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Introduction

Fiber Bundles
Central to physics: classical mechanics, electrodynamics,
quantum field theory, gravitation, superconductivity.
It was not always that way!
Unified (pseudo-)Riemannian Geometry (i.e. Gravitation)
with Symplectic Geometry (classical mechanics) with
Electrodynamcis with Yang-Mills theory with
Superconductivity with Fermions (QFT)
A single, unified framework for (almost) all of the
fundamental theories of physics.
And that is the topic today.
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Forumlas and Intuition

Zen Koans
There will will be a lot of equations today
More than several semesters worth ...
Notation is KEY: commonplace, widespread notation
What does those formulas MEAN? Intuitively ??
Interpretation of poetry, jokes of Zen koans
Inutition alone is FAULTY. Formulas are PRECISE!
Equations are tie-breakers for intuitive ideas
Creativity and imagination are KEY
It will be dizzying
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Tee-shirt Equations
Before fiber bundles, it was a hot mess:

Classical mechanics was Hamilton’s equations

ṗ =−dH
dq

q̇ =
dH
dp

Electrodynamics was Maxwell’s equations

~∇ ·~E = 4πρ ~∇×~B = 4π~j ~∇ ·~B = 0 ~∇×~E = 0

Gravitation was Einstein’s equations

Rµν −
1
2

gµνR−Λgµν = 8πTµν

Superconductivity was the Ginzberg–Landau equations

L = α |φ |2 + β |φ |4 +
1

2m

∣∣∣(−i h̄~∇−2e~A
)

φ

∣∣∣2 +

∣∣∣~B∣∣∣2
2

Standard Model = Yang-Mills + Higgs + Fermions



Intuitive Modern Geometry

Outline
Manifold M as gluing of Rn - coordinate charts
(Integrable) vector fields as hair/fur that can be combed
Tangent vector space TpM
Back to basics: Vector spaces; notation: en as basis vector
A frame field as en(p) varying from point to point p.
Frame fields can twist around, rotate, swirl.
The rotation matrix A. The connection Ai = Γ k

ij aka
Christoffel symbol
Rotations & rotation matrices in 3D
Curvature as total rotation after walking a loop.
Parallel transport
Geodesics
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Charts and Manifolds

An atlas is:
A collection of regions Uα

A collection of charts ϕα : Uα → Rn

A collection of “transition functions” ϕαβ = ϕβ ◦ϕ−1
α



Vector Fields

A vector field is:
A collection of vectors ~vp

One for each point p ∈ Uα

Smooth, differentiable, integrable



Tangent vector spaces

The tangent vector space TpM is:
A point p ∈ Uα (that is, a point in p ∈M)
The collection of ALL possible vectors ~vp ∈ TpM



Tangent bundles - Fiber bundles

The tangent bundle TM is the set of all TpM for all p ∈M
The sphere bundle SM is a set of spheres SpM, one for
each p ∈M
The circle bundle is a set of circles, one for one for each
p ∈M
The fiber bundle E is a set of fibers F , one for one for each
p ∈M



Fiber Bundles

Properties of Fiber bundles
Locally, they are trivial products Uα ×F of a chart Uα and a
fiber F
Neighboring fibers need to be glued (soldered) together;
the connection!
Works best when fibers have some natural symmetry
A group G that moves you up and down a fiber F



Horizontal and Vertical Bundles

Gluing together neighboring fibers allows:
Movement (horizontally) from fiber to fiber
While carrying a coordinate frame (parallel transport)
Closed paths in horizontal (base) space typically DON’T
close on the bundle!
That is, curvature!



Unifying Principle

Fiber bundles in Physics
Circle bundles – U(1) – Electromagnetism
Frame bundles – GL(n,R) – General Relativity
(Reimannian geometry)
Lie groups – SU(3) – Quarks & Gluons (strong force)
Lie groups – SU(2) – Weak force (radioactive decay)
Tangent bundles – Position and Momenta – Classical
Mechanics (Symplectic geometry)
Spinor bundles – Fermions
Fischer Information (Kullback-Leibler divergence) –
Quantum Mechanics



Interlocking tools

All fiber bundles have
Horizontal and Vertical subspaces
A connnection one-form (Christoffel symbols)
Geodesics (shortest paths)
Parallel transport (carrying around a coordinate frame)
Curvature two-form (curvature tensor)

.

Affine bundles have
Solder form (canonical one-form)
Torsion and Contorsion tensors

.

