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Abstract

The language-learning effort involves research and software development to
implement the ideas described in ArXiv abs/1401.3372[GV14]. This document
contains supplementary notes and a loosely-organized semi-chronological diary of
results.

Introduction
The language-learning effort involves research and software development to implement
the ideas described in in ArXiv abs/1401.3372[GV14]. This document contains sup-
plementary notes and a loosely-organized semi-chronological diary of results. Its not
actully chronological: in general, it is organized so that theory preceeds data analysis.
Usually.

The initial stages of this work require the extraction of word-pair probabilities from
raw text, and the use of these to induce a Link Grammar[ST91, ST93]. This extends
prior work on MST parsers[Yur98], by inducing link types for word-pair relations.

Later stages further extend beyond what is possible with Link Grammar by in-
ducing synonymous words and phrases. The goal here is to unifiy into a consistent
framework various techniques for unsupervised semantic discovery that have already
been proven in narrower contexts[PD09, Lin98, LP01].

The first section of this document is a review of various defintions of probabilites
that can be obtained from natural langauge text. This is followed by a roughly chrono-
logical diary of further observaions and results. Many revisions are made out of chrono-
logical order.

Lexical Attraction, Mutual Information, Interaction Information
The goal of this section is to clarify some of the formulas used by Deniz Yuret in his
PhD thesis “Discovery of Linguistic Relations Using Lexical Attraction”, MIT 1998
(http://www2.denizyuret.com/pub/yuretphd.pdf). These formulas are vitally impor-
tant, because they provide a strong tool when working with text; this has been shown by
Yuret in his thesis, as well as by many others, as well as by my own practical exprience
with using them.
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Possibly the most useful formula is the one in the middle of page 40. By the time
that we get to it, the terms “mutual information” and “lexical attraction” are being used
interchangably. This formula states the MI(x,y) for two words x and y; yet it is mani-
festly not symmetric in x and y, since x is the word on the left, and y is the word on the
right. By constrast, textbook (wikipedia) definitions of MI are symmetric in thier vari-
ables. Below I try to dis-entangle the resulting confusion a bit, and give a more correct
derivation of the formula. The key is to observe that the formula contains an implicit
pair-wise relationship between two words, and that there are actually three variables:
two words, and thier relationship. If this implicit relationship is made explicit, then the
confusion evaporates. It also opens the door to talking about the MI (or the interaction
information InI) of more complex relationships, not just pair-wise ones.

Being able to correctly write down the MI and the InI for complex relationships
is important for NLP: relationtionships can be labelled by types (subject, object) and
by word classes (noun, verb), and have various dependency constraints between them.
Thus, we need to be able to talk both about a labelled directed graph, and the entropy
or mutual information contained in it’s various sub-graphs.

In defense of Yuret, he does say, on page 22, that “lexical attraction is the likelihood
of a syntactic relation.” However, the relation starts becoming implicit by eqn 12 on
page 29. An unexplained leap is then made from eqn 12 to the formula on page 40.
The below gets fairly pedantic; this seems unavoidable to avoid confusion.

Definitions

Let P(R(wl ,wr)) represent the probability (frequency) of observing two words, wl and
wr in some relationship or pattern R. Typically, R can be a (link-grammar) linkage of
type t connecting word wl on the left to word wr on the right; implicitly, both wl and wr
occur in the same sentence. The goal of this discussion is to enable relations R that are
more general than this; for now, though, R is a word-pair occuring in a single sentence.

The simplest dependency grammar language model has only one type t, the ANY
type. This is the type that Yuret uses: it makes no distinction at all between subject,
object relations (that is, all depdencies are unlabelled), and it does not make a head-
dependent distinction (all dependencies are bi-directional). Thus, in what follows, we
do the same: initially, the relation R(wl ,wr) is simply the statement that the words wl
and wr are connected by an unlabelled, un-directed edge. For this simplest case, what
R(wl ,wr) does is to capture that wl is to the left of wr.

In what follows, the relation R = R(wl ,wr) refers to a generic two-word relation,
and not necessarily this simplest one. To regain Yuret’s formula, use the simplest rela-
tion, the ordered word-pair relation, given just above.

The quantity of interest is the (unconditional) probability P(R(wl ,wr),wl ,wr) of
observing the two words wl and wr in a relation R = R(wl ,wr). To correctly understand
and work with this quantity, some care must be taken with the notation for several
related probabilities. First, one has P(w), the probability of observing the word w
in the data sample. Next, one has P(S(w1,w2),w1,w2), the probability that the two
words occur in the same sentence. Again, S(w1,w2) denotes a relation between the
two words; it differs from R(w1,w2) in that the word-order does not matter. A third
kind of pair relation is the unconditional probability of observing two words, which
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can be defined as P(w1,w2) = P(w1)P(w2). In this case, instead of assuming indepen-
dence of two random variables, we define them to be so. This is possible, because we
have a notation for specifying when there is a correlation. That is, if there was some
correlation (relation) C(w1,w2) between them, then one should write this explicitly,
as P(C,w1,w2) = P(C(w1,w2),w1,w2). The notation here allows the various needed
probabilities to be defined without ambiguity.

Thus, assumptions of independent variables are now replaced by a notational infras-
trcture. Note, in particular, that if one uses a frequentist definition for the probabilities
(as will be done in what follows), then the probabilities are not independent of the data
sample from which they are drawn. Thus, all probabilities here have an implicit depen-
dence on the data sample. This dependency is not explicitly shown. Some care must
be taken to use the same data sample throughout.

The above notation allows the definition of conditional probabilities, in the conven-
tional sense. For example, one has that

P(R,wl ,wr) = P(R|wl ,wr)P(wl ,wr)

or that

P(R|wl ,wr) =
P(R,wl ,wr)

P(wl ,wr)

as the conditional probability of observing the relation R, given that it’s component
parts are observed. From the earlier definitions, the denominator factors, and so we
conclude that the correct expression for the conditional probability is:

P(R|wl ,wr) =
P(R,wl ,wr)

P(wl)P(wr)
(1)

This is the probability of observing the relationship R given that the individual parts of
the relationship have been observed. The relation R includes all correlations between
the two words: thier ordering as well as thier co-occurance in a sentence.

Take care, however: P(R|wl ,wr) is NOT the probability of seeing R, given that wl
and wr occur in the same sentence. This would instead by given by P(R,wl ,wr)/P(S,wl ,wr).
This is an entirely different.

Frequentism - Counting words and pairs

In order to be usable, a computable definition for the probabilities must be given. For
this, the definition can only be frequentist. That is, the probabilities are to be obtained
from empircal data; from counting frequencies as they occur in data samples taken
from nature. The frequency P(w) of observing a word w is obvious:

P(w) =
N(w)
N(∗)

where N(w) is the count of observing word w and N(∗) is the total number of words
observed. That is, by definition, it is the wild-card summation

N(∗) = ∑
w

N(w)
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How to count words is not entirely obvious, so even these defintions need care. There
are several ways in which one can count words. One way is to simply count how
many times a word occurs in the block of sample text. Another way is to count how
many times a word occurs in parses of the sample text. These are not the same! For
example, if a parse connects words by edges (by dependency-grammar relations), then
one can count each word once, for each time that it occurs at the end of an edge. In
this counting, the word-count is exactly double the word-pair count. A word is then
counted multiple times, if it participates in multiple edges. If the sample text is parsed
multiple times, then addtional counts can result that way. To maintain consistency with
the defintions given in the previous section, N(w) is defined to be the number of times
that the word w occurs in the data sample, and independent of any other relations that
w might be engaged in. For now, it is assumed that the segmentation of the text sample
into words is unambiguous.

Let F(S(w),w) be the number of times (frequency) of observing word w in any
sentence S. This can be computed as

F(S,w) =
N(w)
NS

where N(w) is the number of times a word w was observed in a data sample, and NS is
the number of sentences in that same sample. This counts with “multiplicity”, in that
w can appear in a sentence more than once. That is, F is not a probability, rather, it is
an expectation value of the number of times that a word is observed. This can be made
explicit, by writing

F(S,w) =
N(w)
N(∗)

N(∗)
NS

= P(w)L(S)

with L(S) = F(S,∗) being the average sentence length (the expectation value of the
number of words in a sentence).

Three different word-pair relationships are interesting. First, define the relation
S(w1,w2) as being the relation that both words w1 and w2 occur in the same sentence,
but in arbitrary order. It is symmetric: S(w1,w2) = S(w2,w1). Define A(wl ,wr) as
being the relation that both words wl and wr occur in the same sentence, and that wl is
to the left of wr. By this definition, the counts for the two are related: one has that

N(S,w1,w2) = N(A,w1,w2)+N(A,w2,w1)

This is the symmetrized count.
Neither of S or A is yet the relation R(wl ,wr) mentioned above, which is defined

as being the relation that both words wl and wr occur in the same sentence, that wl is
to the left of wr, and, most importantly, that there is a link-grammar link (of type “R”)
connecting the two. Observe that although A can be deduced from S, there is no simple
or obvious relation between S and R; these are essentially independent relations.

The way that the statistics are collected for A and for R are different. To count the
A-type relations, one tokenizes a sentence into words, and then, counts every possible
word-pair in the sentence. Effectively, one draws a clique of edges between the words,
and then counts each edge. The statistics for R are collected by parsing the sentence
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into a random planar tree, and then counting the edges in the tree. The result for this
counting is NOT the same as that for type-A edges. The reason for this is demonstrated
in depth, in the section Edge-counting 27 March 2017 on page 59, below.

Initially, there is only one link relation “R” between two words: this is the “ANY”
link-type. However, in general, “R” can be other kinds of link-types. Note that “R”
can also have a head-tail dependency order: either wl or wr can be the head-word of a
directional link. Thus, there are three different symmetrizations that can be obtained
from “R”: by failing to make a left-right distinction, by failing to make a head-tail
distinction, and failing to do either.

The definition for the probability of observing a relation can be taken to be

P(R,wl ,wr) =
N(R,wl ,wr)

N(R,∗,∗)
(2)

where
N(R,∗,∗) = ∑

wl ,wr

N(R,wl ,wr)

This can be roughly understood as being the conditional probability of observing the
relation R(wl ,wr) between two specific words, given that the relation R between any
two words was seen.

Is it possible to define the unconditional probability P(R,∗,∗) of seeing the rela-
tionship? The path to the answer is not entirely straight-forward. First consdier the
probability P(S,w1,w2) of seeing two words in the same sentence. This probability is
defined just as in eqn 2; that is, P(S,w1,w2) = N(S,w1,w2)/N(S,∗,∗). From this, one
can define the frequency of seeing a relation in a sentence, as

F(R|S,w1,w2) =
P(R,w1,w2)

P(S,w1,w2)

This gives the expectation value of seeing the relation R in a sentence, given that the
two words are already known to be in the sentence. That this is an expectation value
should be clear, as the relation might appear multiple times in one sentence (e.g. if one
of the words is repeated). The sum

F(R|S,∗,∗) = ∑
wl ,wr

F(R|S,wl ,wr)

then counts the average number of relations per sentence. For the any-type ordered-
pair relation, clearly one must have that there are at least as many relations as there
are words in the sentence, minus one, since each word must appear in at least one
(distinct) relation. That is, F(S,∗)−1 ≤ F(R|S,∗,∗) with F(S,∗) the expected length
of a sentence.

Similarly, one can consider the ratio

F(S,w1,w2) =
P(S,w1,w2)

P(w1)P(w2)

which captures the frequency at which two words are seen in the same sentence. The
summation F(S,∗,∗) then counts how many pairs are seen per sentence. Assuming
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that the counting was performed with a uniform distribution, this should then equal the
number of edges in a clique. That is, for a sentence of length m, there should be m(m−
1)/2 word-pairs (edges) counted for that sentence. This should hold approximately, on
average, so that F(S,∗,∗)≈ F(S,∗)(F(S,∗)−1)/2.

From the development above, it should be clear that it is not really possible to
define a quantity P(R,∗,∗) that is the “probability of seeing a relation”. We can count
the number N(R,∗,∗) of times the relation occurs in a data sample. We can count
the average number of times the relation is seen in a sentence. However, as long as
the relation occurs at least once in the data sample, one would have to say that the
“probability of seeing the relation in the data sample” is one. The problem is one of
normalization: there is no universe, of which N(R,∗,∗) is a fractional measure.

That said, once can still consider an interesting ratio:

F(R,∗,∗) = ∑
wl ,wr

F(R,wl ,wr) = ∑
wl ,wr

P(R,wl ,wr)

P(wl)P(wr)

This can be interpreted as a kind-of centrality. So, for example, for the any-pair rela-
tion, every word in the data sample must participate in at least one such pair-relation,
and thus, we expect that F(R,∗,∗) ≈ 1. The precise value is related to the tree-parse
that is being used to generate the any-relation. If the (random) parse-tree is acyclic,
then the number of edges is comparable to the number of words. If the parse-tree
contains cycles, then there may be more relations than there are words.

Yuret’s Mutual Information

Deniz Yuret introduces the concept of “lexical attraction”. It is reviewed breifly, here.
He defines a probability P(wl ,wr) of seeing an ordered pair; as compared to the above,
the relation is implicit. To make it explicit, one should write:

P(wl ,wr) = P(A(wl ,wr),wl ,wr) (3)

which indicates the relation explicitly, as well as noting that the order of the positions
in the relation matter. To avoid confusion, the cursive P is used for the Yuret notation,
instead of the roman P which is reserved for the defintions above.

The letter A used here reminds us that in Yuret’s work, the pair-counting method
used is the clique-edge-counting mechanism, described above, rather than the random-
planar-tree relation. One expects the two to be similar, but not the same.

Yuret also uses the notation P(wl ,∗) and P(∗,wr) for wild-card summations,
defined as

P(wl ,∗) = ∑
wr

P(wl ,wr) and P(∗,wr) = ∑
wl

P(wl ,wr)

It is tempting to conflate P(wl ,∗) with P(wl) but that would be wrong; not every
possible word can occur on the wr position. This suggests a different, but tempting,
error, that P(wl ,∗) ≤ P(wl). This is also not the case! A word might occur more
frequently as the left side of a pair, than it does all by itself in the sample text. This
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follows from the frequentist definitions; the denominators for the two probabilities are
not compatible; they do not range over the same universe.

Yuret defines the “lexical attraction” as

MI(wl ,wr) = log2
P(wl ,wr)

P(wl ,∗)P(∗,wr)
(4)

so that large positive MI is associated with words that rarely seen one without the other
(e.g. ’Northern Ireland’ from his examples.) Note the absence of a minus sign in the
above! See below for an explanation. Large-MI word pairs occur when P(wl ,wr) is
roughly comparable to P(w,∗)≈P(∗,w).

It is worth reviewing Yuret’s example, at this point. He looks at the word pair
’Northern Ireland’ and states (based on a particular corpus that was analyzed) that
− log2 P(’Northern’)= 12.60 and that− log2 P(’Ireland’)= 14.65 and finally that− log2 P(’Northern’, ’Ireland’)=
16.13. What these numbers mean is that although either word alone occurs at a rate of
roughtly once in ten-thousand words, the word-pair together occurs at the rate of one in
thirty-thousand or so: the word pair occurs almost as often as either word alone. Thus,
the resulting MI is very large: MI = −16.13+ 12.60+ 14.65 = 11.12. The choice of
sign in eqn 4 is such that words that co-occur have a large positive value. In practice,
the distribution of the MI for word-pairs runs from about -15 to about +35, and, when
ranked accoring to MI, the probabilites form a rounded mountain-peak, two-sided, each
side being linear (Zipfian) with the peak at about MI=4 or 6. (See my other notes for a
graph.)

1 January 2014
OK, after that side distraction, which helped clear up notation, back to the main show
...

The main show is this: We want to model language, and specifically, find a ’mini-
mal’ set of relations R that are accurately generative. The meaning of ’minimal’ seems
obvious, intuitively, but a lot harder to pin down mathematically. We need to pin it
down to get an algorithm that works in a trust-worthy, understandable fashion.

So: what is the total space of relations, and how do we find it? The simplest model
is then a Zipfian distribution of words, but placed in random order. This model has a
total entropy of

H =−∑
w

P(w) log2 P(w)

For a recent swipe at parsing a few hundred articles from the French wikipedia, I get
H=7.2. This is on 17K words, observed a total of 35M times (actually, observerd each
sentence 100 times, so really just 350K ’true’ observations of words).

How does one count the entropy of the rule-set? Elucidating this is the goal-set.
But first, step back: describe the rules.
OK ... so, once again ... sentence structure is to be described via link-grammar,

using disjoined conjunctions of connectors. This is theoretically sound, as it seems
to be isomorphic to categorical grammars (via type-theory of the connectors; need a
formal proof of this someday, but for now it seems ’obvious’). Also link-grammar is
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fully compatible with dependency grammar. So lets move forward. But this is an old
debate, off to the side, immaterial for now.

How to count relations
Consider a sentence with n words in it, numbered w1,w2, · · · ,wn left to right. We
want to constrain grammar by discovering a set of relations R(w1,w2, · · · ,wn) such
that P(R(w1,w2, · · · ,wn)) > 0 when the sentence is gramatically valid (i.e. such an R
exists), and P is zero when no such R exists (i.e. the sentence is not gramatically valid.)
The first and most obvious simplification rule is to observe that R can be replaced by
R(W1,W2, · · · ,Wn) where each Wk is a set of words. That is, instead of listing each
sentences individually, we list certain classes of sentences. In other words, the rela-
tions R(w1,w2, · · · ,wn) are in one-to-one correspondance with a list of grammatical
sentences (w1,w2, · · · ,wn), so simply listing all possible sentences is a very verbose
way of specifying a grammar. It is linguistically ’obvious’ that sentences fall into
classes, and so the two relations R(′this′,′ is′,′ a′,′ dog′) and R(′this′,′ is′,′ a′,′ cat ′) can
be replaced by R(′this′,′ is′,′ a′,Wn) where Wn = {′dog′,′ cat ′}. In fact, Wn can be a
rather large set of nouns.

So ... the question is: what is the reduction of complexity, by performing this
classification? What is the correct way of counting? I assume that ’complexity’ is a
synonym for ’entropy’, so we are looking to do two things: enumerate the states of
the system, and proivde a measure for complexity. So, lets consider a language with
N nouns, so that the cardinality of Wn is |Wn| = N and the only valid sentences are
(′this′,′ is′,′ a′,w) with w ∈Wn . Before simplification, we had N relations R, one per
sentence. We also had N +3 sets, each set containing a single word; the N nouns, and
the three words ′this′,′ is′,′ a′. After simplification, we have one relation R, and four
sets; three of the sets have cardinality 1, the fourth set has cardinality N.

