We recall
the definition of a group: a group is closed under addition: for [m,n] ∈ Λ and
[p,q] ∈ Λ one has[m + p,n + q] ∈ Λ. A group has an identity element, which,
when added to any other group element, gives that element. For Λ the identity is
[0,0]. Finally, for every element in the group, the inverse is alsoin the group. In
other words,[m,n]+ [−m,−n] = [0,0] and[−m,−n] ∈ Λ.

Theorem: The generatorse1 ande2 generate the lattice. That is,Λ = {me1 + ne2 :
m,n ∈ Z}.

Theorem A lattice pointω = me1 + ne2 ∈ Λ is visible from the origin if and only if
gcd(m,n) = 1. By “visible” we mean that if one stood at the origin, and looked
out on a field of pegs located at the grid corners, a given peg would not be behind
another peg. Here, gcd is the “greatest common divisor”, andso the statement is
that a peg is visible if and only if the fractionm/n cannot be reduced.

Note thate1 ande2 are not the only possible generators. For example,ω1 = [7,4] and
ω2 = [5,3] also generate the lattice. That is, every point in the lattice can be written
as pω1 + qω2 for some integersp andq. That is, givenany integersm,n then there
exist some integersp,q such thatme1+ne2 = pω1+qω2. There are an infinite number
of such possible generators. The rest of this section attempts to describe this set of
generators.

Theorem: (Apostol Thm 1.1) Two vectorsω1 andω2 generate the lattice if and only if
the parallelogram formed by 0,ω1, ω1 + ω2 andω2 does not contain any lattice
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points in its interior, or on its boundary. Such a parallelogram is called acell or
a fundamental region.

The above theorem is not entirely obvious, and it is a good excercise to try to prove it.
Note that as a corrolary, we have that bothω1 andω2 are visible from the origin (there
would be lattice points on the boundary, if they weren’t). Inother words, all gener-
ators are visible: all generators can be represented by a pair of irreducible fractions.
However, not all pairs of fractions generate the lattice, asthe next theorem shows.

Theorem: (Apostol Thm 1.2) Letω1 = ae1+ce2 andω2 = be1+de2 for some integers
a,b,c,d. Thenω1 andω2 generate the lattice if and only ifad−bc = ±1.

We recognizead − bc as the determinant of the matrix

(

a b
c d

)

. The set of all

matrices with determinant equal to+1 or −1 is calledSL(2,Z), the modular group.
Thus, the set of generators of the lattice correspond to elements of the groupSL(2,Z).

Theorem: If

(

a b
c d

)

∈ SL(2,Z) then gcd(a,b)= 1= gcd(b,d)= gcd(c,d)= gcd(a,c).

That is, the fractions given by the rows and columns are all visible from the ori-
gin. But we knew that already.

Note that the matrices inSL(2,Z) act on the lattice by simple multiplication: for any
pointω in the lattice, the productAω is another point in the lattice.

Theorem: If ω is visible, thenAω is visible as well, for anyA ∈ SL(2,Z). In other
words, the action of the modular group on the lattice never mixes visible points
with invisible ones. In other words, ifω is an irreducible fraction, then so isAω;
and ifω is reducible, then so isAω.

Theorem: (Topology) Elements ofSL(2,Z) can be paramterized byQ×Z×Z2; equiv-
alently, the elements of the modular group can be thought of as a collection of a
certain special set of intervals on the real number line.

Proof: We start by freely picking anya/c∈Q (understanding that we’ve picked so that
a/c is irreducible). For good luck, we pick so that botha andc are positive; we
return to negative values later. Thenad −bc = ±1 implies thatb = (ad∓1)/c.
But we can’t pickd freely; only certain special values ofd result inb being an
integer. Mini-theorem: there exists an integerd ∈ {1,2, ...,c} such thatb is an
integer. Call this integerd0. Than another mini-theorem: the resultingb, which
we’ll call b0, belongs to the set{1,2, ...,a}. So we now havead0 + b0c = ±1.
Next we note that for anyn ∈ Z, the fraction

bn

dn
=

b0 + na
d0 + nc

(2)

solvesadn +bnc = ±1. Thus, we’ve picked freely a number fromQ and another
number fromZ, and so we’ve almost proven the paramterization. We have one
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bit of remaining freedom, and that is to picka or c to be negative: all other sign
changes can be eliminated. Finally, note that the fractionsa/c andb/d represent
an interval on the real number line. One endpoint of the interval can be picked
freely; but the other can only be choosen from a limited (but infinite) set.