Metric bundles have
A metric
Ricci and scalar curvature



Start at the begining

Back to basics
Groups
Actions
Vectors
Rotations
Infinitessimal rotations (generators)
Derivatives

.

Advanced topics
Differential forms
Covariant derviative
Curvature
Torsion



Groups

Examples of Groups:
Rotation group
Translation group
Permutation group

A Group G is a set where:
Inverses: for all g ∈G ∃g−1 ∈G s.t. gg−1 = e
Identity element: e ∈G s.t. ∀g ∈G e ·g = g
Closure: For all g,h ∈G ∃k ∈G s.t. gh = k



Group Actions

A group G acting on a set X :
Notation: G : X → X with g : x 7→ y also written as g ·x = y
or x

g−→ y
Identity: e ·x = x
Associative: (g · (h ·x)) = (g ·h) ·x
Invertable:

(
g−1 · (g ·x)

)
=
(
g−1 ·g

)
·x = e ·x = x

(non-dissipative)
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Vectors and Bases

A Vector ~v ∈ Rn in n-dimensional space is:
A collection of n real numbers: ~v =

(
v (1),v (2),v (3), · · · ,v (n))

A vector space basis for Rn is a collection of n vectors{
~ek : 1≤ k ≤ n

}
:

Where e1 = (1,0,0, · · · ,0) and e2 = (0,1,0, · · · ,0) and
e3 = (0,0,1,0, · · · ,0) and ...



Passive and Active Rotations

A rotation changes the direction of a vector: ~x ′ = R~x
Body coordinates vs. Space coordinates

A rotation can be represented by a matrix
In 2D: (

x ′

y ′

)
=

[
cosθ −sinθ

sinθ cosθ

](
x
y

)



Rotations in N dimensions

A rotation changes the direction of a vector: ~x ′ = R~x
In n dimensions :


x (1)′

x (2)′

...
x (n)′

=



cosθ 0 · · · 0 −sinθ · · · 0
0 1 0 0
...

. . .
...

0 1 0
...

sinθ 0 · · · 0 cosθ

1
...

. . . 0
0 0 · · · 0 1




x (1)

x (2)

...
x (n)





Infinitessimal Rotations

An infinitessimal rotation:

~x + δ~x = (I + δR)~x =~x + δR~x =~x +

(
dR
dθ

∣∣∣∣
θ=0

δθ

)
~x

In 2D:

~x =

(
x ′

y ′

)
= R~x =

[
cosθ −sinθ

sinθ cosθ

](
x
y

)
but:

d cosθ

dθ

∣∣∣∣
θ=0

= 0 and
d sinθ

dθ

∣∣∣∣
θ=0

= 1

so

δ~x = δR~x =
dR
dθ

∣∣∣∣
θ=0

δθ~x = δθ

[
0 −1
1 0

]
~x = δθL~x

The matrix L is called the “the infinitessimal generator of
rotations” AKA “the angular momentum operator”.



Partial derivatives
Given a curve γ (t) in a manifold M, such that the curve is is
tangent to the vector X at p ∈M, the Lie derivative of a function
f on M is:

LX f (p) =
f (γ (t))− f (γ (0))

t

∣∣∣∣
p=γ(0) and X=γ ′(0)

Notation: the vector (field) X is written as

X = X µ ∂

∂xµ
= X µ

∂µ = X µeµ



Differential forms

The dual basis: eµ (eν ) = eµeν = δ
µ

ν

The Kronecker delta: δ
µ

ν =

{
1 when µ = ν

0 when µ 6= ν

Partial deriviatives: ∂µ = eµ

Differential forms: dxµ = eµ

They are dual: dxµ (∂ν ) = δ
µ

ν

A function that takes a vector and spits out a number (“counting
surfaces”):



Examples of differential forms

The 1-form: df is like the gradient ~∇f
“Counting surfaces” are topographic contours (slices of
const height)
The 2-form: dx ∧dy is like the curl: ~∇×~v
The 3-form dx ∧dy ∧dz is like the volume determinant
det I = det[e1,e2,e3]



Wedge products

ε = εµdxµ

η = ηµdxµ

ε ∧η = εµηνdxµ ∧dxν

Antisymmetric: dx ∧dy =−dy ∧dx

Linear: adx + bdx = (a + b)dx

Tensorial: Tµν ···ρdxµ ∧dxν ∧·· ·∧dxρ



Covariant derivative

Joins neighboring fibers: D = d + A
Alternate notation: Dµ = dxµ + Aµ when moving in
direction µ

A is an infinitessimal rotation matrix: Aµ = [Aµ ]ij = Γ
µ

ij

Connection=Christoffel symbols
Fiber coordinates: index i , j act on the fiber
Base space coordinates:µ is a direction in the base space.