Revision: July 2014

There seem to be several ways of counting. Some of these seem to give wrong an-
swers. Some just seem wrong. This is all very confusing, so I’ve altered the entries to
explicitly show the different ways of counting.

Method 1 (naive counting): One counting rule is to count set-membership relations
on equal footing with structural relations. Thus, before simplification, we had N + 3
sets, each a singleton, and thus N + 3 set membership relations. After simplification,
we have four sets, but still have N + 3 set membership relations. Thus, this particular
simplification step does not reduce the number of membership relations at all. This
seems disconcerting... Let’s provisionally go with this and see what happens. Thus,
before simplification, we had 2N + 3 relations grand-total, and afterwords, we have
N +4 relations grand-total.

What is the correct ’thermodynamic’ picture of what’s going on? In this toy prob-
lem, we have a grand-total state space of size (N+3)4 since any of the N+3 words can
appear in any of the four slots in a four-word sentence (micro-canonnical ensemble).
The entropy, at ’infinite temperature’ where all possible four-word sequences occur

8



with equal probability is then 4log2(N + 3). The entropy of the set of grammatical
sentences is log2 N since there are only N possible grammatical sentences. In this toy
grammar, there are also invalid setences of length 1,2,3,5,6,7,... and so the total size of
the space of word-sequences is clearly infinite.

OK, so the space of word-sequences is very concrete, and easy to describe and
measure, at least for toy grammars. What about the space of relations? Well, the claim
is that the entropies of the before-and-after models are log2(2N +3) and log2(N +4),
respectively. Neither of these matches the entropy of the set of allowed sentences
(which is log2 N), so this seems paradoxical, and begs the questions ’did we count
correctly?’ and ’did we actually simplify anything by making the above change of
description?’ Hmm. The correct answer seems to be ’no’ and ’no’.

Method 2 (subtract one): To ’fix’ the oddball results above, an alternative counting
methodology is to subtract 1 from the cardinality of every set. This would then give
both log2 N as the entropy for both the before and after relation-sets. Thus, before, we
had N relations and N +3 sets, each of weight zero, for a total weighted-relation count
of N. After, we have one relation and four sets; three of the sets have weight zero,
one set has a weight of N−1 so the total weighted relations is again N. This seems to
resolve the paradox. But why subtract one? That’s a bizarre rule, almost unheard-of in
information theory.

Method 3 (naive log addition): Total complexity is given by:

K = log2 |Rel|+ ∑
W∈Wrds

log2 |W |

where Rel is the set of relations, and Wrds is the set of word-lists, and |W | is the
cardinality of each word-list. We then get, before simplification, |Rel|= N and |W |= 1
for each of the word-sets. The total complexity is thus K = log2 N as expected (i.e.
equal to the log of the total number of possible sentences). After simplification, there
is |Rel| = 1 and 3 sets with |W | = 1 and one set with |W | = N, thus yeilding a total
of K = log2 N again. This seems to give a plausible answer, and provides a plausible
argument.

Method 4 (relational complexity): Treating each relation as being equally complex
seems odd. It would seem to make more sense to have each relation contribute accord-
ing to its complexity, so that the contribution of the relations to the total complexity
is:

∑
R∈Rel

CR

with CR the complexity of each relation, itself the log of some measure. But how do
we measure complexity? Is it Kolmogorov complexity? There’s no obvious a priori
defintion for this. The defintion of this complexity would seem to depend on the partic-
ular algorithm machinery of the grammar; that is, on the ’programming language’ used
to represent the relation. This is the traditional ambiguity attached to the Kolmogorov
complexity.
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Method 5 (corpus distribution): Instead of measuring the complexity of a gram-
matical expression (in an as-yet unkown grammar), instead, use the corpus frequency
ass a proxy. For the above example, if the N sentences are equi-distributed (i.e. occur
equally likely in the corpus), then, before simplification, each of the relations has a
complexity

CR =− 1
N

log2
1
N

so that, before simplification,

K = ∑
R∈Rel

CR = log2 N

which again seems to be the desired answer. After simplification, there is one relation
that applies to the entire corpus, so that CR = 0 after simplification.

Method 6 (corpus word-counts): If we are taking word-relation frequencies from
the corpus, then we should be taking word-set frequencies from the corpus as well. That
is, the word-set contribution log2 |W | is assuming an equi-distribution. This should be
replaced by the corpus contribution

− ∑
w∈W

p(w) log2 p(w)

Summary. Provisionally, the last two methods seem to be the best way to move for-
ward. To summarize, the complexity is given by

K =− ∑
R∈Rel

PR log2 PR− ∑
W∈Wrds

∑
w∈W

Pw log2 Pw (5)

where PR = P(R) = P(R(W1,W2, · · · ,Wn)) is the probability of observing the relation
R in a sample corpus, and Pw = P(w|W ) is the probability of observing word w in the
corpus, conditioned on its appearence in the corpus having to do with it belonging to
the word-class W .

Counting Link-Grammar Relations
Per link-grammar, each relation is decomposable into pair-wise relations; this is the so-
called ’parse’ of a sentence. If the relation is a single word-per-slot sentence relation,
then the ’parse’ is literal. We write

R(w1,w2, · · · ,wn) = ∏
j,k,m

Rα(w j,wk, tm) Q(Rα ,Rβ , · · · ,Rω) (6)

where Rα(w j,wk, tm) is a single connected pair of words, connected by the connec-
tor tm. The product symbol ∏ implies that all such binary relations must hold. The
awkward Q(Rα ,Rβ , · · · ,Rω) at the end is the additional no-links-cross constraint in the
current link-grammar parser. Its a non-local constraint involving all of the binary rela-
tions. It also subsumes any ’post-processing’ rules, although, for the language learnign
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exercise, there won’t be any post-processing rules. At any rate, Q is a place where
higher ordrer constraints can be applied. In particular, the most genneral form for Q
should be Q(Rα ,Rβ , · · · ,Rω ,w1,w2, · · · ,wn) since, in principle, it could depend on the
word-choice, although the no-links-cross constraint does not.

Yuret proposes a way of discovering the pair-wise relations[Yur98]. He makes the
implicit, unvoiced assumption that there is a single, unique connector type tm for every
ordered pair of words w j,wk; that is, that tm = tm(w j,wk). Viz, specifically, that such
connectors are in 1-1 correspondance with word-pairs. (I don’t think he’s aware of
this assumption; I don’t think anyone has ever before realized that he’s making such
an assumption; certainly, I haven’t). Yuret then makes two claims: first, that the only
possible grammatically correct parses are those of the above form (eqn (6)) for which
the relations Rα(w j,wk, tm(w j,wk)) have been previously observed; secondly, that there
is a natural ranking of such allowed parses by summing the total mutual information
associated with each word-pair.

These two concepts give rise to the idea of minimum-spanning-tree parsers. Such
parsers work in a two-step process: a training phase, and a parse phase. In the training
phase, one gathers a lot of statistics about mutual information. The important point
here is that this is unsupervised training. To parse, one first creates a graph clique, with
every word connected to every other. One uses the gathered MI to define graph edge
lengths. Finally, the corrrect parse is then the maximum spanning tree of the graph
(maximizing the MI, summed over the tree edges in the graph).

Here, we use the same idea, but then take the next step. The spanning tree can be
decomposed into a set of link-grammar disjuncts, one disjunct per word. The disjunct
is merely a list of the connections that one word makes. It consists of the type, and the
direction. The direction is left or right. The type is the tm = tm(w j,wk) defined above.
By parsing a large number of sentences, we can now automatically discover a large
number of disjuncts, in an unsupervised manner.

The goal, the next step, is then to reduce the total number of disjuncts, and the total
number of types, by clustering and discovering similarities.

3 January 2014

No-crossing Minimum Spanning Trees
It turns out that writing an algorithm for a no-crossing minimum spanning tree is sur-
prisingly painful; enforcing the no-crossing constraint requies treatment of a number of
special cases. But perhaps this is not actually required! R. Ferrer i Cancho in “Why do
syntactic links not cross?”[iC06] shows that, when attempting to arrange a random set
of points on a line, in such a way as to minimize euclidean distances between connected
points, one ends up with trees that almost never cross!

Other related references:

• Crossings are rare: Havelka, J. (2007). Beyond projectivity: multilingual evalu-
ation of constraints and measures on non-projective structures. In: Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics
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(ACL-07): 608-615. Prague, Czech Republic: Association for Computational
Linguistics.

• Hubbiness is a better model of sentence complexity than mean dependency dis-
tance: Ramon Ferrer-i-Cancho (2013) “Hubiness, length, crossings and their
relationships in dependency trees”, ArXiv 1304.4086 — also states: maximum
number of crossings is bounded above by mean dependency length. Also, mean
dependency length is bounded below by variance of degrees of vertexes (i.e.
variance in number of connectors a word can have).

• Language tends to be close to the theoretical minimum possible dependency dis-
tance, if it was legal to re-arrange words arbitrarily. See Temperley, D. (2008).
Dependency length minimization in natural and artificial languages. Journal of
Quantitative Linguistics, 15(3):256-282.

• Park, Y. A. and Levy, R. (2009). Minimal-length linearizations for mildly context-
sensitive dependency trees. In Proceedings of the North American Chapter of
the Association for Computational Linguistics - Human Language Technologies
(NAACL-HLT) conference.

• Sentences with long dependencies are hard to understand: The original claim is
from Yngve, 1960, having to do with phrase-structure depth. See – Gibson, E.
(2000). The dependency locality theory: A distance-based theory of linguistic
complexity. In Marantz, A., Miyashita, Y., and O’Neil, W., editors, Image, Lan-
guage, Brain. Papers from the first Mind Articulation Project Symposium. MIT
Press, Cambridge, MA.

• (Cite this, its good) Mean dependency distance is a good measure of sentence
complexity – for 20 languages – Haitao Liu gives overview starting from Yn-
gve. [Liu08]. Haitao Liu “Dependency distance as a metric of language com-
prehension difficulty”, 2008, Journal of Cognitive Science, v9.2 pp 159-191
http://www.lingviko.net/JCS.pdf

• Sentences with long dependencies are rarely spoken: Hawkins, J. A. (1994). A
Performance Theory of Order and Constituency. Cambridge University Press,
Cambridge, UK. —-Hawkins, J. A. (2004). Efficiency and Complexity in Gram-
mars. Oxford University Press, Oxford, UK. —-Wasow, T. (2002). Postver-
bal Behavior. CSLI Publications, Stanford, CA. Distributed by University of
Chicago Press.

• Dependency-length minimzation is universal: Richard Futrell, Kyle Mahowald,
and Edward Gibson, “Large-scale evidence of dependency length minimization
in 37 languages” (2015), doi: 10.1073/pnas.1502134112

• The longest links, observed statistically, are of length 6 or less. This is based on
computing the mutual information of words at different distances for the Brown
corpus. Xuedong Huang, Fileno Alleva, Hsiao-wuen Hon, Mei-Y uh Hwang,
Kai-Fu Lee and Ronald Rosenfeld. The SPHINX-II Speech Recognition System:
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An Overview . Computer , Speech and Language , volume 2, pages 137–148,
1993.

So, rather than imposing no-crossing as a constraint on the parser, instead, let it find its
own way into the grammar. Just implement a plain-old MST parser, punt on crossing.

11 January 2014

Clustering Redux
OK, so what is the very next algorithmic step? Up to here, we’ve generated a large
number of unique disjuncts. Now what?

Back to counting. Lets do the French dictionary. The database fr_pairs contains
table atoms_mi_snapshot. So:

• select count(*) from atoms_mi_snapshot; returns 415532

15 January 2014

Embodied Learning
OK, so maybe learning syntax before emantics puts the cart before the horse. Can we
learn a world-model first, and then gradually annotate and correct it as our linguistic
comprehension improves? So, for example, can we start with a world-model obtained
via document summarization? How do we annotate this model with newly discovered
data?

Related question: how to automatically discover ontologies? Automated, unsuper-
vised concept, entity extraction? Semantic context change over time?

Steps:

1. How do I extract entities out of a text? The extraction doesn’t have to be perfect;
having candidate entities is enough. How do I put a confidence rating on the
entiy, and how do I discard the low-cnfidence ones?

2. Once entities are extracted, I want to start decorating them with attributes (ad-
jectives, modifiers), to build a network.

3. Once a network is built, it needs to be factually reconciled, using logical rea-
soning and an ontology (is-a and has-a relations). Need to do this so that upon
reading “colorless green ideas”, we can deduce that ideas are either colorless or
green, but not both.

4. How to automatically extract an ontology from free text?

The above seem to be the central steps/core issues for creating a world-model, unsu-
pervised, from text.
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Entropy
Some refresher notes:

• “The Boltzmann distribution is the so-called canonical distribution, meaning it
maximizes entropy subject to a constraint on the expected value of energy.” (viz,
this is the MaxEnt principle. Except for MaxEnt, the constraint is not on energy,
but rather a set of constraints obtained on some other theoretical grounds.)

• Define “Shanon Entropy” as Ss =−kB ∑ p log p

• The “Boltzmann Entropy” SB is the shanon entropy of the microcanonical en-
semble: it maximizes the entropy (MaxEnt) for a fixed value of the energy. (Max-
Ent: not the energy, but for a fixed set of constraints). (viz, SB = kB log

(
ε

dΩ

dE

)
with Ω being number of states, E the energy, ε a constant of dimension energy
to make arg of the log dimensionless.) (MaxEnt: replace E by the individual
constaints. This suggests that there are many Boltzmann entropies: one for each
constraint that is applied!)

• The “Gibbs Entropy” is the Shanon entropy, maximized for a system held to the
constraint that energy is less-than-or-equal to E. (!) This gives SG = kB logΩ

(duhh, take p = 1/Ω for Ω states. For a non-sharp cutoff, the Shannon entropy
is primal.). (MaxEnt: one gets a different Gibbs entropy for each applied con-
straint.)

• Gibbs and Boltzmann entropies give different results for N-particle systems when
N is very small. Viz, an off-by-one error for N. In some ways, SG is more
correct (at low temp, quantum systems). See Jörn Dunkel and Stefan Hilbert
(2014) “Consistent thermostatistics forbids negative absolute temperatures” Na-
ture Physics DOI: 10.1038/NPHYS2815

Why does Yuret’s MST work?
There is an interesting simplification that happens with minimum-spanning tree parsers
driven by entropy. If we use Yuret’s definition of the MI of word-pairs, then, Yuret says
(I should re-read his stuff) that we should maximize the entropy

∑
wl,wr

MI(wl ,wr) (7)

Why? Why this, instead of the maybe “more obviously correct” sum:

∑
wl,wr

P(wl ,wr)MI(wl ,wr) (8)

I think I can hand-wave the answer. The answer is that we don’t really know the
probability of P(wl ,wr) for the given sentence! We know P(wl ,wr) for a large corpus,
but its somewhat of a mistake to assume that this identical to what it would be for
expressing a particular idea in a certain specific way. Its possible that, to express the
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idea, the only sentences that one could ever possibly use would have P(wl ,wr) that
strongly deviate from a large-corpus average. Unfortunately, there is no easy way of
knowing what this sentence-specific P(wl ,wr) is. So, instead we make the uniform
distribution assumption, that they’re all the same, and thus get eqn (7) instead of (8).
Does Yuret ever make this argument himself? Dunno.

A supporting argument is that we also ignored 3,4,5-point interactions as well.
Which brings us to the next point: why should we expect a link-parse to work bet-
ter than an MST parse? Because Yuret-MST ignores the valence of words, whereas
the disjuncts don’t! The disjuncts provide a better, more accurate way of capturing
valency!

Entity Extraction
See Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates (2005) “Unsupervised Named-
Entity Extraction from the Web: An Experimental Study”. So: KNOWITALL utilizes
a set of eight domain-independent extraction patterns to generate candidate facts. For
example, the generic pattern “NP1 such as NPList2” ... “cities such as Paris,...”” Of
course, this is not really unsupervised, since it uses human-generated search patterns
(“such as”) and also applies constraints (the targets must be proper nouns, which is not
a-priori known).

Partition Function
Some notes about the Boltzmann distribution. Let F(wl ,wr) be a numeric score associ-
ated with the edge (wl ,wr) – for example, this might be (minus) the MI. By convention,
one introduces a Lagrange multiplier β and writes F = β f . The probability of a parse
tree T constructed solely out of edge-pairs is then defined as

P(T |S) =
exp
(
−β ∑(wl ,wr)∈T f (wl ,wr)

)
Z(S)

Here, S is the sentence: a sequence of words, and Z(S) is the partition function: the
sum of the probabilities of all different possible parses for that setence:

Z(S) = ∑
T

exp

(
−β ∑

(wl ,wr)∈T
f (wl ,wr)

)

The MST parse is then the single parse T that maximizes the probability P(T |S) and
this can be easily seen to be the parse that maximizes the sum ∑(wl ,wr)∈T f (wl ,wr) on
the spanning tree T .

Written in this form, it suggests how parsing can be generalized to include other
scores. If, for example, one has some other score g(w1,w2,w3) over triples of words,
then one sums as above, using g in place of f . In general, one can consider scoring
functions f = f (R;S) for some relation R over the sentence S. The prototypical ex-
ample would be a scoring function that uses Link Grammar disjuncts for the relation
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R, together with some weighting for link lengths (so as to avoid long links), together
with some weighting for word pairs (to give greater weight to idioms and set phrases,
as opposed to grammatically valid but non-idiomatic parses).

In many papers on supervised training, it is common to call the relation R a “fea-
ture”, and to consider many different possible features R. Thus, f = fR(S) becomes a
vector ~f over the features R. The multiplier −β is replaced by a vector of weights ~w,
and so one considers the probability

P =
exp
(

∑~w ·~f
)

Z(S)

Supervised training then uses a training corpus marked up with both a feature vector
~f and the correct parse; training consists of using various supervised learning algos to
find the best-possible weight vector ~w that maximizes the fraction of correct parses (or
optimizes the ROC curve, or other measure of accuracy). In unsupervised training, we
don’t have a training corpus, and thus, do not focus on optimizing the weight vector.

Now we do the funky chicken dance. Write

Z(S) = det L(S)

This is commonly done when working with fermions; this is the Berezin determinant
or Berezin integral, so named because one may write

detA =
∫

exp [−θAη ]dθdη

for Grassman variables θ and η and A a matrix. Here’s the part that surprises me: Koo
et al state that L(S) can be taken to be a Laplacian matrix of a graph. Wow! The mind
boggles.

References:

• Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007). Structured predic-
tion models via the matrix-tree theorem. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP- CoNLL) , pages 141–150, Prague,
Czech Republic, June. Association for Computational Linguistics.