What have we learned from this excercise? A new way to visualize rationals. In grade
school, one traditionally learns to think of rationals as being somehow laid out evenly
on the real number line. Maybe we even realize that there is a grid involved: and the
grid is comfortingly square and uniform. But in fact, the theirreducible rationals are
anything but square and uniform. If we look out onto the grid of pegs, we see some
that are very far away, while others are hidden by nearby pegs. If we look off in the
direction tanθ = m/n, the distance

√
m2 + n2 to the first visible peg at[m,n] seems to

be a completely unpredictable and indeed a very chaotic function of θ.
Next, we’ve learned that the symmetries of a square grid are hyperbolic. Of course,

everyone knows that square grids have a translational symmetry; we didn’t even men-
tion that. Square grids don’t have a rotational symmetry, except for rotations by exactly
90 degrees. But only a few seem to know about the “special relativity” of a square
lattice. Just like “real” special relativity, there is a strange squashing and shrinking of
lengths while a “cell” or “fundamental region” is squashed.Worse, this groupSL(2,Z),
known as themodular group, is implicated in a wide variety of hyperbolic goings-on.
It is a symmetry group of surfaces with constant negative curvature (the Poincare upper
half-plane). All sorts of interesting chaotic phenomena happen on hyprbolic surfaces:
geodesics diverge from each other, and are thus said to have positive Lyapunov expo-
nent, and the like. The Riemann zeta function, and its chaotic layout of zeros (never
mind the chaotic layout of the prime numbers) are closely related. In general, whenever
one sees something hyperbolic, one sees chaos. And here we are, staring at rational
numbers and seeing something hyperbolic.

It is also worth noting that the square grid, while being a cross-productZ×Z of
integers, is not a free product. By this we mean that there aremultiple paths from the
origin to any given point on the grid: thus, to get to[1,1], we can go right first, and
then up, or up first, and then right. Thus the grid is actually aquotient space of a free
group. (XXX need to expand on this free vs. quotient thing).

To conclude, we’ve learned the following: the set of rationals Q consists entirely of
the set of points on the grid that are visible from the origin.The entire set of rationals
can be generated from just a pair of rationalsa/c andb/d, as long asad − bc = ±1.
By “generated” we mean that every rational number can be written in the form

am+ bn
cm+ dn

(3)

wherem, n are integers with gcd(m,n) = 1. Of course, this sounds a little dumb,
because if gcd(m,n) = 1, then every rational can already be written asm/n. The point
here is that the last is a special case of the previous, witha/c = 1/0 andb/d = 0/1.
This is the broadest such generalization of this form.

One oddity that we should notice is the superficial resemblance to Farey addition:
given two rational numbersa/c andb/d, we add them not as normal numbers, but
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instead combining the numerator and denominator. As we willsee, Farey fractions and
the modular group are intimately intertwined.

Homework: prove all of the above teorems.

1.3 Orbits of the Modular Group

The symmetries of the histograms are given bySL(2,Z), a fact that we develop in later
chapters. (XXX see the other pages on this website for now). Just to provide a taste of
what is to come, here’s a picture of the orbit of a vector underthe action of the group
elements of the dyadic representation of the modular group:

That is, we consider how the vector(x,y) = (1,0) transforms under the group ele-
ments generated by

gD =

(

1 0
0 1

2

)

and rD =

(

1 0
1 −1

)

where we can write a general group element asγ = ga1rga2rga3r...rgaN . Lets avoid
some confusion: the dyadic representation is *not* the canonical rep ofSL(2,Z); it is
a different rep that is isomorphic; we establish this elsewhere.

In this representation, the only naturally occuring numbers are of the formp/2n,
and so the main sequence of the peaks are rooted at 1/2, 1/4, 1/8 etc. To get to the peaks
occuring at the Farey numbers, we need to work through the Minkowksi Question
mark function, which provides the isomorphism between the Farey Numbers and the
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Dyadics. (This is done in the next chapter). (XXXX we really need to re-write this
section so it doesn’t have to allude to the ’other stuff’).

As to the origin of the (white) noise, a better perspective can be gotten on the
chapter on continued fraction gaps.

1.4 Conclusion

Write me. Introduce the next chapter.
This is kind-of a to-do list.
It sure would be nice to develop a generalized theory that canwork with these pecu-

liar results, and in particular, giving insight into what’shappening near 1/2 and giving
a quantitative description of the spectra near 1/3 and 2/3, etc. We want to graph the
mean-square distribution as a function of sample size. We want to perform a frequency
analysis (fourrier transform) and get the power spectrum.

f (τ) = ∑
n

c(n)exp(2πinτ)

We want to explore to what extent the power spectrum has the approximate scaling
relationship of a modular form. (We expect this relationship because the fractal self-
similarity should manifest itself in the Fourrier spectrumas well, as a scaling relation-
ship. This is not merely “1/f” noise, its more than that.)

When we deal with a finite number of bins, we cannot, of course,get the full
symmetry of the modular group. For a finite number of bins, we expect to see the
action of only some finite subgroup (or subset) of the modulargroup. What is that
subgroup (subset)? What are its properties?

We also have a deeper question: we will also need to explain why the modular
group shows up when one is counting rationals; we will do thisin the next chapter,
where we discuss the alternate representations of the reals. Its almost impossible to
avoid.
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