Curvature

Moving (alternately) in two directions:
Notation: Field strength 2-form: F = D∧D = dA + A∧A
Notation: Curvature tensor:
R(X ,Y ) = ∇X ∇Y −∇Y ∇X − [X ,Y ]



Torsion

Moving (alternately) in two directions:
Notation: Torsion form: Θ = Dθ = dθ + A∧θ

... where θ is the solder form: θ = ∑i pidqi

Notation: Torsion tensor: T (X ,Y ) = ∇X Y −∇Y X − [X ,Y ]

There is one unique torsionless connection: the Levi-Civita
connection



Electromagnetism
E&M is (just) a circle bundle!

Each group element: g = eiθ = coordinates on circle

Vector potential: Aµ =
(
~A,φ

)
Choice of gauge = Aµ → A′µ = Aµ + g−1∂µg

Curvature Fµν = ∂µAν −∂νAµ =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 Bx
−Ez −By Bx 0


...or ~E = ~∇φ and ~B = ~∇×~A
Geodesics go “splat” on an electric charge!
Holonomy is the Bohm-Aharonov effect!



Frame fields (Vierbeins)

A frame field is:
A collection of basis vectors

{
~ek (p)

}
One for each point p ∈ Uα



Metric Tensor

The metric is (just) a product of vierbeins (frames)

gµν = eµ ·eν = ea
µηabeb

ν

where ηab =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Gives the length of a vector:

∥∥~v∥∥=
√
~v ·~v =

√
vavbηab =

√(
v (x)

)2
+
(
v (y)

)2
+
(
v (z)

)2−
(
v (t)
)2



General Relativity

General Relativity
General Relativity is (just) a frame bundle!

Each group element: g ∈ SO (3,1)

Connection: Aµ = Γ
ρσ

µ

Curvature: F = dA + A∧A
... that is, curvature R ρσ

µν = ∂µA ρσ

ν −∂νA ρσ

µ + 1
2

[
Aµ ,Aν

]ρσ

Choice of gauge == choice of coordinate frame!
Choice of gauge = Aµ → A′µ = Aµ + g−1∂µg
Geodesics go “splat” on a black hole singularity!



Conclusion

Unification of Physics
Fiber bundles unify all of the fundamental physics theories
So what is there left to unify?
Well, why/how U(1)×SU(2)×SU(3)×SO(3,1)?
Kaluza-Klein theory (the 5-sphere)
Affine Lie groups (string theory)
Supersymmetry (fermions)
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Placeholder
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Geometry with Formulas

The hardest part with formulas is (1) there are so many (2)
there are many different ways of writing down the *same*
equations, using wildly different notation.

Introduce Lie derivative LX f
Introduce covariant derivative D = d+A – Rosetta stone of
different notations
Geodesics as solutions of Hamilton’s equations i.e. as
linear, first-order diffeq NOT second order!

ṗ =−dH
dq

q̇ =
dH
dp

where H=squared-length-of-curve
exp as the map that moves along geodesics
Geodesic completeness



Metric Differential Geometry

Indroduce metric as inner product of frame fields
gµν = eµ ·eν = e a

µ e b
ν ηab

Metric was NOT needed to define curvature, geodesics,
parallel transport
(metric is almost kind-of useless except that its a standard
touch-stone for GR)
Provide (repeat) Einstein eqns.
Replace frame field by generic fiber bundle
e.g. U(1) for electromagnetism, SU(n) for yang-mills
Maxwell’s equations are nothing more than Hamilton’s
eqns on U(1) + Bianchi identites

F = dA d ∗F = 0

Yang-Mills/Einstein

F = dA + A∧A D ∗F = 0

is the same as

R(X ,Y ) = ∇X ∇Y −∇Y ∇X − [X ,Y ]

provide a rosetta-stone correspondance
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Geodesics

Maxwell’s eqn’s have singularities called "electric charges"
and geodesics go "splat" on an electric charge
Swarzschild BH’s are just like electric charges: geodesics
go splat when they get there.
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