3 March 2014
Start again, after long distraction.

Finding patterns
To problem. Consider an alphabet of N = 5 letters, α = {A,B,C,D,E} and a cor-
pus built from those letters. The five letters occur with probability p(w) with w ∈ α .
Assume the corpus consists entirely of pairs AB, CB and DE, each occurring equally
often: so: p(A,B) = p(C,B) = p(D,E) = 1/3 . From this, we can reconstruct that
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p(A) = p(C) = p(D) = p(E) = 1/6 and p(B) = 1/3. This follows because the corpus
can be reduced to {AB,CB,DE}, so A occurs 1 out of 6 times, B two out of 6 times,
etc. The total single-letter entropy is thus

hSING =− ∑
w∈α

p(w) log2 p(w)

=−4
6

log2
1
6
− 1

3
log2

1
3

=
2
3
− log2

1
3
= 2.25163

By contrast, in a random 2-letter corpus, we expect all possible letter pairs to occur
equally often, i.e. p(w) = 1/5, which would result in hRAND =− log2 1/5 = 2.321928
and so we see that the total entropy for this corpus is less than the random corpus.

The total double-word entropy is

hPAIR =− ∑
w1,w2∈α

p(w1,w2) log2 p(w1,w2)

=− log2
1
3
= 1.5849625

Compare this to hPR−RAND = − log2 1/25 = 4.643856 for the random 2-letter corpus.
The pair-entropy is sharply lower.

What do we know about mutual information? We can also deduce that p(∗,B) =
2/3, p(A,∗) = 1/3 and so

MI(A,B) = log2 p(A,B)− log2 p(A,∗)− log2 p(∗,B)
= log2 3/2 = 0.585

and likewise MI(C,B) = MI(A,B) while MI(D,E) = log2 3 = 1.585.
By contrast, in a random 2-letter corpus, we expect all possible letter pairs to occur

equally often, i.e. p(w1,w2) = 1/25, which would result in an MI(w1,w2) = log2 1 = 0
for all word pairs.

Given this corpus, we wish to deduce the following answer: there is a cluster γ =
{A,C} and two link relations R(γ,B) and R(D,E) occuring with probabilities p(γ,B) =
p(A,B)+ p(C,B) = 2/3 and p(D,E) = 1/3. Note that p(γ,∗) = p(A,∗)+ p(C,∗) =
2/3 so that

MI(γ,B) = log2 p(γ,B)− log2 p(γ,∗)− log2 p(∗,B)
= log2 3/2 = 0.585

So how do we deduce this?
Well, consider the reduced space, with N = 4 letters: β = {γ,B,D,E}. In this

space, only two pairs are observed in the corpus, γB and DE with probabilities as
above. The single-letter probabilities are p(D) = p(E) = 1/6 and p(γ) = p(B) = 1/3.

17



The single-letter entropy is

hred
SING =− ∑

w∈β

p(w) log2 p(w)

=−2
6

log2
1
6
− 2

3
log2

1
3

=
1
3
− log2

1
3
= 1.9182958

This can be compared to the entropy of the random 4-word corpus: hred
RAND =− log2 1/4=

2. Note that

hred
RAND−hred

SING = 0.081704 > 0.070298 = hRAND−hSING

In other words, the reduced corpus shows more order than the comparable unreduced
corpus! Interesting! The above can be written as:

hSING−hred
SING = 0.333334 > 0.321928 = hRAND−hred

RAND

What about the reduced pair entropy? For this case, we have

hred
PAIR =− ∑

w1,w2∈β

p(w1,w2) log2 p(w1,w2)

=−2
3

log2
2
3
− 1

3
log2

1
3

=−2
3
− log2

1
3
= 0.9182958

which can be compared to the random-pair entropy of hred
PR−RAND = − log2 1/16 = 4.

The comparable reduction is

hred
PR−RAND−hred

PAIR = 3.081704 > 3.0588935 = hPR−RAND−hPAIR

So again, this wins, but not by a lot. Re-ordering, this can be written as:

hPAIR−hred
PAIR = 0.6666667 > 0.643856 = hPR−RAND−hred

PR−RAND

So we seem to have two ways of winning: reducing the overall entropy, for for
single letters, and for pairs, and also finding reductions that are strong, even compared
to the reduced vocab.

Reductio ad absurdum? No.
What if we continue on this path, and (incorrectly) reduce to N = 3 letters, with δ =
{γ,η ,D} where η = {B,E}? Then p(η) = p(B)+ p(E) = 1/2

hrr
SING =− ∑

w∈δ

p(w) log2 p(w)

=−1
6

log2
1
6
− 1

3
log2

1
3
− 1

2
log2

1
2

=
2
3
− 1

2
log2

1
3
= 1.4591479
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and the reduction inequality is

hred
SING−hrr

SING = 0.4591479 > 0.4150375 = hred
RAND−hrr

RAND

So this inequality allows an inappropriate reduction to take place. That implies that we
must not use the SING inequality to obtain reductions!

For the pairs, p(γ,η) = p(γ,B) = 2/3 and p(D,η) = p(D,E) = 1/3 and everything
else being zero. Thus one gets:

hrr
PAIR =− ∑

w1,w2∈δ

p(w1,w2) log2 p(w1,w2)

=−2
3

log2
2
3
− 1

3
log2

1
3

=−2
3
− log2

1
3
= 0.9182958

so that
hred

PAIR−hrr
PAIR = 0≯ 0.830075 = hred

PR−RAND−hrr
PR−RAND

Here, nothing is gained, so the pair inequality blocks the inappropriate reduction. Con-
sider a differnt inappropraite reduction to N = 3: let ε = {ζ ,B,E} with ζ = {D,γ}
Then the pair probabilities are p(ζ ,B) = p(γ,B) = 2/3 and p(ζ ,E) = p(D,E) = 1/3
and again, there is no entropy reduction. The other groupings look to be equally inef-
fective.

Finding Patterns, General Formula
OK, recast the above section for the (semi-)general case of word-pairs (not structures in
general). So, given a vocabulary of N words, we have hRAND =− log2

1
N = log2 N and

hred
RAND = log2(N−1) so that for large N, hRAND−hred

RAND = log2 N/(N−1) = log2(1+
1/(N−1))≈ 1/N and so we have a word-combine winner if we can combine words A
and C into a cluster γ = {A,C} such that

1
N

. hSING−hred
SING

=− ∑
w∈α

p(w) log2 p(w)+ ∑
w∈β

p(w) log2 p(w)

=−p(A) log2 p(A)− p(C) log2 p(C)+ p(γ) log2 p(γ)

= p(A) log2

(
1+

p(C)

p(A)

)
+ p(C) log2

(
1+

p(A)
p(C)

)
where p(γ) = p(A)+ p(C). What’s not clear: is this inequality ever broken? Or does
it always hold? At any rate, from the previous example, it seems clear that we should
not use the SING inequalities to obtain clusters.
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For pairs, its clear that hPR−RAND−hred
PR−RAND ≈ 2/N which follows as above, given

that hPR−RAND = 2log2 N, etc. The corresponding inequality is now

2
N

.hPAIR−hred
PAIR

=− ∑
w1,w2∈α

p(w1,w2) log2 p(w1,w2)+ ∑
w1,w2∈β

p(w1,w2) log2 p(w1,w2)

=− ∑
w∈α\A,C

[p(A,w) log2 p(A,w)+ p(C,w) log2 p(C,w)− p(γ,w) log2 p(γ,w)]

− ∑
w∈α\A,C

[p(w,A) log2 p(w,A)+ p(w,C) log2 p(w,C)− p(w,γ) log2 p(w,γ)]

− p(A,A) log2 p(A,A)− p(C,A) log2 p(C,A)+ p(γ) log2 p(γ)

− p(A,C) log2 p(A,C)− p(C,C) log2 p(C,C)

So...

8 March 2014

Morphology
Notes: https://en.wikipedia.org/wiki/Nonconcatenative morphology

25 March 2014

Information-Theoretic Clustering
New references:

• http://www.cs.utexas.edu/users/inderjit/public_papers/kdd_cocluster.pdf Information-
Theoretic Co-clustering Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra
S. Modha

• http://pdf.aminer.org/000/472/364/a_generalized_maximum_entropy_approach_to_bregman_co_clustering_and.pdf
A Generalized Maximum Entropy Approach to Bregman Co-clustering and Ma-
trix Approximation Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana
Merugu, Dharmendra S. Modha Journal of Machine Learning Research 8 (2007)
1919-1986

30 March 2014
The below was going to be a brief note, but I’m turning it into a rough draft blog post.
But after sleeping on it, it seems silly.
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Freedom and Constraint
The concepts of freedom and constraint are central to the definition of algebra in math-
ematics. So for example, in group theory, the algebraic symbols denoting the elements
of the group may be arranged freely, in any order desired. A given group is then defined
as a ’presentation’, a set of equivalences between different orderings. Thus, there is the
notion of a ’free group’, which is merely a set of symbols that can be written in arbi-
trary order, and no further constraints other than those of it being a group. Groups that
aren’t free are presented by a collection of equations, which state that one certain order
of symbols is equivalent to another. One says that groups are ’equationally presented’.

A more complex example is the term algebra, where the terms may be arranged in
free order; but the combination of the written symbols on the page are constrained to
those of the ’signature’ of the algebra. One then has the notion of an ’equational the-
ory’, which is a term algebra with additional equations between expressions, indicating
which expressions should be taken as equivalent.

These have strong, and even precise analogues in linguistics. But first, continuing
with the mathematical observations: the signature of a term algebra can be viewed
as defining the ’syntax’ of the symbolic notation: a Turing machine, tasked with the
need to recognize the ’language’ of the term algebra, would process input symbols
one by one. It would appear that term algebras have a context-free syntax, and are
thus recognizable by a push-down automata. That is, one must recognize the function
symbol, the open and close parens, the commas separating arguments, and the constant
symbols. The arbitrary-depth recursiveness is the only reason why the push-down is
needed; otherwise the language seems ’almost regular’. (Hmm ... is there any formal
definition/distinction of this case? i.e. for very simple constext-free languages, vs.
’more complex’ ones? Not that I know of ...)

In linguistics, similar notions of freedom and constraint arise, but seem to be more
of a surprise and mystery to linguists. Thus, for example, in [And12], Anderson de-
scribes the syntax and morphotactics of Kwakw’ala, a Wakashan language of coastal
British Columbia. The syntax of the language (that is, the order in which the words
can appear in a sentence) is very strict: the verb must be followed by a subject, option-
ally followed by the object, and then a prepositional phrase. Similarly adjectives must
always preceed the noun. The language also has a rich morphology: words are assem-
bled from stems and suffixes. The rules for assembling a word out of stems and affixes
is refered to as the ’morphotactics’. In Kwakw’ala, it would appear that the morphotac-
tics is utterly distinct from the syntax: here, object-denoting prefixes can preceed verbs,
adjective-denoting suffixes follow a noun. Anderson finds this quite remarkable: the
language has two distinct kinds of structure-imposing systems: the syntax and the mor-
phtactics, and they are quite different. He notes that this dual structure in turn allows the
same thing to be said in multiple ways. One may take meaning-parts, as morphemes,
and glue them together morphtactically into words, and aranging these in a sentence.
Allternately, one may take the meaning-parts separately, as individual words, and glue
them together into a sentence, having a different sequence of the meaning-parts.

The part that struck me with Anderson’s analysis is the similarity of the phenom-
ena to the analogous behaviour formalized in mathematics. Lets first look at a second
example: Lithuanian has a rich morphotactical structure: verbs and adverbs are conju-
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gated, nouns and adjectives are declined; the rules for doing so are rather fixed and uni-
form, making adjustments mostly for phonological reasons (i.e. with exceptions based
on constraints that come from the natural flow of the sound sequences constrained by
the use of vocal cords, mouth, tongue and lips). Curiously, Lithuanian is almost devoid
of syntactic constraint: word-order can be chosen freely (in the mathemaitcal sense!),
and the meaning of the resulting sentences are esentially the same (if I am allowed
to gloss over the notion that different word orders can serve to highlight or empha-
size different themes and rhemes). So again: a language with very distinct syntax and
morphtactics; in this case, the syntax being almost absent.

I used the theory of Link Grammar for performing structural linguistic analysis.
The theory was originally developed to model syntactic structure, but it also appears to
be entirely adequate for morphotactic analysis as well (certainly, for ’agglutinative’ or
’concatenative’ languages, with ongoing research into more complex morphologies).
From the point of view of a linguist, Link Grammar appears to be ’just another theory
of syntax’, being a kind of dependency grammar. From the point of view of a math-
ematician, the situation is entirely more remarkable. It appears that the mathematical
defintion of what constitutes a ’link grammar’ is isomorphic to that of a ’categorical
grammar’, and that the correspondance is immediate and direct. Categorical gram-
mars are interesting because they have a direct, formal mathematical definition that is
studied and classified by mathematicians: roughly speaking, categorical grammars are
’non-symmetric compact closed monoidal categories’. The precise definition here has
been championed by Bob Coecke ref [xxx]

It takes some study of category theory to understand what this means, but, roughly
speaking, it means that sequences of sounds, morphemes, words are analyzed in se-
quential order: by means of short-distance groupings of left-right arrangements. This
may sound silly, as, of course, sequential things occur in a sequence, but it helps high-
light the difference between dependency grammars and phrase-structure grammars, or
computer-science grammars in general. An example of a ’computer-science grammar’
is the so-called ’context-free grammar’. A hallmark of such grammars is that they al-
low recursion to arbitrary depths. An English-language example would be the sequence
of sentences: “This is a house”, “This thing is a house.” “This thing is a thing that is
a house.” “This thing is a thing that is a thing that is ... a house.” The example is silly
because no one ever talks that way. The phrase-structure analysis of this would be “(S
(VP (NP (VP (NP ... )))))”, with the heirarchical arrangement emphsized. Dependency
grammars can also parse such sentences, but here, the arrangment of dependencies are
in the form of arrows that point from head word to dependent word; the arrows are only
rarely long-range, and usually point to the immediately-surrounding words. There is
strong psycho-linguistic evidence for such local structure in language, see for exam-
ple [xxxx]. That is, the workings of the human mind is not recursive in nature, pushing
and popping an arbitrarily deep stack as each new noun-phrase or verb-phrase is enoun-
tered. Indeed, psychological studies with constructed sentences similar to the above,
but varying the ’thing’ and ’house’ at each depth, show that humans quickly loose track
after just two or three nestings [need ref]. In essence, the human mind is adapted for lin-
ear sequential analysis, and long-range order between words is challenging: this is the
psycho-linguistic argument for dependency grammars. From the mathematical point of
view, the statement is that human languages are not so much context-free, as they are
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non-symmetric compact closed monoidal categories. That Link Grammar is an exam-
ple of the latter is why it seems so appropriate to use for syntactic and morpho-tactic
structural analysis.

Which theories of langauge are mathematically isomorphic? That is, Link Gram-
mar and categorical grammars seem to be isomorphic because there is a simple way
of translating the one into the other, and vice-versa (although no formal mathematical
proof of this has been written down). A mathematical proof of equivalence is a me-
chanical device: given one representation, one turns a crank to obtain the other. More
generally, its been argued that phrase-structure grammars and dependency grammars
are equivalent in the same sense: there is an algorithm that converts the one into the
other, and v.v.[where’s the ref for this?]. Does this mean that non-symmetric compact
closed monoidal categories have context-free grammars as their internal language, and
that every context-free language has a corresponding monoidal category? I think not,
but the answer to that, the ’why not’, and the ’what, then, is the difference?’ is entirely
unclear. Clarifying these relationships seems important for putting language study on
a firmer basis.

Anyway, the point here was to clarify the boundaries between freedom and con-
straint. Traditional phrase-structure grammars were inspired by notions from 1960’s-
era computer science, but now seem slavishly wedded to the same ideas, to the detri-
ment of closer linguistic understanding. Dependency grammars seem to be more
psycho-linguistically valid, but have suffered from a lack of mathematical formalism
that ellucidates freedom and constraint. This lack of formalism makes it hard to explain
why some constructions are grammatically correct, and others are not. It also seems
to draw an artificial and confusing line between syntactic and morphotactic structure,
when, in fact, these really should be taken as a part of a continuum of structure. I see
no reason why a single grammar could not also describe the allomorphic variations in
pronunciation. After all, these are just a set of rules that govern how a morpheme is pro-
nounced, and this is essentially a linear, sequential phenomenon, with only (mostly?)
nearest-neighbor morphemes affecting one-another. The nearest-neighbor aspect of
this fairly well screams out ’dependency’.

Another curious and interesting language-constraint structure emerges with the
study of idioms and institutionalized, set phrases. Because these are ’phrases’, built
of ’words’, it would naively seem that tese lie in the domain of syntax. But this is mis-
leading. Institutionalized utterances are those where neither the word-choice nor the
word-order are directly governed by syntax alone, but instead seem to be frozen into a
fixed form. So, one talks of the ’time of day’, but never of ’pressure of air’ or ’height of
mountain’ – “What pressure of air should I put in this tire?” “What height of mountain
do you plan to climb?” “What time of day do you expect to come over?”. There is
nothing syntactic that prevents such a choice of wording, and the semantic meaning is
more or less clear: its just that such word arrangements simply don’t happen. Its as
if the lexis for English has a phrase in it: “time-of-day”, which should be treated as a
single word, rather than the three words it is written as. This provides the first hint of
the role of probability in this discussion: the probability of seeing the phrase ’height of
mountain’ in English approaches zero: in fact, this text that you are reading right now
just might be the only place ever in the history of the world in which this phrase has
appeared ... despite it being ’grammatically valid’. Freedom and constraint aren’t just
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governed by true-false distinctions, but by probabilities. The question then is, ’what is
the most natural way in which to express such probabilities?’

The last is not just some idle intellectual question, but in fact, an engineering ques-
tion: the proper structure should have an immediate and direct effect on how well,
and how quickly a language could be learned, via unsupervised machine-learning al-
gorithms. A universal but naive attitude in the artificial-intelligence community is that
’oh. everything is a neural net, and we should use neural nets to build AI.’ Less fre-
quently, one may seem a similar attitude regarding Hidden Markov Models (HMMs).
The fact that such naive approaches lead to algorithms that fail to converge quickly
leads to ideas such as ’deep learning’: a modification that explicitly splits a problem
into layers, with explicit feedback between layers. Another variation used to escape the
trap is to explicitly model what is un-known: this is the notion of maximum entropy
(MaxEnt). Traditional AI was also founded on logic and reasoning, and, for many
decades, AI was dominated by the exploration of boolean-valued logic. By this I mean
anything with crisp, sharp truth values: whether first-order logic, boolean satisfiabil-
ity, satisfiability-modulo-theories, stable-model semantics, and so on. Another corner
was fuzzy logic, but that didn’t seem to have legs. Notions of maximum entropy and
probability can be unified: thus, one has Markov Logic Networks (MLN). What I’m
wodering about here is that maybe none of these approaches are correct, because they
are ignoring the actual structure that is in front of us.

So, perhaps, the correct approach is not to marry maximum entropy with first-order
logic, but to marry maximum entropy to dependency grammars (or, equivalently, to
appropriate monoidal categories). The question then becomes: what is the appropriate
monoidal category? Picking the wrong one will lead to disasterous machine learning
performance (this, I think, is the lesson from neural networks). Picking something too
easy doesn’t get you far enough (the lesson of HMM’s – excellent for certain classes
of problems, but lacking in scale). There are more choices than that: but the chices,
and their inter-connectedness, and trade-offs, seem to be unarticulated. For any given
monoidal category, there would seem to be some probabilistic model corresponding
to that category’s internal langauge. That is, there is a way of describing the tran-
sition probabilities from state to state. Indeeded, (finite) monoidal categories, in the
form of acts, can be partly understood to be finite state machines acting on a set. The
probabilistic generalization of this leads both to probabilistic and quantum finite au-
tomata, with the former having a strong resemblance, if not identity, to Markov chains,
with the corresponding acts being HMM’s. My hypothesis is that probabilistic depen-
dency grammars will lead to machine learning algos that converge more rapidly than
the similar-but-different HMM that can also be mapped onto the same problem. Unfor-
tunately, my hypothesis is impedded by my lack of understanding of precisely, exactly
how the different approaches named above may be equivalent, isomorphic, or merely
similar.
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2 April 2014

Link Grammar and Finite State Transducers
Claim: Finite state transducers, such as those used for morphological analysis, can
be mapped to a Link Grammar. This implies that Link Grammar parsing can be used
for morphological analysis, thus unifying syntactic parsing and morphological analysis
into a unified framework.A finite state transducer (FST) is defined as:

• A set of states Q

• A set Σ of input symbols (surface form)

• A set Γ of output symbols (lexicalized form)

• A transition function δ ⊂ Q× (Σ∪{ε})× (Γ∪{ε})×Q

A member (r,a,b,s) ∈ δ should be thought of as the arrow from state r to state s, the
arrow being taken when the input symbol is a and as a result producing the output
symbol b. The corresponding link-grammar dictionary entry for this would be

a . b : r− & s +;

This states that no linkage is possible, unless the previous link resulted in the emission
of the r+ connector. No transition to the next state is possible, unless that state has an
s- connector on it.

The current link-grammar notation a.b is awkward for printing, and perhaps some
new style is needed to distinguish the output to be printed from the input that is recog-
nized. Thus, perhaps, it would be better to invent a new notation, perhaps a$b to denote
that a is recognized, and that b is printed.

Note that the above definition of link-grammar rules results in a very simple, linear
linkage: state transitions follow one-another in linear order. Link grammar allows
richer, more complex linkage diagrams, and so the question arises: can a given FST
be compactified into a smaller system by making use of the richer possibilities that
link-grammar offers? How can this compactification be acheived?

Suppose that the FST δ includes as a subset the state transitions {(r,a,?,s),(s,ε,ε, t),(s,b,?, t),(t,c,?,u)}.
The symbol ? is used here as a don’t-care state, as it is irrelevant to the discussion that
follows. The above state transitions indicates that when the system is in state s, it may
spontaneously transition to state t, or may do so upon reading b. That is, the pres-
ence of b is optional in the state transition. The “natural” way of indicating this with
link-grammar notation is using the link-grammar dictionary entries:

a : r− & s +;
b : t + ;
c : { t−} & s− & u +;

Because the transition (s,ε,ε, t) reads no input, and produces no output, the state tran-
sitions would more likely be written as {(r,a,?, t),(r,a,?,s),(s,b,?, t),(t,c,?,u)}, that
is, by collapsing the transition (s,ε,ε, t) into the prior state. This would have the entries
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a : r− & ( s+ or t + ) ;
b : s− & t +;
c : t− & u +;

How should it be understood? These are, in fact, two distinct, inequivalent LG gram-
mars, as can be seen by considering the parse of the strings “ac” and “abc” for the two
cases.

When would weighting schemes interfere? when would output interfere?

15 April 2014

Elegant Normal Form
Or, more precisely, “Minimal Normal Form”. Instead of writing out LG disjuncts
in long strings of DNF or CNF, where they blow up into the thousands or tens of
thousands, we really need to write then in Craig Holman’s "Elegant Normal Form",
( http://www.patterncraft.com/Blog/Blog-080609.html#ElegantNormalForm ) format.
This is to be done by entropy minimization, in two different ways: first, ENF reduces
the total count of terms, for just one single expression. Second, and maybe more im-
portant: different words will share significant subsets of the ENF expression. So, for
example, the LG English dicts define:

<verb−rq > : Rw− or ( { Ic−} & Q− & <verb−wal l >) o r [ ( ) ] ;

which is (1) in ENF, not DNF or CNF, and (2) shared by several dozen words. There
should be a strong push to discover such common sub-expressions across many words.

28 April 2014

Isotopy
The concept of “isotopy” (https://en.wikipedia.org/wiki/Isotopy_(semiotics)) was in-
troduced by Algirdas Greimas in 1966. Example: “I drink some water”, with the
meanings of “drink” and “water” re-inforcing one-another. But this is eactly what the
Mihalcea WSD algo does, eh?

14 May 2014

Tree similarity
“Similarity Evaluation on Tree-structured Data” Rui Yang Panos Kalnis Anthony K. H.
Tung SIGMOD 2005 June 14-16, 2005. Quote from abstract: “propose to trans- form
tree-structured data into an approximate numerical multidimensional vector”. Funny
– that’s what Bob Coecke proposes for any kind of monoidal category: vector spaces
being a special monoidal cat. Hmmm.

Approaches:
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• Tree-edit distance: many variants proposed, all high cpu/memory intensive.

• convert tre to pre or post-oerder, and use string edit distance.

• Convert to binary tree. For combo trees, this makes sense, due to the associative
property of most of the operators. In particular, in combo any oper that can have
multi-sibilings is also associative and thus convertible to binary tree. What’s
more, trees with binary branch distance of zero really are equivalent for us: See
Figure 4 in above reference. Yay! this fits very very well with combo!.

29 June 2014

Morphology Basic Claims
We have two tasks to adress: the automated discovery of morpheme boundaries, and
the automated discovery of “morphtactics”, the syntax of connected morphemes. We
make two claims: first. the automated discovery of morpheme boundaries can be ac-
complished by searching for breaks between word-parts that have the lowest mutual
information. Second, the discovery of morphotactics is identical to the discovery of
syntax, as outlined above.

The simplest approach to finding the breaks between morphemes is to randomly
break up words into two parts. A worked example of this is given below. Several
questions present themselves:

• To discover morphemes of words that split into three or more parts, is it better
to always split pairwise, and then perform recursion, or is it easier to split into
multiple parts immediately? Perhaps the answer is language-dependent?

• Does one obtain better mophological splits by immediately including morphtac-
tic analysis, or can this be deferred?

Morphology Worked Example
OK, this will be tedious, but I see no alternative. Suppose we have the corpus “test gift
tester testy gifty tester gifter” so that “tester” appears twice in the corpus. Explore all
possible splits into two parts. The 4-letter splits split 3 ways, the 5-letter splits split
4 ways, etc. so there is a total of N(*,*)=3+3+5+4+4+5+5=29 pairs. All pairs appear
once, except for tester, which appears twice. Viz.

P(x,y)=1/29 for (x,y) in {(t,est), (te,st), (tes,t), (g,ift), (gi,ft), (gif,t), (t,esty), (te,sty),
(tes,ty), (test,y), (g,ifty), (gi,fty), (gif,ty), (gift,y), (g,ifter), (gi,fter), (gif,ter), (gift,er),
(gifte,r)}

and

P(x,y)=2/29 for (x,y) in {(t,ester), (te,ster), (tes,ter), (test,er), (teste,r)}
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Table 1: Word Split Table
g gi gif gift gifte t te tes test teste row total

ifter 1 1
fter 1 1
ter 1 2 3
er 1 2 3
r 1 2 3

ifty 1 1
fty 1 1
ty 1 1 2
y 1 1 2
ift 1 1
ft 1 1
t 1 1 2

ester 2 2
ster 2 2
esty 1 1
sty 1 1
est 1 1
st 1 1

column total 3 3 3 2 1 4 4 4 3 2 29
The above is a sparse matrix showing the possible word splits. empty cells contain a
count of zero.

There is a bit of a procedural error in the above; we would like to discover the “null
suffix”, that is, that “test”, “gift”, with nothing following it, are morphemes, so that the
possible suffixes are “-y”, “-er” and “-nothing”. However, the above failed to count
this possibility separately. Thus, given the above data, what we expect to find are two
roots: “gif-” and “tes-” and three suffixes: “-t”, “-ty” and “-ter”. This is not so bad. If
we did split and count in such a way as to allow a null suffix, it would be ambiguus
as to whether the stems end with a “t” or not. That is, the with-t and without-t stems
would have been equally likely... Anyway, moving on... the possible splits are shown
in the table below 1:

Next, lets do the partial sums. Recall the notation for the partial summation of
pairs. writing P(x,y) for the probability of observing the ordered pair of items (x,y),
the partial sums are:

P(x,∗) = ∑
y∈Y

P(x,y)

and
P(∗,y) = ∑

x∈X
P(x,y)

The left-hand sums are the column totals in the table above, table 1
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P(t,*) = (1+1+2)/29 = 4/29 = P(te,*) = P(tes,*)

P(g,*) = (1+1+1)/29 = 3/29 = P(gi,*) = P(gif,*)

P(test,*) = (1+2)/29 = 3/29

P(teste,*) = 2/29

P(gift,*) = 2/29

P(gifte,*) = 1/29

Next, the right-hand partial sums. These are the row totals for the table above, ta-
ble 1:

P(*,est) = 1/29 = P(*,st) = P(*,esty) = P(*,sty) =P(,ift) = P(*,ft) = P(*,ifty) = P(*,fty)
= P(*,ifter) = P(*,fter)

P(*,t) = (1+1)/29 = 2/29 = P(*,ty) = P(*,y)
P(*,ester) = 2/29 = P(*,ster)
P(*,ter) = (1+2)/29 = 3/29 = P(*,er) = P(*,r)

Now, the compute the MI (we use log=log_2 in all cases below, for measuring the
entropy in units of bits). Recall the definition of mutual information for ordered pairs,
previously discussed and given above:

MI(x,y) = log2
P(x,y)

P(x,∗)P(∗,y)

So, working these by hand:

MI(t,est) = log P(t,est)/P(t,*)P(*,est) = log (1/29)(29/4)(29/1) = log(29/4) = 2.857981
= MI(te,st) = MI(t,esty) = MI(te,sty)

MI(g,ift) = log P(g,ift)/P(g,*)P(*,ift) = log (1/29)(29/3)(29/1) = log(29/3) = 3.273018
=MI(gi,ft) = MI(g,ifty) = MI(gi,fty)=MI(g,ifter)=MI(gi,fter)

MI(tes,t) = log P(tes,t)/P(tes,*)P(*,t) = log (1/29)(29/4)(29/2) = log(29/8) = 1.857981
=MI(tes,ty)

MI(gif,t) = log P(gif,t)/P(gif,*)P(*,t) = log (1/29)(29/3)(29/2) = log(29/6) = 2.273018

MI(test,y) = log P(test,y)/P(test,*)P(*,y) = log (1/29)(29/3)(29/2) = log(29/6) =
2.273018
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MI(gif,ty) = log P(gif,ty)/P(gif,*)P(*,ty) = log (1/29)(29/3)(29/2) = log(29/6) =
2.273018

MI(gift,y) = log P(gift,y)/P(gift,*)P(*,y) = log (1/29)(29/2)(29/2) = log(29/4) =
2.857981

MI(gif,ter) = log P(gif,ter)/P(gif,*)P(*,ter) = log (1/29)(29/3)(29/3) = log(29/9) =
1.688056

MI(gift,er) = log P(gift,er)/P(gift,*)P(*,er) = log (1/29)(29/2)(29/3) = log(29/6) =
2.273018

MI(gifte,r) = log P(gifte,r)/P(gifte,*)P(*,r) = log (1/29)(29/1)(29/3) = log(29/3) =
3.273018

MI(t,ester) = log P(t,ester)/P(t,*)P(*,ester) = log (2/29)(29/4)(29/2) = log(29/4) =
2.857981

= MI(te,ster)

MI(tes,ter) = log P(tes,ter)/P(tes,*)P(*,ter) = log (2/29)(29/4)(29/3) = log(29/6) =
2.273018

MI(test,er) = log P(test,er)/P(test,*)P(*,er) = log (2/29)(29/3)(29/3) = log(58/9) =
2.688056

MI(teste,r) = log P(teste,r)/P(teste,*)P(*,r) = log (2/29)(29/2)(29/3) = log(29/3) =
3.273018

Phew. I think that’s all of them. So, what can we conclude? The basic claim is that
the morpheme boundaries occur at the places where the letters are the least sticky,
the most likely to be de-correlated, i.e. those with the lowest MI. In the above, these
are: MI(gif,ter)=1.69 followed by MI(tes,t)=MI(tes,ty)=1.86. These are the most likely
splits for these three words. Lets look up each possible split, for each word. We get:

Word Split MI Split MI Split MI Split MI Split MI Best
gift (g,ift) 3.27 (gi,ft) 3.27 (gif,t) 2.27 (gif,t)
gifty (g,ifty) 3.27 (gi,fty) 3.27 (gif,ty) 2.27 (gift,y) 2.86 (gif,ty)
gifter (g,ifter) 3.27 (gi,fter) 3.27 (gif,ter) 1.69 (gift,er) 2.27 (gifte,r) 3.27 (gif,ter)
test (t,est) 2.86 (te,st) 2.86 (tes,t) 1.86 (tes,t)

testy (t,esty) 2.86 (te,sty) 2.86 (tes,ty) 1.86 (test,y) 2.27 (tes,ty)
tester (t,ester) 2.86 (te,ster) 2.86 (tes,ter) 2.27 (test,er) 2.69 (teste,r) 3.27 (tes,ter)

The best results from the above table are summarized below
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Word Lowest MI split(s) MI
gift (gif,t) 2.27
gifty (gif,ty) 2.27
gifter (gif,ter) 1.69
test (tes,t) 1.86
testy (tes,ty) 1.86
tester (tes,ter) 2.27

What looks like the best split has been found; it certainly matches what was expected.
Yay! After this, link-type clustering proceeds just as before, as if these were distinct
words. That is, the above has 6 distinct link types; clustering will then proceed discover
one link type, between the cluster {gif, tes} and {t,ty,ter}.

Morfesssor

An alternative algorithm is presented in:

• Mathias Creutz Krista Lagus, “Unsupervised Morpheme Segmentation and Mor-
phology Induction from Text Corpora Using Morfessor 1.0” http://users.ics.aalto.fi/mcreutz/papers/Creutz05tr.pdf

That algorithm works only for concatenative languages, and does not provide a mor-
photactic structure; that is, it cannot learn the grammar governing the morphemes. It
also requires several (plausable) assumptions about Bayesian priors. One assumption is
that morpheme frequency follows a modified Zipfian distribution, this is used to make
estimates for morphemes that are observed only once in the corpus. Another assump-
tion is is that the morpheme length distribution can be approximated by either a Poisson
or a (two-parameter) gamma distribution.

12 July 2014

Link-type discovery, worked example
In keeping with the previous, lets look at a super-simplified version of link-type discov-
ery, continuing imediately from the previous morpheme-discovery example. We begin
with the intial observations, given in the table below:

Pair Initial Link Type # observations
gif–t GA 1

gif–ty GB 1
gif–ter GC 1
tes–t TA 1

tes–ty TB 1
tes–ter TC 2

The “initial link type” is handed out randomly; the actual letter string has no bearing
on the outcome. Notice the above has 6 different, unique link types. These correspond

31



to the following link-grammar dictionary, written in the classic link-grammar notation:

Algorithm 1 Morpheme grammar

g i f . = : GA+ or GB+ or GC+;
t e s . = : TA+ or TB+ or TC+;
= t : GA− or TA−;
= t y : GB− or TB−;
= t e r : GC− or TC−;

From the above initial dictionary, we want to deduce that a single link type is suf-
ficient to full describe what is happening. That is, we wish to discover the following
dictionary:

g i f . = t e s . = : LL+;
= t = t y = t e r : LL−;

This is inuitively obvious, because the morphemes obviously form a clique: each stem
has been observed with each suffix. Technically, this is a bipartite clique or complete
bipartite graph of order (2,3). Here, we see it immediately; however, in general, it is
very hard to search for bipartite cliques in a grammar; general algorithms are provably
NP-complete and run in exponential time.

So how should we find grammar reductions? How is this to be done?
Out vocabulary consists of N=5 morphemes α ={gif.=, tes.=. =t, =ty, =ter}. We

begin by recomuting the MI for observed pairs, once-again starting with the initial cor-
pus “test gift tester testy gifty tester gifter”, same as before, with “tester” appearing
twice in the corpus. This time, se split strictly according to the learned morphology.
The word split table is:

gif tes row total
ter 1 2 3
ty 1 1 2
t 1 1 2

column total 3 4 7

Note that this table is a stric subset of the previous table; the column and row totals
are completely unchanged. However, the total number of observations has diminished
from 29 to 7, and so all P amd MI values need to be recomputed. Proceeding long-
hand, as before:

P(x,y)=1/7 for (x,y) in {(tes,t), (gif,t), (tes,ty), (gif,ty), (gif,ter)}

and

P(x,y)=2/7 for (x,y) in {(tes,ter)}
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The partial sums are:

P(gif,*) = (1+1+1)/7 = 3/7

P(tes,*) = (1+1+2)/7 = 4/7

P(*,t) = 2/7 = P(*,ty)

P(*,ter) = 3/7

The MI values are all different, as well:

MI(gif,t) = log P(gif,t)/P(gif,*)P(*,t) = log (1/7)(7/3)(7/2) = log (7/6) = 0.222392
= MI(gif,ty)

MI(gif,ter) = log P(gif,ter)/P(gif,*)P(*,ter) = log (1/7)(7/3)(7/3) = log (7/9) = -
0.362570

MI(tes,t) = log P(tes,t)/P(tes,*)P(*,t) = log (1/7)(7/4)(7/2) = log (7/8) = -0.192645
= MI(tes,ty)

MI(tes,ter) = log P(tes,ter)/P(tes,*)P(*,ter) = log (2/7)(7/4)(7/3) = log (7/6) = 0.222392

Note that three of the MI values are negative, and three are positive.
Following the previous formulas, we compute the total pair entropy:

hobserved
PAIR =− ∑

w1,w2∈α

p(w1,w2) log2 p(w1,w2)

=−5
7

log2
1
7
− 2

7
log2

2
7
= 2.521641

This is a bit of a misnomer, or misleading; we are actually computing the link-entropy:
so the set is actually β = {GA,GB,GC,TA,T B,TC} the first five of which were ob-
served once, and the last was observed twice. So really we should write:

hobserved
PAIR =−∑

t∈β

p(t) log2 p(t)

with p(t) being the probability of observing link-type t.
The above is the observed entropy, given the corpus, and the grammar shown in

listing 1. However, this grammar does not have any probability indicators attached to
it, so that if it was used to generate a corpus, the entropy would be different. Basically,
the probability of observing any of the link-types would be identical, and so the entropy
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would be:

hgenerated
PAIR =−∑

t∈β

p(t) log2 p(t)

=−6
6

log2
1
6
= 2.584963

This is obtained by observing that there are 6 link types in the set β and so, if chosen
equi-probably, the resulting entropy is just log2 6. For a given number N of link types,
the entropy of the generated grammar will be log2 N, for this extremely simply type of
grammar, where all disjuncts have only one connector in them. The generated entropy
will always be maximal for the grammar, as the observed distribution will surely never
be equi-distributed. Thus, we have as a general principle:

hobserved ≤ hgenerated

Note that the equi-distributed link-types is the same as having each of the words in the
corpus appear with equal frequency. The morphemes, however, do NOT appear with
equally frequency (although individually, all stems do, and all suffixes do).

Link type reductions can be many ways. In each case, we look to see if adding a
new word to a category improves the score. The possibilites are:

1. Group =ter and =ty together.

2. Group =ter and =t together.

3. Group =ty and =t together.

4. Group gif.= and tes.= together.

After this, we have more reductions:

1.a. Add =t to {=ter, =ty}, and finally group together gif.= and tes.=
1.b. Group together gif.= and tes.=, and finally, add =t to {=ter, =ty}
2.a, 2.b. 3.a 3.b variations of above
4.a. Group =ter and =ty together, then add =t.
4.b. Group =ter and =t together, then add =ty.
4.c. Group =ty and =t together, then add =ter.

This gives 9 different orders in which the reductions can take place. Actually, only
6: case 1b and 4a are the same, as are 2b=4b and 3b=4c. Lets do at least some of them.

Case 1. Let γ = {=ter, =ty}. Then the link types GB and GC need to be consolidated:
GG={GB, GC} and likewise TT={TB, TC}. The dictionary becomes

g i f . = : GA+ or GG+;
t e s . = : TA+ or TT+;
= t : GA− or TA−;
= t y = t e r : GG− or TT−;
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The observed pair probabilities become:

p(GA) = p(gif,t) = 1/7 = p(TA) = p(tes,t)

p(GG) = p(gif,ter) + p(gif,ty) = 2/7

p(TT) = p(tes,ter) + p(tes,ty) = 3/7

So the observed entropy is now

hred1.
PAIR =−2

7
log2

1
7
− 2

7
log2

2
7
− 3

7
log2

3
7
= 1.842371

The generated entropy is hred1.
gen = log2 4 = 2 since there are four total link types in the

reduced grammar. Pursuant to equation 5, we should add the log of the cardinality of
the word-sets. Here, only one word-set has a cardinality greater than one: {=ty, =ter}.
So, one gets:

hwrds1.
gen = log2 2 = 1

The conditional entropy, based on the textual observations, is

hwrds1.
obs =−3

5
log2

3
5
− 2

5
log2

2
5
= 0.970951

Case 1.a. Let δ = {=ter, =ty, =t}. Then the link types GA and GG need to be con-
solidated: G={GA, GG} and likewise T={TA, TT}. The dictionary becomes

g i f . = : G+;
t e s . = : T+;
= t = t y = t e r : G− or T−;

The observed pair probabilities become:

p(G) = p(gif,t) + p(gif,ty) + p(gif,ter) = 3/7

p(T) = p(tes,t) + p(tes,ty) + p(tes,ter) = 4/7

So the observed entropy is now

hred1.a.
PAIR =−3

7
log2

3
7
− 4

7
log2

4
7
= 0.985228

The generated entropy is log2 2 = 1 since there are only two link types in the grammar.
The word-counting entropy for the set δ contributes an additional

hwrds1.a.
gen = log2 3 = 1.584963

while the observed entropy is

hwrds1.a.
obs =−4

7
log2

2
7
− 3

7
log2

3
7
= 1.556657
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Case 1.b. Let γ = {=ter, =ty} as before, and ε = {gif.=, tes.=}. The link types con-
solidate: EA={GA, TA} and EM={GG, TT}. The dictionary becomes

g i f . = t e s . = : EA+ or EM+;
= t : EA−;
= t y = t e r : EM−;

The observed pair probabilities become:

p(EA) = p(gif,t) + p(tes,t) = 2/7

p(EM) = 5/7

So that the entropy is

hred1.b.
PAIR =−2

7
log2

2
7
− 5

7
log2

5
7
= 0.863121

The generated entropy is log2 2 = 1 since there are only two link types in the grammar.
The word-set counting probability adds

hwrds.1.b.
gen = 2log2 2 = 2

while the observed probabilities are

hwrds.1.b.
obs =−3

7
log2

3
7
− 4

7
log2

4
7
− 3

5
log2

3
5
− 2

5
log2

2
5
= 1.956179

Other cases. Case 2.a. and case 2.b. are identical to cases 1.a. and 1.b. because =t
and =ty are interchangeable, from the probability point of view.

Case 3.a. and case 3.b. are similar, but with different probabilities.
Case 4. and the subcases are different, but not illuminating.

Final Case. The final consolidation gives γ = {=ter, =ty,=t}, and ε = {gif.=, tes.=}.
The dictionary becomes

g i f . = t e s . = : LL+;
= t = t y = t e r : LL−;

The observed pair probabilities become:

p(LL) = 7/7

So that the entropy is

h f inal
PAIR =−7

7
log2

7
7
= 0

The generated entropy is log2 1 = 0 since there is only one link type in the grammar.
The word-set counting probability adds

hwrds. f in
gen = log2 2+ log2 3 = 2.584963
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while the observed word count is

hwrds. f in
obs =−4

7
log2

2
7
− 3

7
log2

3
7
− 3

7
log2

3
7
− 4

7
log2

4
7
= 2.541885

Summary. The table below summaries these results. The sum columns show the
entropy according to the equation 5 for the observed frequencies, and the generated
frequencies.

hred
obs hred

gen hwrds
obs hwrds

gen hred
obs +hwrds

obs hred
gen +hwrds

gen

Initial 2.521641 2.584963 0 0 2.521641 2.584963
Case 1. 1.842371 2 0.970951 1 2.813322 3

Case 1.a. 0.985228 1 1.556657 1.584963 2.541885 2.584963
Case 1.b. 0.863121 1 1.956179 2 2.819299 3

Final 0 0 2.541885 2.584963 2.541885 2.584963
Case 3. 1.950212 1.0 2.950212

Case 3.a. 0.985228 1.556656 2.541884
Case 3.b. 0.985228 1.985228 2.970456
Case 4. 1.556657 0.985228 2.541885

Arghhh. Such a simple case, so much complexity... anyway, the case 3 and 4 are
computed from the script “link-type/gifty.scm” in this same directory.

Conclusions: based purely on entropy maximization, all cases advance, but none
go to the final case. But we are not imposing any ’complexity penalty’ on this.

Results on some alternate distributions, for this ranking: “tester testy test gifter
gifty gift”

• Pure Zipf: (rank)−1.0: none advance (hinitial = 2.281979 and h f inal = 2.293598)

• Zipf (rank)−1.05 :none advance (hinitial = 2.251204 and h f inal = 2.263603)

• Zipf (rank)−1.5 :none advance (hinitial = 1.930661 and h f inal = 1.948128)

None of these advance because the initial and final entropies are so very close. But,
as before, there are advnces, with the biggest ones to case 4.c and 3.b. The alternative
rankings “tester testy test gift gifty gifter” and “tester gifter testy gifty test gift” give
only slightly different results.

Link-type discovery, better example
In the previous, the unified link-type discovery is inevitable, so a more complex version
is needed, with a less-obvious outcome. So lets take the original example of link-type
discovery, and add some confounding link types. We begin with the intial observations,
plus some extras, given in the table below:
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Algorithm 2 Example morpheme grammar

g i f . = : GA+ or GB+ or GC+;
t e s . = : TA+ or TB+ or TC+;
b l o . = : BB+ or BF+;
= t : GA− or TA−;
= t y : GB− or TB− or BB−;
= t e r : GC− or TC−;
= fu : BF−;

A more complex grammar showing morpheme linkages.

Table 2: Example Link Frequency Table
Pair Initial Link Type # observations
gif–t GA 1

gif–ty GB 1
gif–ter GC 1
tes–t TA 1

tes–ty TB 1
tes–ter TC 2
blo–ty BB 3
blo-fu BF 1

Example distribution of link frequencies obtained from an example corpus.

The addition of “bloty” to the link table, and with a strong weight, will tend to
derail the consolidation of the =ty suffix with the others. The addition of “blofu” helps
make sure that there’s some confusion about the “blo=” stem.

The corresponding link-grammar dictionary is:

From the above initial dictionary, we hope to deduce one word class that contains
gif.= and tes.= and another that contains =t and =ter; eactly how the rest plays out is un-
clear. Lets begin by starting with the un-clustered entropy, and then see what hapens if
we try various different clusters. So, as before, let β = {GA,GB,GC,TA,T B,TC,BB,BF}
and write:

hobserved
PAIR =−∑

t∈β

p(t) log2 p(t)

=− 6
11

log2
1
11
− 2

11
log2

2
11
− 3

11
log2

3
11

= 2.845351

with p(t) being the probability of observing link-type t. Since there are 8 different link
types, the generated entropy is hgenerated

PAIR = log2 8 = 3. The different between these two
is hgen− hobs = 0.154649. The observed corpus also has 8 words in it (not counting
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multiplicity): this is by design; before reduction, there is always exactly one link type
for each morpheme pair.

Lets look at several cases:

1. Group gif.= and tes.= together.

2. Group gif.= and blo.= together.

3. Group =t and =ty together.

4. Group =ty and =fu together.

5. Group =ter and =fu together.

Here, we expect case 1 to go easily, cases 2 and 3 to to be ambiguous or blocked, case
4 to be weakly blocked, and case 5 to be strongly blocked. So, proceeding:

Case 1. Group gif.= and tes.= together. Let γ = {gif.=, tes.=}. Then the link types G*
and T* need to be consolidated: A={GA,TA} and likewise B={GB,TB} and C={GC,TC}.
The dictionary becomes

g i f . = t e s . = : A+ or B+ or C+;
b l o . = : BB+ or BF+;
= t : A−;
= t y : B− or BB−;
= t e r : C−;
= fu : BF−;

The observed pair probabilities become:

p(A) = p(gif,t) + p(tes,t) = 2/11 = p(B) = p(gif,ty) + p(tes,ty)

p(C) = p(gif,ter) + p(tes,ter) = 3/11

p(BB) = p(blo,ty) = 3/11

p(BF) = p(blo,fu) = 1/11

So the observed entropy is now

hred1.
PAIR =− 4

11
log2

2
11
− 6

11
log2

3
11
− 1

11
log2

1
11

= 2.231270

The generated entropy is hgen = log2 5 = 2.321928. The difference is hgen− hobs =
0.090658. This clearly brings the entropy closer to the theoretical (equidistributional)
maximum; the grouping goes. However, hlang = log2 8 = 3 as before, since the gener-
ated language still has 8 words in it.
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Case 2. Group gif.= and blo.= together. Let δ = {gif.=, blo.=}. Then the link
types GB and BB can be consolidated, because they share the common suffix =ty:
B={GB,BB}. No other link consolidation is possible, without permitting impermissi-
ble (previously unseen) linkages. The dictionary becomes

g i f . = b l o . = : GA+ or B+ or GC+ or BF+;
t e s . = : TA+ or TB+ or TC+;
= t : GA− or TA−;
= t y : B− or TB−;
= t e r : GC− or TC−;
= fu : BF−;

Note that this dictionary does allow several previously unobserved words: giffu, blot,
bloter. This is what happens when one hypothesizes unions between classes that merely
overlap, instead of being subsets. What happens next depends on whether the overlap
was large, or small.

The observed pair probabilities become:

p(GA) = p(gif,t) = 1/11 = p(GC) = p(TA) = p(TB)

p(TC) = p(tes,ter) = 2/11

p(B) = p(gif,ty) + p(blo,ty) = 4/11

p(BF) = p(blo,fu) = 1/11

So the observed entropy is now

hred2.
PAIR =− 5

11
log2

1
11
− 2

11
log2

2
11
− 4

11
log2

4
11

= 2.550341

The generated entropy is hgen = log2 7 = 2.807355. The difference is hgen− hobs =
0.257014. The entropy is not getting closer to the equidistributional maximum; this
grammar is rejected.

Case 3. Group =t and =ty together. Let ε = {=t, =ty} Then we may group G={GA,
GB} and T={TA, TB}. The corresponding link-grammar dictionary is:

g i f . = : G+ or GC+;
t e s . = : T+ or TC+;
b l o . = : BB+ or BF+;
= t = t y : G− or T− or BB−;
= t e r : GC− or TC−;
= fu : BF−;

The above again allows a new, unobserved word: “blot”. The observed pair probabili-
ties become:
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p(G) = p(gif,t) + p(gif,ty) = 2/11 = p(T) = p(tes,t) + p(tes,ty)

p(GC) = p(gif,ter) = 1/11

p(TC) = p(tes,ter) = 2/11

p(BB) = p(blo,ty) = 3/11

p(BF) = p(blo,fu) = 1/11

So the observed entropy is now

hred3.
PAIR =− 6

11
log2

2
11
− 2

11
log2

1
11
− 3

11
log2

3
11

= 2.481715

The equidistributional entropy is hgen = log2 6 = 2.584963. The difference is hgen−
hobs = 0.103248. This difference means we are getting closer to the maximum; the
grouping is acceptable! Its really not much worse than case 1, which was unambigu-
ous.

Case 4. Group =ty and =fu together. Let ζ = {=ty, =fu}. Then we must group
B={BB,BF} together. The dictionary is:

g i f . = : GA+ or GB+ or GC+;
t e s . = : TA+ or TB+ or TC+;
b l o . = : B+;
= t : GA− or TA−;
= t y = fu : GB− or TB− or B−;
= t e r : GC− or TC−;

No new unobserved words are allowed by this grouping! The observed pair probabili-
ties are:

p(GA) = p(gif,t) = 1/11 = p(GB) = p(GC) = p(TA) = p(TB)

p(TC) = p(tes,ter) = 2/11

p(B) = p(blo,ty) + p(blo,fu) = 4/11

The observed entropy is then:

hred4.
PAIR =− 5

11
log2

1
11
− 2

11
log2

2
11
− 4

11
log2

4
11

= 2.550341

Curiously, this entropy is identical to the completely different case 2. The equidistri-
butional entropy is hgen = log2 7 = 2.807355 and the difference is thus hgen− hobs =
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0.257014 which is sharply further away from the equidistributional maximum. Thus,
this grouping is rejected. This is perhaps surprising ... First, this grammar did not
generate any new unobserved words; thus, it is a faithful grammar. Also, it suceeds in
reducing the total number of link-types, and thus is naively acceptable for that reason.
However, the frequency distribution of th generated grammar move away from the ob-
served frequency distribution, leading to the rejection. This begs a question: when and
how might we annotate the grammar with frequency information?

Case 5. Group =ter and =fu together, so that η = {=ter, =fu}. It does not appear that
any link types get consolidated! This is not much of a grouping, then ...

g i f . = : GA+ or GB+ or GC+;
t e s . = : TA+ or TB+ or TC+;
b l o . = : BB+ or BF+;
= t : GA− or TA−;
= t y : GB− or TB− or BB−;
= t e r = fu : GC− or TC− or BF−;

Many new, unobserved words are allowed: bloter, giffu, tesfu. The observed pair prob-
abilities are:

p(GA) = p(gif,t) = 1/11 = p(GB) = p(GC) = p(TA) = p(TB)

p(TC) = p(tes,ter) = 2/11

p(BB) = p(blo,ty) = 3/11

p(BF) = p(blu,fu) = 1/11

The observed entropy is then:

hred5.
PAIR =− 6

11
log2

1
11
− 2

11
log2

2
11
− 3

11
log2

3
11

= 2.845351

This is identical to the unreduced entropy: no surprise, because no link consolidation
was performed. The equidistributional entropy is the same as well: hgen = log2 8 = 3
since there are still 8 link types. The language entropy increased: there are now 11 pos-
sible words in the language, so hlang = log2 11 = 3.459432. This is a very unsatisfying
situation: the difference in entropies is no better or worse than the starting point, and
so this seems like a reasonable sideways slide, and yet, this grammar allows a bunch of
nonsense words to be generated. That seems wrong.

Summary Of the 5 cases, three are blocked (cases 2,4,5), and two are acceptable
(1,3). Case 1 looks to be the best. Lets see what might happen next:

• Case 1a. Group =t and =ty
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• Case 1b. Group =t and =ter

• Case 1c. Group =ty and =ter

Case 1a resembles Case 3 so we expect it to advance. Likewise for case 1c. Its reason-
able to guess that case 1b will be the strongest. Lets try some of these.

Case 1a. Group =t and =ty. The link merges are T={A,B}; the resulting gramar is:

g i f . = t e s . = : T+ or C+;
b l o . = : BB+ or BF+;
= t = t y : T− or BB−;
= t e r : C−;
= fu : BF−;

This grammar allows a new unobserved word: “blot”. The observed pair probabilities
become:

p(T) = p(gif,t) + p(tes,t) + p(gif,ty) + p(tes,ty) = 4/11

p(C) = p(gif,ter) + p(tes,ter) = 3/11

p(BB) = p(blo,ty) = 3/11

p(BF) = p(blo,fu) = 1/11

So the observed entropy is now

hred1.
PAIR =− 4

11
log2

4
11
− 6

11
log2

3
11
− 1

11
log2

1
11

= 1.867634

The generated entropy is hgen = log2 4 = 2. The difference is hgen− hobs = 0.132366
which is not closer than the previous delta of 0.090658, so this is rejected.

Casse 1b. Group =t and =ter. This consolidates links T={A,C} and so the dictionary
becomes

g i f . = t e s . = : T+ or B+;
b l o . = : BB+ or BF+;
= t = t e r : T−;
= t y : B− or BB−;
= fu : BF−;

This does not generate any new words. The observed pair probabilities become:

p(A) = p(gif,t) + p(tes,t) + p(gif,ter) + p(tes,ter) = 5/11

p(B) = p(gif,ty) + p(tes,ty) = 2/11
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p(BB) = p(blo,ty) = 3/11

p(BF) = p(blo,fu) = 1/11

So the observed entropy is now

hred1.
PAIR =− 5

11
log2

5
11
− 2

11
log2

2
11
− 3

11
log2

3
11
− 1

11
log2

1
11

= 1.789929

The generated entropy is hgen = log2 4 = 2. The difference is hgen− hobs = 0.210071
which does not get closer; the best still stands at 0.090658. This is surprising: it sems
to be blocking the discovery of the clique.

Case 1c. Group =ty and =ter. This consolidates T={B,C}, so the dictionary becomes

g i f . = t e s . = : A+ or T+;
b l o . = : BB+ or BF+;
= t : A−;
= t y = t e r : T− or BB−;
= fu : BF−;

This does not generate any new words. The observed pair probabilities become:

p(A) = p(gif,t) + p(tes,t) = 2/11

p(C) = p(gif,ty) + p(tes,ty)+ p(gif,ter) + p(tes,ter) = 5/11

p(BB) = p(blo,ty) = 3/11

p(BF) = p(blo,fu) = 1/11

The changes are the same as for case 1b. Again, this is blocked.

Case 1f. This is the “final” case: group together =t =ty =ter into one. This consoli-
dates T={A,B,C} so that

g i f . = t e s . = : T+;
b l o . = : BB+ or BF+;
= t = t y = t e r : T− or BB−;
= fu : BF−;

This allows new words “blot”, “bloter”. The observed pair probabilities become:

p(T) = p(gif,t) + p(tes,t) + p(gif,ty) + p(tes,ty)+ p(gif,ter) + p(tes,ter) = 7/11

p(BB) = p(blo,ty) = 3/11
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p(BF) = p(blo,fu) = 1/11

The observed entropy is

hred1.
PAIR =− 7

11
log2

7
11
− 3

11
log2

3
11
− 1

11
log2

1
11

= 1.240671

Hmm. 3 link types

Summary Movement to Cases 1a, 1b and 1c are all blocked. This seems surprising.
The relatively high-frequency observation of =ter makes the distribution of the consol-
idated grammar to deviate strongly from the distribution of the observed corpus. This
seems like an undesired effect, as the point of learning how to simplify the grammar is
to obtain a smaller grammar, rather than to preserve the the distribution of the corpus.
Mostly.

Intuition suggests that the grammar for “common” cases should be consolidated.
The grammar for quite rare cases should indeed be handled distinctly. To avoid this
seemingly perverse outcome, perhaps the grammar should contain frequency informa-
tion, which is to be consolidated appropriately. This is truly tedious, but seems to be
neccessary. So we have to start from scratch.

And we do, below, and its a total failure, as now, the corpus frequencies are recorded
faithfully, so the consolidation process doesn’t tell us anything we didn’t know. Its the
same calculation done differently.

Worked Link Consolidation Example, with Frequencies (XXX Fail)
(XXX The below fails, don’t bother reading it). So we start all over again, using the
same corpus frequences as before, namely, those of table 2. The grammar is essentially
identical to that of 2, except that it is now annotated with probabilities.

g i f . = : (GA+ ) ( 1 / 1 1 ) o r (GB+ ) ( 1 / 1 1 ) o r (GC+ ) ( 1 / 1 1 ) ;
t e s . = : (TA+ ) ( 1 / 1 1 ) o r (TB + ) ( 1 / 1 1 ) o r (TC + ) ( 2 / 1 1 ) ;
b l o . = : (BB+ ) ( 3 / 1 1 ) o r ( BF + ) ( 1 / 1 1 ) ;
= t : GA− or TA−;
= t y : GB− or TB− or BB−;
= t e r : GC− or TC−;
= fu : BF−;

The above only annotates the +-going links; it seems like annotating the –going links
would cause double-counting. This is somewhat confusing, since the probability has
nothing to do with directionality. A better notation is not obvious. Lets go through the
cases as before.

Case 1. Group gif.= and tes.= together. Let γ = {gif.=, tes.=}. Then the link types G*
and T* need to be consolidated: A={GA,TA} and likewise B={GB,TB} and C={GC,TC}.
The dictionary becomes
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g i f . = t e s . = : (A+ ) ( 2 / 1 1 ) o r (B + ) ( 2 / 1 1 ) o r (C + ) ( 3 / 1 1 ) ;
b l o . = : (BB+ ) ( 3 / 1 1 ) o r ( BF + ) ( 1 / 1 1 ) ;
= t : A−;
= t y : B− or BB−;
= t e r : C−;
= fu : BF−;

The observational probabilities are unchanged, as the dictionary probabilities have no
bearing on the parsing. However, the entropy of the generated language is different, as
it is no longer log2 5 but instead

hgen =− 6
11

log2
1

11
− 2

11
log2

2
11
− 3

11
log2

3
11

That is, it is now identical to hobserved . No surprise, as we made it like that, by encoding
the frequency information in the dictionary.

Case 2. Group gif.= and blo.= together. Let δ = {gif.=, blo.=}. Then the link
types GB and BB can be consolidated, because they share the common suffix =ty:
B={GB,BB}. No other link consolidation is possible, without permitting impermissi-
ble (previously unseen) linkages. The dictionary becomes

g i f . = b l o . = : (GA+ ) ( 1 / 1 1 ) o r (B + ) ( 4 / 1 1 ) o r (GC+ ) ( 1 / 1 1 ) o r ( BF + ) ( 1 / 1 1 ) ;
t e s . = : (TA+ ) ( 1 / 1 1 ) o r (TB + ) ( 1 / 1 1 ) o r (TC + ) ( 2 / 1 1 ) ;
= t : GA− or TA−;
= t y : B− or TB−;
= t e r : GC− or TC−;
= fu : BF−;

The generated entropy is

hgen =− 5
11

log2
1

11
− 4

11
log2

4
11
− 2

11
log2

2
11

which is identical to the corpus entropy, again. Not surprising, I guess ... we seem to
be doing the same calculation, but in a different way. Dohh. Never mind ...

Alternate Distributions
Instead of looking for an equi-distribution, how about a Zipf distribution, which seems
far more plausible? The distribution is

p(k,n) =
1

kHn
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where the normalization is Hn = ∑
n
k=1 1/n. The entropy is then

hZip f
n =−

n

∑
k=1

p(k,n) log2 p(k,n)

=
1

Hn

n

∑
k=1

log2 kHn

k

= log2 Hn +
1

Hn

n

∑
k=1

log2 k
k

and the first few values are shown below. For comparison, hequi
n = log2 n is also shown.

n Hn hZip f
n hequi

n

2 1.5 0.918296 1
3 1.83333 1.435371 1.584963
4 2.033333 1.792488 2
5 2.283333 2.063860 2.321928
6 2.45 2.281979 2.584963
7 2.592857 2.463914 2.807355
8 2.717857 2.619715 3

The question is then: how would the above cases go if this was used as the deciding
factor? This is shown below:

Case # lnk hobserved hequi heq−hobs OK hZip f hZip f −hobs C1 C2
Base 8 2.845351 3 0.154649 2.619715 -0.225636

1. 5 2.231270 2.321928 0.090658 Y 2.063860 -0.16741 Y N
2. 7 2.550341 2.807355 0.257014 N 2.463914 -0.086427 Y N
3. 6 2.481715 2.584963 0.103248 Y 2.281979 -0.199736 Y N
4. 7 2.550341 2.807355 0.257014 N 2.463914 -0.086427 Y N
5. 8 2.845351 3 0.154649 2.619715 -0.225636
1a. 4 1.867634 2 0.132366 N 1.792488 -0.075146 Y N
1b. 4 1.789929 2 0.210071 N 1.792488 0.002559 Y N
1c. 4 1.789929 2 0.210071 N 1.792488 0.002559 Y N
1f. 3 1.240671 1.584963 0.344292 N 1.435371 0.1947 N N

There seem to be two different decision criteria to apply:

1. Does the reduced entropy come closer to the Zipfian entropy?

2. Does the reduced entropy increase, relative to the Zipfian entropy?

The first is shown in column C1, the second in C2. Naively, C2 seems like a better
chooser. Does it also work for the simple case (with the original 7-word corpus)? Lets
see:

Case #lnk hobserved hequi heq−hobs OK hZip f hZip f −hobs C1 C2
Base 6 2.521641 2.584963 0.063322 2.281979 -0.239662

1. 4 1.842371 2 0.157629 N 1.792488 -0.049883 Y N
1a 2 0.985228 1 0.014772 0.918296 -0.066932 N Y
1b. 2 0.863121 1 0.136879 0.918296 0.055175 N N
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Basically, this is really irritating.

Thoughts
What have we learned from the above?

• The problem of condensing together morphemes into classes which share com-
mon link types is the bipartite clique problem. It is a known-hard problem.

• Bad grammars increase the size of the language. This could be acceptable, if the
increase is small. What’s the criteria? Unclear.

Consciousness - 27 July 2014
Two works:

• Masafumi Oizumi, Larissa Albantakis, Giulio Tononi, “From the Phenomenol-
ogy to the Mechanisms of Consciousness: Integrated Information Theory 3.0”
(2014) PLOS Computational Biology, http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003588

• Max Tegmark, Consciousness as a State of Matter (27 Feb 2014) arXiv:1401.1219v2
[quant-ph]

Curious points and thoughts:

• CEI – “Cause-effect information” – Tononi – sound like a time-ordered variant
of mutual information. How should this be defined? Answer: my guess is that its
just like the mutual information defined in eqn??, right? Because the relational
complexity can deal with arbitrary structures, so that seems appropriate.

13 Sept 2014
The Zipfian distribution is typical of a scale-free network. So why is language scale-
free? Crudely, because we attempt to recycle existing concepts/words.

Next, from this:

• Christoph Adami “Information-Theoretic Considerations Concerning the Origin
of Life” http://arxiv.org/pdf/1409.0590v1.pdf

Come the following thoughts:

• Never assume a uniform distribution of parts. This makes it very unlikely that
an imprtant assemblage of parts can arise at random. For Adami, this is used
to argue that biotic and abiotic strings should have very siilar distributions (or
rather, the converse: a non-uniform abotic distribution makes it much more likely
to find a replictor with a similar distribution.)
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• The information content of (grammatical sentences of length L is

Igrammatical =− log2(Ngrammatical/Ntotal)

where Ntotal is the total number of sentences of length L, assuming a uniform
distribution of words picked from a vocabulary of D words. That is, Ntotal = DL.
But this is weird ... because the vocabulary isn’t really a constant, and the natural
distribution is not uniform, so its not clear what kind of “information” the above
actualy is ...

Thermodynamics - 24 March 2015
Some quick short notes: blog post: “Thermodynamics with Continuous Information
Flow” https://johncarlosbaez.wordpress.com/2015/03/21/19395 with arxiv paper: http://arxiv.org/pdf/1402.3276v3.pdf
Jordan M. Horowitz and Massimiliano Esposito study the master equation for a proba-
bility p(x,y) over two distributions X,Y, which are connected via a bipartite graph. The
total system is also connected to a thermal bath. The eqn is

d p(x,y)
dt

= ∑
x′,y′

Hy,y′

x,x′ p(x
′,y′)−Hy′,y

x′,x p(x,y)

i.e. its Markovian; we’ve written two indexes, which makes it clearer when H is bipar-
tite i.e.

Hy,y′

x,x′ =


Hy

x,x′ if y = y′

Hy,y′
x if x = x′

0 otherwise

The interesting part is the entropy, and the thermal bath, which is not in the master
eqn(!) The total entropy is Stot = SXY + Senv. Per usual, the information entropy is
SXY =−∑x,y p(x,y) log p(x,y). Two tricks now happen: (1) taking the timer derivative
of SXY results in something that naturally splits into an X piece and a Y piece. Trick
(2) is that Senv cannot be written down directly, but its time derivative can be; it is
proportional to the heat current: Ṡenv = −Q̇/T Observer the tiny dot over S,Q these
are the usuaul rate-of-change dots, (i.e. just rates, not functions we are taking time
derivative of). Q is heat, Q-dot is heat flow, T is temp. Local detailed balance requires
that

log
Hy,y′

x,x′

Hy′,y
x′,x

=
−(Ex,y−Ex′,y′)

kT

is the change in energy due to a state transition: the change in energy is supplied by the
heat reservior. Where does this mystery equation come from? Answer:

Detailed balance requires that, when the system reaches equilibirum, that the tran-
sition rate into and out of the equlibrium state pi = πi are equal:

H jiπi = Hi jπ j
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(there is NO repeated-index summation). Then, just write πi = exp−Ei/kT , and turn
the crank. The general principle: the log of the ratio of the forward and backward tran-
sition rates between two states must be proportional to the energy difference between
those states!

BTW the detailed-balance equation resembles Bayes Theorem, in that, if we wrote
H ji→ P( j|i) and πi→ P(i), then detailed balance is written as P( j|i)P(i) = P(i| j)P( j).
So the master equation describes “non-equilibrium Bayes statistics”, in a strange sense.
Hmm. But, of course, this is just a Markov chanin/process.

26 March 2015
The Inverse Relationship Principle of Channel theory: “Whenever there is an increase
in available information there is a corresponding decrease in possibilities, and vice
versa.“ Barwise, “Information and Impossibilities.” Notre Dame J. Formal Logic Vol-
ume 38, Number 4, 488-515. Barwise, Jon and Jerry Seligman 1997. “Information
Flow: The Logic of Distributed Systems”. Cambridge: Cambridge University Press

Linear networks - 3 May 2015
Another Baez post: “A Compositional Framework for Passive Linear Networks” blog:
https://johncarlosbaez.wordpress.com/2015/04/28/a-compositional-framework-for-passive-
linear-networks/

So first, we have the table:

mechanics electronics information
geometry

geometric mechanics

q position charge entropy point on manifold
q̇ velocity current entropy change tangent vector
p momentum flux linkage temperature

momentum
covector (vector in
cotangent bundle)

ṗ force voltage temperature map from tangent
bundle to cotangent

bundle
principle of
least action

principle of
least power
dissipation

? principle of least
action

This table is slightly oversimplified; the first four columns show only the linear
case. The fifth column makes clear that force isn’t really p-dot; that only holds when
the manifold is flat. Anyway..

Key concepts: (*) monoidal categories are needed, and (*) symplectic geometry is
needed.

Baez does the linear passive-component electronics example, viz a network of pas-
sive resistors, capacitors, inductors. For the resistor network, voltages at each node
are taken from the field F= R while for the inductive network, the field is the field of
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rational functions of one variable F= R(t) with t time: i.e. voltage varying over time.
A Dirichlet form is a quadratic form

P(φ) =
1
2 ∑

i, j

(φi−φ j)
2

ri j

where ri j is the reistance (impedance) between nodes i and j, and φi = φ(i) is the
voltage at node i. (Actually, we should be summing over edges, so as to handle parallel
resistors). Note that the space of Dirichlet forms is smaller than the space of quadratic
forms: Dirichlet forms do not have diagonal entries. Note that P is (half) the power
dissipation.

The principle of least power dissipation is this: Given fixed voltages ψ on the
boundary of the network, i.e. on the input/output terminals, the actual power dissipated
is

Q(ψ) = min
φ∈RN ,φ |∂N=ψ

P(φ)

Notation: there are N nodes, so voltages live in RN . The boundary of the network
(input/output terminals) is written as ∂N and the voltages are held fixed at the boundary.
Note that Q is also a Dirichlet form. Viz its a map Q : R∂N → R. The black-box
principle of equvalent resistor networks is that any two resistor networks are black-box
equivalent when they have the same Q.

For the correct generalization to impedance, it is not enough to just replace F= R
by F = R(t) because this fails to deal with the time variation correctly. Put it another
way: for the pure resistor network, we are free to fix voltages at both the input and
output terminals arbitrarily; the internal currents are determined entirely by these. For
the general case with impedance, we are not free to fix both voltages and currents at
both the input and output terminals. Out of the total set of 2dim(∂N) voltages and
currents, we can fix only half the set, i.e. a mixture of voltages, currents of dim(∂N).

To handle this, we need to construct a symplectic vector space, with a symplectic
form on it, and work in the Lagrangian subspace of it. Thus, we have ψ ∈ F∂N as the
potentials at the network terminals, and dQψ ∈

(
F∂N

)∗
as the conjugate currents. Out

of the total space F∂N⊕
(
F∂N

)∗
of states, the subspace of actually attainable states is

Graph(dQ) =
{(

ψ,dQψ

)
|ψ ∈ F∂N

}
⊆ F∂N⊕

(
F∂N

)∗
The set of Lagrangian subspaces is an algebraic variety, the Lagrangian Grassmanian.

Baez primary result on impedence networks is that the black box is describable by
the symplecitification of .. OK I don’t get it.

MI graphs – 31 May 2015
Results from Rohit:
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Above is for single words. Frequency is the number of times the word was ob-
served.

The log is the natural log. Below is for word-pairs.

Below is a scatterplot for mutual information of word-paris vs rank.
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number of word pairs as function of word rank

Summary: these are more or less exactly as expected. Will need to make cuts to
get rid of the low-frequency word pairs...

Mining Grammatical Categories – 20 June 2015
Now that we have a database filled with disjunct statistics, how do we datamine that
for grammatical categories, which is, after all, the main point of this exercise? Let me
explain in several steps; at first illustrative, and then, more precisely. So first, consider
a corpus containing these sentences:

the big tree
a green tree
the big bush
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a green bush

I want to conclude that "tree" is a lot like "bush", and the two should be considered as
being "similar enough to be merged into a common grammatical category". That is, the
words "tree" and "bush" always occur in similar contexts, or even the same contexts.
The word “context” here means “the dependency parse context”, and not “the n-gram
context”. More precisely, it means “the accumulated statistics for the disjuncts obtained
from MST dependency parses”.

Suppose the following parses were observed:

+−−−MA−−−+
| +−MB−+
| | |

t h e b i g t r e e

+−−−MC−−−+
| +−MD−+
| | |
a g r e e n t r e e

+−−−ME−−−+
| +−MF−+
| | |

t h e b i g bush

+−−−MG−−−+
| +−MH−+
| | |
a g r e e n bush

Recall that the above parses were obtained by performing a Maximum-Spanning-Tree
(MST) parse based on word-pair mutual information (MI). The MST is obtained by
considering the graph clique joining all words in the sentence, and then keeping only
those edges that have the greatest MI between pairs of words. This is the “Yuret parse”.
The Yuret parse does not have labelled edges, and so we assign arbitrary (but unique!)
link labels to the edges that were kept. Every unique word pair gets a unique link type.
Then, using the standard Link Grammar theory, each link is broken into a + and a -
connector, and the ordered set of connectors on a word are called a disjunct.

The disjuncts extracted from the above parses would then be:

t r e e : (MA− & MB−) o r (MC− & MD−)
bush : (ME− & MF−) o r (MG− & MH−)

No two disjuncts are alike, so naively, these seem completely uncomparable. Of course,
this is wrong; we need to compare the “decoded disjunct”. The “decoded disjunct” is
NOT a part of the standard Link Grammar theory, so let me explain it here: it is simply
the disjunct where the connector is replaced by the word or word-class that it connects
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to. For example, MA- connects to the word “the”, so the “decoded connector” for MA-
is $the$-. So, the decoded disjuncts are then:

t r e e : ( $ the$− & $big$ −) o r ( $a$− & $green$ −)
bush : ( $ the$− & $big$ −) o r ( $a$− & $green$ −)

Now we can see that the decoded disjuncts are identical, for this example. Based on
this, we conclude that perhaps “tree” and “bush” indeed belong to the same grammat-
ical category. The remainder of the clustering algorithm is now “obvious”: rewrite the
dictionary so that it has a single entry for both words:

t r e e bush : (MA− & MB−) o r (MC− & MD−)

This leaves the ME+, MF+, etc. connector dangling: thus, we need to search for all
occurances of ME+ and replace it by MA+, and likewise all occurances of MF+ need
to be replaced by MB+, and so on.

Similarity metrics

The above conveys the general idea, but is over-simplifies a few aspects. First of all,
it is very unlikely that two words will appear in sentence contexts that are exactly
identical. Secondly, some constructions may be very common, and others, very rare;
that is, some disjuncts may be very common, and some very rare. So, for example:
suppose we read a text which used the phrase “the big idea” a lot, but we also read an
obscure linguistics text that said that “a green idea sleeps furiously”. It would probably
be a mistake to lump “idea” in with “tree, bush”, given that “green idea” is a very rare
construction. Thus, we need a better way of comparing collections of disjuncts.

One obvious way is to treat a collection of decoded disjuncts as a vector in a high-
dimensional vector space. The similarity between two vectors could be given by the
cosine between two vectors. Alternately, perhaps the vectors could be treated as points,
and similarity be given by the distance between points. There are other possibilities;
the best choice is not obvious; several need to be explored.

Thus, for example, let {e1,e2,e3, · · ·} be the basis of a high-dimensional vec-
tor space. For the previous example, we let e1 correspond to the decoded disjunct
($the$- & $big$-)while e2 corresponds to ($a$- & $green$-). The word
“tree” is then some vector ... what vector should it be? There are several choices. Sup-
pose that ($the$- & $big$-) was observed with a frequency p1 and that ($a$-
& $green$-) was observed with frequncy p2. The corresponding vector is then ob-
viously p1e1 + p2e2 and we can construct another vector that corresponds to the the
word “bush”, say, for example: q1e1 +q2e2.

The dot-product between “tree” and “bush” is then given by p1q1 + p2q2, so that
the larger the product, the closer the two words are. The cosine angle is (p1q1 +

p2q2)/ |p| |q| where |p|=
√

p2
1 + p2

2 and so on. The closer that the cosine is to 1.0, the
closer the two words are. There are other possibilities: we have the Cartesian distance

dist(tree,bush) =
√

(p1−q1)2 +(p2−q2)2

and we can contemplate lp-metrics as well.
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None of the above metrics take into account the mutual information (MI) of the
disjunct. This is almost surely a mistake. Due to the vagaries of MST parsing, there
will be many disjuncts with a low MI value. This is not uncommon in sentences with
prepositions, where MST gives some poor choices for the links to the prepositions, and
thus results in disjuncts with low MI values. Recall, the higher the MI, the stronger the
structure is. Thus, perhaps a better vector for “tree” might be

tree = e1m1 p1 + e2m2 p2

The above seems to be the most entropic-like in its expression. However, the proba-
bilites might weight the terms too strongly, and so a weaker weighting would be the
below. It is not yet clear to me which of these expressions are the most “elegant”, or
which work the best...

tree = e1(m1− log2 p1)+ e2(m2− log2 p2)

Here m1 and m2 are the mutual information of the disjuncts (MA- & MB-) and (MC-
& MD-), respectively. The last two seem to be closer to the intended spirit of the
maximum entropy principle. There are even more possibilities, though.

Frequency and Mutual Information

The above section makes explicit use of the frequency and the mutual information of
a disjunct. It is useful to define these. Given a disjunct (MA- & MB-) let N(MA-
& MB-) be the number of times that this disjunct has been observed. It will usually
be an integer (except when obtained in certain unusual situations not discussed here).
Let N(*- & *-) be the numer of times that any two-connector disjunct has been
observed, as long as both connectors point in the - direction. That is,

N(∗−&∗−) = ∑
c1∈−,c2∈−

N(c1&c2)

the summation taking place over all connectors in the - direction. The frequency of
observing (MA- & MB-) is then

p(MA−&MB−) = N(MA−&MB−)
N(∗−&∗−)

The mutual information associated with the disjunct is then

m(MA−&MB−) = log2
p(MA−&MB−)

p(MA−&∗−)p(∗−&MB−)

The reason for this possibly unexpected form was developed earlier in this diary.

Semantics

There is another interesting issue that arises in the above discussion: the problem of
syntax-semantics correspondance. Consider, for example, the sentence “the dog treed
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the squirrel”. Here the word “tree” is used as a verb, meaning “the dog chased the
squirrel up into the tree”. Such sentences will cause the the word “tree” to accumulate
disjuncts that the word “bush” will not have. Likewise, “I’m bushed” is a verb usage
that has no analogous “tree” version. Thus, not only do the words “bush” and “tree”
have different sets of disjuncts, but the differences are hiding semantic differences ...

There are several strategies that can be used to deal with this. More on this later.

Finding word pairs

We need a good way of finding word-pairs that are likely to be related. I think that
perhaps the pattern matcher may be ideal for this. Details are TBD... but the basic idea
is that the hypergraph for “tree: (MA- & MB-)” is connected to “big” because MB-
is connected to “big”, and “big” is connected to other lg-connectors, which in turn are
connected to other disjuncts, which are then connected to other words. Thus, we search
the local neighborhood of “tree”, which causes us to dsicover the word “big”, and then
we search the neighborhood of “big” to find candidates such as “bush” which might be
comparable to “tree”. This search graph is not small, but it is not large: There may be
thousands of words that are two hops away from “tree”, but not millions.

Putting it all together

These are the things that need to be done:

1. compute the MI for the disjuncts

2. pick a common noun, compute the similarity scores for that word and every word
that is linked to it. created ranked graph of similarity.

3. repeat step 2 for several different similarity formulas

4. repeat steps 2,3 for several verbs, several adjectives, several adverbs, several
determiners, several prepositions.

5. Write code for creating grouping words into grammatical clusters.

6. Pick the most promising metric, and start clustering in bulk.

Step 5 requires writing a lot of code; it can all be written before the final metric has
been determined.

The end.

That’s all for now. More later.

Not LSA – 1 July 2015
NotLSA – a way to do LSA-like things without actually using LSA (Latent Semantic
Analysis). Two very low-brow approaches, maybe well-known in the industry; I have

57



no idea. Both of these approaches attempt to automatically extract keywords from
documents. What cool about this is that its ... unsupervised; requires no training, and
is based on very simple, proven ideas. Obvious, even: compute the mutual information
between pairs of things ... between words and documents, between words and word-
pairs, etc. Heh.

But how do we do this? How do we compute the MI between a page of text, and a
word? No way to answer this without diving into the details.

Text-keyword correlation

Lets take a text, say – 1000 pages of .. something. Some corpus. We want to compute
the mutual information between the page itself, and the words on the page. We do this
by analogy to MI of word pairs.

Call the k’th page gk. Count the number of times that word wm appears on this
page; let this count be Nmk. Define Nm = ∑k Nmk be the total number of times that the
work wm appear in the document, and let N = ∑m Nm be the total number of words in
the document. Then, as usual, define probabilities, so that

pm = P(wm) = Nm/N

is the frequency of observing word wm in the entire corpus, and

pmk = P(wm|gk) = Nmk/∑
m

Nmk

be the (relative) frequency of the same word on page gk. Notice that the definition of
pmk is independent of the page size. Pages do not all have to be of the same size. Define
the mutual information as

MI(gk,wm) =− log2
pmk

pm
=− log2

NmkN
∑m Nmk ∑k Nmk

=− log2
p(m,k)

p(m,∗)p(∗,k)

This is essentially a measure of how much more often the word wm appears on page
gk as compared to its usual frequency. The highest-MI words are essentially the topic
words for the page. The right-most form introduces a new notation, to make it clear
that it resembles the traditional pair-MI expression. The notation is

p(m,k) =
Nmk

N

so that
p(m,∗) = ∑

k
p(m,k) and p(∗,k) = ∑

m
p(m,k)

are the traditional-looking pair-MI values.
TODO: – this does not have the feature-reduction/word-combing aspects of LSA...

Variants

Instead of working with words, we could work with word-pairs, which is a stand-in
for working with (named) entities. Thus, we can identify if a named entity occurs in a
document more often than average.
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Unsupervised Morphology Learning References
Here’s some:

• John Goldsmith, “The unsupervised learning of natural language morphology”,
Journal Computational Linguistics archive Volume 27 Issue 2, June 2001 Pages
153-198 MIT Press http://delivery.acm.org/10.1145/980000/972668/p153-goldsmith.pdf

• John Goldsmith, “An algorithm for unsupervised learning of morphology” Nat-
ural Language Engineering Volume 12 / Issue 04 / December 2006, pp 353-371
Cambridge University Press DOI: http://dx.doi.org/10.1017/S1351324905004055
http://people.cs.uchicago.edu/~jagoldsm/Papers/algorithm.pdf

• Survey Article Unsupervised Learning of Morphology Harald Hammarström
Lars Borin http://www.mitpressjournals.org/doi/pdf/10.1162/COLI_a_00050

Predicate-Argument structure
Here’s one:

• The Darwinian evolution of natural language comes from a combination of Ex-
pressive FSM’s and Lexical predicate-argument FSM’s within the human brain.
Shigeru Miyagawa, Robert C. Berwick and Kazuo Okanoya “The emergence of
hierarchical structure in human language” Front. Psychol., 20 February 2013 |
http://dx.doi.org/10.3389/fpsyg.2013.00071 http://alpha-leonis.lids.mit.edu/wordpress/wp-
content/uploads/2014/01/shigeru-berwick-kaz-frontiers13.pdf

Edge-counting 27 March 2017
Counting edges in a clique is not the same as counting edges in planar trees. The
diagram below shows the clique of a four-word sentence. The “words” are ’a’, ’b’, ’c’
and ’d’. There are a total of six edges, with one edge between every possible word-pair.
Each edge occurs only once.

Pair counting in planar diagrams gives different results. The diagram below shows
the twelve planar trees, containing no cycles, that can be formed by parsing a sentence
of four words.
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The general formula for the number of different planar dependency parses is

1
2n−1

(
3n−1
n−1

)
This formula is given by Deniz Yuret in “Lexical Attraction Models of Language”
ISCIS 2006 (http://www2.denizyuret.com/pub/lex-attr/lam-iscis06.pdf)

It is important not to confuse this with the “matrix-tree theorem” aka Kirchoff’s
Theorem, which counts the number of spanning trees of a graph. In short, it states
that the number of spanning trees is equal to any cofactor of its Laplacian matrix. In
our case, we are dealing with a complete graph (a clique) and so on might hope that
Cayley’s formula applies. In fact, neither theorem works, because we are interested in
non-self-intersecting planar trees, constrained by linear word-order.

There are 36 edges grand total, and these are unequally distributed. The counts are:

word-pair count
(ab) 7
(bc) 7
(cd) 7
(ac) 4
(bd) 4
(ad) 7

Note that the most frequent edges occur almost twice as often as the least-frequent
edges. The distribution, by length, is:
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Length Count
1 21
2 8
3 7

Note that the progressively-longer edges get less frequent.
If graphs with cycles are also allowed, (but no edge crossings) then, in addition to

the above, there are eleven more diagrams. These are shown below.

Again, we count the number of edges, as before. The ’tree’ column shows he counts
from before; the loop count count the edges from the additional eleven diagrams; the
total is just that.

word-pair tree loop total
(ab) 7 9 16
(bc) 7 9 16
(cd) 7 9 16
(ac) 4 5 9
(bd) 4 5 9
(ad) 7 9 16

Likewise, the number of arcs of the given length is now given below:

Length Count
1 48
2 18
3 16
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What are the actual distributions, for these two cases? Begin by counting the num-
ber of planar trees. I currently do not know of any published work on this, so below,
I make a half-baked attempt to count these myself. Its ... incomplete. Maybe there’s
some simpler approach.

Counting planar tree graphs
Let’s count the number of planar tree graphs; i.e. those without any loops. First, we
need a generic formula for sentences of length N. This is not so very easy. The diagram
below shows one way to count. (I think what follows is correct, but I might be making
a mistake. I am unaware of any literature that presents this information).

Here, the star represents some planar tree connecting all of the words of a smaller
sentence. Assume that there are T (n) such trees, connecting n words. Tree diagrams
of of Type A are assembled by placing two adjacent smaller trees next to each other.
Naively, one can then count how many such pairs there are; the issue is that the Type
B diagram will occur mutiple times in this pairing; we would rather NOT count it with
this mutiplicity. To avoid this problem, we should only allow pairs, such as Type A,
to be assembled of sub-parts of the shapes C and D. Because of the over-arching arc,
these can never result in double-counting. However, counting only pairs results in an
under-counting: graphs of Type B never occur. Thus, one should count pairs, triples,
and so on – graphs of Type E. Now we have a way of getting the formula. Define
D(n) as the count of the number of planar trees, connecting n words, having an arc
connecting the first and last word: i.e. trees of type C or D. (Think “D = dome”) One
then has that

D(n) =
n−1

∑
j=1

T ( j)T (n− j)

It is convenient, here, to define T (1) = 1. The first and last terms of this sum then
correspond to trees of Type C, while the middle terms are trees of type D.

To count trees of Type E, is is convenient to break this up into the problem of
counting chains of length k, so that there are Ck(n) trees, consisting of a sequence of k
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domes, making up a total of n words. One then has that

T (n) = D(n)+C2(n)+ · · ·+Cn−1(n)

It’s convenient, here, to define C1(n) = D(n). Writing down the Ck(n)’s requires some
combinatorial magic. The first one is

C2(n) =
n−1

∑
j=2

D( j)D(n− j+1)

Next comes

C3(n) =
n−1

∑
j=2

n− j+1

∑
m=2

D( j)D(m)D(n− j−m+2)

which is awkward to write down. It’s easier to count partitions of sets. Thus, what re-
ally is happening here is that the sums range over all k-way partitions of sets containing
n+k−1 elements. Not the partition is NOT over n elements: to get connected graphs,
we have to identify end-points of each link in the chain. Thus,

Ck(n) = Πσ · · ·

The table below summarizes the first few sums:

n T (n) D(n) C2(n) C3(n) C4(n) C5(n)
1 1 1
2 1 1
3 3 2 1
4 12 7 4 1
5 45 20 18 6 1
6 123 1

Either I am computing this wrong, or the sequences are not in OEIS. Surprising!

Counting planar loop graphs
The above process can be repeated, except that this time, we consider the planar graphs
containing loops. To get started, consider the diagram below.
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Here, the stars represent either “domed” diagrams, or the empty set (a set containing
no words and no edges. The type F concatenates two domes, and puts a dome over
those, in turn. Since both of the stars are domed (or empty), it is impossible to add any
additional edges to this graph. So, for graphs constructed out of a pair domes (one or
both possibly empty), Type F is all that there is. For three domes in a row, there are only
three ways of adding edges: these are shown in type G and H in this diagram. Again,
this exhauses all possibilities. This process constructs both looped and tree diagrams.
The general idea is to repeat this, for sequences of four or more stars.

The counting is similar to that before. Let F(n) count the number of domed graphs,
connecting n words. Let G2(n) count the number of type F graphs, made of two parts,
and containing n words. Consulting the diagram, we have

G2(n) = F(n−1)+
n−1

∑
k=2

F(k)F(n− k+1)+F(n−1)

Likewise, let G3(n) count the number of graphs of type G and H, combined. Consulting
the diagram, this has a more complex expression:

G3(n) =
n−2

∑
k=2

F(k)F(n− k)+∑∑F()F()F()...+
n−2

∑
k=2

F(k)F(n− k)+ ...

The total number of domed graphs having n words is then

F(n) =
n−1

∑
k=2

Gk(n)

Let S(n) be the count of a string of domed graphs, but NOT having connecting arcs:
that is, graphs of type A or E.

A table of these is given below.

n L(n) S(n) F(n) G2(n) G3(n) G4(n) G5(n)
1 1 0 1
2 1 0 1
3 4 1 3 3
4 23 x
5 156 x
6 1162 x

English Dataset Sample 28 April 2017
Samples for English

This section reports on data collected for a small sample of English sentences, taken
from Wikipedia, late April 2017. 1. It was collected over the course of a few days,

1The ‘en_snapshot‘ dataset
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and so should be considered to be a medium-sized sample: larger ones, collected over
weeks or months, are possible, as well as smaller samples collected over a few hours.
Note that the current atomspace infrastructure does have some serious performance
limitations: the atomspace is designed to be a very general-purpose hypergraph tool,
and not a fast statistics-collecting tool.

There were 106696 unique words observed in the dataset2. This number is fairly
large, as it includes not only common nouns, but also surnames, geographical loca-
tion names, and a variety of foreign-language words, as would be observed in typical
wikipedia articles. These words were observed for a total of 24417409 times3.

These were observed in 80613 sentences4 with 15.88 parses per sentence5. On
average, there were 19.07 words per sentence6.

There were 9376710 (about 9M) unique ’clique pairs’ observed7 for a total of XXX
observations8

Graphs. TODO.TODO graphs P(w), P(t,w), etc. show zipf
XXX
Define the relation E(w1,w2) as being the relation that both words w1 and w2 occur

at the ends of an edge in the same sentence, but in arbitrary order. It is symmetric:
E(w1,w2) = E(w2,w1). By this definition, one has that

N(E,w1,w2) = N(R,w1,w2)+N(R,w2,w1)

This is the symmetrized count. It is useful to mod out one of the two words, and to
consider the sum

N(E,w)≡ N(E,w,∗) = ∑
w2

N(E,w,w2)

This counts how often the word w occurs at one end or the other of a word-pair. It
is a distinct count from N(w), which, by definition, counts only once per word in a
sentence.

Left-right asymmetry

This section explores how often a given word occurs on the left side of a word pair, vs.
how often it occurs on the right. This, of course, depends on the word. If sentences
and words were randomly generate, one would expect that a given word would occur
on the left, or on the right, exactly half the time. That is, in a random world

N(w,∗)≈ N(∗,w)

Of course, this cannot hold for a given human language: the exclamation point, ques-
tion mark and period occur exclusively on the right hand-side of any randomly-generated

2Obtained with (fetch-all-words)(length (get-all-words))
3(get-total-atom-count (get-all-words)) which is the same as (total-word-observations)
4(get-sentence-count)
5(/ (get-parse-count) (get-sentence-count))
6(avg-sentence-length)
7(fetch-clique-pairs) (length (get-all-clique-pairs))
8(get-total-atom-count (get-all-clique-pairs))
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pair. This is not limited to punctuation: for Japanese, sentences usually end in a verb,
and thus, for Japanse verbs v, one expects that N(v,∗)� N(∗,v).

Some typical values for English words are given in the table below. Here, by defin-
tion, N(w)≡ N(∗,w)+N(∗,w) is the number of times the word w is observed in a pair
relation. The word-pairs were generated by creating random parse trees of the sen-
tences in the data-set, and then counting a pair, if two words are connected by a parse
link.

w N(∗,w)−N(w,∗)/N(w)
how -0.0058
when -0.0051

, -0.0021
will -0.00114

usually -0.00112
a -0.00085

the 0.0035
finally 0.0043
word 0.0094
hope 0.0128

? 0.3197
. 0.8578

A histogram summarizing the above table is shown below. It bin-counts the asym-
metry N(∗,w)−N(w,∗)/N(w). About 100 bins are used, from an observation of 8.88
million distinct English-language word pairs, where were observed for a total of 420
million times. These pairs connected about 400K distinct words. The number of dis-
tinct words is large, because these include surname, and geographical names, as well
as an assortment of foreign-language words as might be encountered in a sampling of
English wikipedia pages. (This is the dataset collected by Rohit, summer of 2015).
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Left-right word-pair asymmetry

exp(-18 x)
exp(+13 x)

Observe that the y-axis is drawn with a logarithmic scale. The two sides to this
peak are conjectured to be linear. Two lines guessing at the slopes are indicated in the
graph; the (natural logarithm) slopes are +13 and -18.
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Total Entropy

Of some

Asymmetric Mutual Information

Reviewing some old results suggests that asymmetric mutual information should be
attempted. For the results reported below, this will be defined as

AMI(wl ,wr) = MI(wl ,wr)/ log

Connector Sets 7 May 2017 (revised July 2017)
Tho better manage the size of this diary, this has been moved to its own file. See the
“connector-sets-revised.lyx” file.

Abstract

This is a report on a dataset of disjuncts and connector sets, extracted from MST parses
of a batch of sentences. First, a recap of what these are, then a characterization of the
database contents, and finally, a report on the grammatical similarity of words in the
dataset.

MST parsing algos
There are multiple MST algos, some better than others. A short list with some refer-
ences.

• The current implementation in the (opencog sheaf) directory is an MST algo for
generating projective MST trees from undirected edges. Its a simple-minded
projective adaptation of Borůvka’s algo (see wikipedia for a description). I
just measured it to run at O

(
n3
)

for n words. See atomspace/opencog/bench-
ms/README.md.

• The O
(
n3
)

is for the case of arbitrary-length links. If the scoring function is
altered to give bad scores to link lengths >6 long, then the algo kicks over to
O
(
n2.3
)

after about 8< n or so. Awesome! See graphs in atomspace/opencog/bench-
ms/ for a better look.

• This isn’t bad, per se, since Yuret published his best projective MST algo which
ran at O

(
n3
)

for n words. So we are in the right ballpark...

• The state-of-the-art projective algo (for directed edges) is supposed to be Eisner’s
algo, which runs at O

(
n3
)

for n words. So we are still in the right ballpark.
Eisner, Jason, 1996. “Three New Probabilistic Models for Dependency Parsing.”
In Proceedings of the 16th Conference on Computational Linguistics (CoLING
96) . Saarbruecken: ACL, 340–345.
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• The Chu-Liu-Edmonds algorithm finds (non-projective) spanning trees in di-
rected graphs. It is described by Ryan McDonald, Fernando Pereira, Kiril Rib-
arov Jan Hajič, “Non-projective Dependency Parsing using Spanning Tree Algo-
rithms” http://www2.denizyuret.com/ref/mcdonald/nonprojectiveHLT-EMNLP2005.pdf
Its supposed to run in O

(
n2
)

time.

• An non-projective algorithm that is “super-linear” in the number of edges is de-
scribed by Effi Levi, Roi Reichart, Ari Rappoport, “Edge-Linear First-Order De-
pendency Parsing with Undirected Minimum Spanning Tree Inference” (2016)
https://www.aclweb.org/anthology/P/P16/P16-1198.pdf Since this is edge-linear,
I think that, for us, it claims O

(
n2
)

for n words. (Since, for us, we don’t know, a
priori, if we have an edge, or not). Its also not projective. https://arxiv.org/pdf/1510.07482.pdf

Dataset report 3 June 2017
Some summary reports from various different datasets.

Word-Pair datasets
First, datasets that hold word-pairs, parsed using the LG “ANY” link type: i.e. random
parse trees.

Size Pairs Obs’ns Obs/pr Entropy MI Dataset
395K x 396K 8.88M 418M 47.0 19.28 3.02 en_pairs_sim
138K x 140K 4.89M 140M 28.6 17.73 2.03 en_pairs_tone_mst
183K x 187K 8.05M 268M 33.3 17.83 1.84 en_pairs_ttwo_mst
425K x 432K 15.2M 557M 36.6 18.32 1.93 en_pairs_tthree
134K x 135K 5.54M 174M 31.4 17.67 1.94 en_pairs_rone_mst
185K x 188K 8.95M 321M 35.9 17.77 1.79 en_pairs_rtwo_mst
428K x 434K 16.4M 639M 38.9 18.27 1.90 en_pairs_rthree
839K x 851K 30.1M 1.35G 44.9 18.54 1.84 en_pairs_rfive
619K x 581K 27.9M 1.25G 44.7 18.65 1.80 en_pairse_cfive_mst
158K x 159K 5.92M 729M 123 18.45 2.02 zh_pairs_sone

60K x 60K 1.68M 87.8M 52.3 17.47 2.88 zen_pairs
351K x 351K 14.6M 632M 43.4 19.35 3.37 zen_pairs_three

The legend is as follows:

Size The dimensions of the array. This is the number of unique, distinct words ob-
served occurring on the left-side of a word pair, times the number of words oc-
curring on the right. We expect the dimensions to be approximately equal, as
most words will typically occur on both the left and right side of a pair.

Pairs The total number of distinct pairs observed.
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Obsn’s The total number of observations of these pairs. Most pairs will be observed
more than once. Distributions are typically Zipfian, as previous sections point
out.

Obs/pr The average number of times each pair was observed.

Entropy The total entropy of these pairs in this dataset, as defined previously: for
word-pairs (wL,wR) it is H =−∑wL,wR p(wL,wR) log2 p(wL,wR).

MI The total mutual information for the pairs in this dataset, as defined previously:
MI = ∑wL,wR p(wL,wR) log2 [p(wL,wR)/p(wL,∗)p(∗,wR)]

The datasets are as below.

en_pairs_sim This contains text parsed from Wikipedia, only. As noted previously,
Wikipedia is painfully short of verbs and pronouns. Compared to the Gutenberg
datasets below, it is also very rich in foreign words and proper names (product
and brand names, geographical place names, biographical mentions and other
named entities). Issue: missing connectors the LEFT-WALL.

en_pairs_tone_mst Text from Project Gutenberg “tranche one”, mostly all “famous
authors”, popular, well-known 19th century books. Includes six modern sci-
fi/fantasy novels from other sources, and some 20th century non-fiction, includ-
ing a military appraisal of Vietnam.

en_pairs_ttwo_mst Tranche two - Everything from tranche one, plus fan-fiction from
http://archiveofourown.org. Most of the selected texts were 10K words or longer.
See the ’download.sh’ file for the precise texts. Issues: tone_mst and ttwo_mst
are missing connectors the LEFT-WALL. Certain types of punctuation is mis-
handled.

en_pairs_tthree Tranche three - Everything in tranche two, plus several hundred of
the most recently created Project Gutenberg texts, whatever they may be. See
the ’download.sh’ file for the precise texts. The _mst version has the same issues
that ttwo_mst has, although some connectors to LEFT-WALL do get added. The
_mst version is probably not useful for similarity measurements.

en_pairs_rone_mst Same as en_pairs_tone_mst, but with minor issues fixed. How-
ever, links to LEFT-WALL still missing.

en_pairs_rtwo_mst As above, tranche 1 & 2.

en_pairs_rthree As above, tranche 1,2 & 3.

en_pairs_rfive As above, tranche 1,2,3,4 & 5.

en_pairs_rfive_mtwo The MST parses of tranches 1-2, performed on the word-pairs
computed from en_pairs_rfive. That is, the word-pair stats for tranches 1-5 were
accumulated to completion first, before the MST parsing is started.
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en_pairs_rfive_mst As above, except that this is the MST parse of all of the tranches
1-5. That is, the MST corpus is the same corpus as the word-pair corpus. (Same
as en_pairs_rfive_mfive, but with dj marginals)

en_pairs_cfive_mst Same as en_pairs_rfive_mst above, but with all words that con-
tained bogus infix punctuation removed. (hyphenated words remain, as do deci-
mal numbers and abbreviations).

zh_pairs_sone A parse of Mandarin Wikipedia, with each individual character (hanzi)
treated as a single item (so that, during pair-counting, pairs are formed between
items). Non-Chinese characters are grouped into words in the normal way, by
splitting according to white-space (and punctuation). Thus, the total dimensions
of the dataset are given by the number of observed Chinese characters (hanzi)
plus the number of observed non-Chinese words (and punctuation).

zen_pairs A parse of a small set of Mandarin novels, with text segmented into words
by external third-party tools (provided by Ruiting).

zen_pairs_three Word-pairs for tranch-1 and tranche-2-part-1 of Mandarin novels,
segmentation by Ruiting.

Now, for some commentary, as to the summary stats. For English, as the number of pair
observations increase, so do the number of unique, distinct words. The relation even
seems to be linear: double the number of pair observations, and the number of different
words also increases. This suggests something Zipfian at work. The explosion of words
is hypothesized to be given names, although these datasets all fail to split hyphenated
words, and so some may be due to that. The point is that the average observations per
pair increases with difficulty, and the entropy and MI does not budge at all.

Comparing the English _sim dataset to the _rone, _rtwo and _rthree datasets does
provide some contrast: The _sim dataset, built from Wikipedia, is distinctly different
from the Gutenberg datasets. Certainly, the prose style in the two datasets is quite
different, with Wikipedia consisting of statements of facts (“is”, “has” relational state-
ments) concerning a broad range of named entities, whereas the Gutenberg texts are
primarily narrative adventures (“did”, “went” activity statements) involving fictional
personages.

Comparing English to Chinese is very interesting. The Chinese “zh” dataset has
three times, almost four times more observations per pair; equivalently about 3-4 fewer
“words”. This is partly due to the fixed number of ideograms in the language. Remark-
ably, the entropy and MI are untouched. This suggests that the entropy and MI are
capturing something about the human nature of language use, as opposed to something
descriptive of the language itself. However, a lot more data would be needed to see if
this is really true.

By contrast, the “zen_pairs” dataset, where the Mandarin was pre-segmented into
words by 3rd-party tools, behaves much more like English in it’s statistics. This is also
evident in the table below, where the “zen” dataset behaves like “en”, and not like “zh”.

There’s something else interesting going on, shown in the table below.
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Size Support Count Length Dataset
L R L R L R L R Name

158K 159K 6819 6411 548 487 41.7 37.7 zh_pairs_sone
60K 60K 8170 8702 191 156 18.1 15.1 zen_pairs

351K 351K 28.8K 27.1K 239 203 22.9 19.8 zen_pairs_three
619K 581K 53.8K 73.1K 282 254 34.7 25.9 en_pairs_cfive_mst
839K 851K 80.6K 80.6K 249 230 28.2 24.5 en_pairs_rfive
428K 434K 45.6K 45.1K 208 187 22.9 19.4 en_pairs_rthree
185K 188K 24.7K 23.8K 199 173 21.5 17.8 en_pairs_rtwo_mst
134K 135K 17.4K 17.4K 143 129 16.6 14.0 en_pairs_rone_mst

The columns are as follows:

Size The left and right dimensions, as before. Viz, the number of unique, distinctly
different words observed on the left and the right side of a pair. Viewed as a
matrix, this is the number of columns and rows in the matrix.

Support The support is the average number of word-pairs that a word participates in
(on the left, or on the right). Viewed as a matrix, this is the average number of
non-zero entries in each row or column. Viewed as (row or column) vectors,
this is the “support” of a (row or column) vector. Mathematically, this is the l0
norm of each vector: |(wL,∗)| = ∑wR (0 < N(wL,wR)) and likewise |(∗,wR)| =
∑wL (0 < N(wL,wR)).

Count The count is the average number of observations that a word-pair was ob-
served, for a given word. Viewed as a matrix, this is the average value of each
non-zero entry (averaged over rows, or columns). Viewed as vectors, this is
the l1 norm divided by the l0 norm. The l1 norm is just the wild-card counts
N(wL,∗) and N(∗,wR), where as always, the wild-card counts are defined as
N(wL,∗) = ∑wR N(wL,wR). The count shown in the table is then the average
count: N(wL,∗)/ |(wL,∗)| for the rows, and likewise for the columns.

Length The length is the average length of the row and column vectors. This is the
l2 norm divided by the l0 norm. The l2 norm is just the standard concept of

the length of a vector in Euclidean space. Here, L(wL,∗) =
√

∑wR N2(wL,wR),

and likewise L(∗,wR) =
√

∑wL N2(wL,wR). The length is interesting, because it
“penalizes” word-pairs with only a small number of counts. The act of squaring
the count has the effect of giving much higher “confidence” to large observation
counts: a word-pair observed twice as often is given four times the credit. The
length shown in this table is the “average” length: it is L(wL,∗)/ |(wL,∗)| for the
rows, and likewise for the columns.

So here’s what is so interesting in this table: the support, for Chinese, is outrageously
different than it is for English. For a given item (hanzi, for Chinese, word, for English),
the Chinese hanzi participates in three to four fewer item-pairs! Since pairs are formed
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on a sentence-by-sentence basis, this means that the variety of different hanzi that can
occur in a single sentence is much more constrained, much more strongly correlated.
Now, perhaps this comparison is not quite valid: because we are not comparing words
to words, but rather English words to Chinese “morphemes” (in the sense that Chinese
words are typically composed of 1, 2 or 3 hanzi). Still, its interesting and surprising.
This has knock-on effects: the observational counts are much higher, as are the average
lengths. It would be interesting to repeat the previously given analysis of the various
distributions, and see how they differ.

Disjunct datasets
Next, datasets that hold disjuncts. This section used to report more data, but it was all
flawed: the MI had a minus sign in it, causing all computed disjuncts to be maximally
bad. Despite this, the results were similar to the below: observations and entropy fit
in line, as expected. The Hle f t entropy values were lower, hovered around 15, and the
MI was in the 3-5 range, while Hright was unchanged and fit in line. You can find the
original data in the git commit 9244905afdff191a39af8c5a6deab592d5a1558c.

Size Csets Obs’ns Ob/cs Entropy Hle f t Hright MI Notes
37K x 291K 446K 661K 1.48 18.30 16.00 10.28 7.98 en_pairs_sim

137K x 6.24M 8.63M 18.5M 2.14 20.96 19.14 9.71 7.90 en_pairs_rfive_mtwo
522K x 25.2M 34.2M 77.8M 2.27 22.82 20.92 10.09 8.18 en_pairs_rfive_mst
445K x 23.4M 31.9M 69.4M 2.18 23.09 21.14 10.11 8.16 en_pairs_cfive_mst
60K x 602K 801K 1.19M 1.48 18.86 17.99 10.13 9.26 zen_pairs_mst
85K x 4.88M 7.02M 17.8M 2.54 20.48 17.06 9.52 6.10 zen_pairs_three_mst

An updated legend for the columns:

Size The dimensions of the array. The left dimension counts words, the right dimen-
sion counts the number of unique, distinct pseudo-disjuncts.

Left-Right The left and right entropies, as defined previously. Note that MI = H −
Hle f t −Hright holds, by definition. Not given for the word-pairs table, because
these two are nearly equal, and are half the difference between the entropy and
the MI.

Note how the MI is considerably larger than that for the word-pairs. Higher MI implies
a stronger correlation, and this is good: this suggests that the disjuncts are capturing
meaningful structures in the language.

The behavior of the “zen” dataset might be explained by two issues that this dataset
has. The smaller “zen_pairs_mst” dataset is tiny, with a large fraction (most?) words
observed only once, most disjuncts observed only once, and so the high MI being
a false signal, an artifact of the tiny size of the set. By contrast, the unexpectedly
low MI on the “zen_pairs_three_mst” dataset might be blamed on the 3rd-party word
segmentation tool. It is known not to be very accurate, and the low MI might be a
by-product of that.
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Thresholding PCA Classifier
The next step is what I’ve called “clustering” in the past, but it really needs to be
something more like factor analysis, or better yet, sparse PCA. Except that’s not right,
either.

What is needed is a recognizer,as follows. Consider
−→
b = ∑n bnwn be a vector, with

the wnT being individual words, and the bn being weights. Plain-old Principal Com-
ponent Analysis (PCA) computes real-valued weights bn. It’s problematic, because
potentially all of the weights are non-zero for all of the words. Sparse PCA computes
real-valued weights bn such that only some small number of them are non-zero. This
is much better. But what is really needed is a classifier: a set of bn that are either
zero or one, indicating the membership of a word wn in some class of words. (Note,
by the way, that a word might belong to multiple classes, for example, according to
its part-of-speech, or it’s meaning.) This suggests a neural-netish variant on iterative
PCA, described below. But, before giving this, some general remarks.

Preliminary comments
The definition of PCA requires a matrix X that connects columns and rows in some
way. In the conventional definition, it is a matrix connecting variables and measure-
ments. The variables (the features being measured) are organized in the columns; the
measurements in rows. The PCA algorithm effectively computes the eigenvectors of
the matrix XT X , with XT denoting the transpose of X .

The matrix XT X is proportional to the covariance matrix between the different
features being observed. The principal component is the the direction of the greatest
variation in this matrix.

What plays the role of X in the current situation, and how should the principal
component be understood and interpreted?

What we have on hand, foundationally, is the frequency matrix P with compo-
nents p(w,d) connecting words with disjuncts. It was defined previously as p(w,d) =
N(w,d)/N(∗,∗), and where N(w,d) is the number of times word w has been observed
with disjunct d. As noted earlier, N(w,d) is very large and very sparse: typically
200K× 4M in recent datasets, with only 1 entry out of 215 being non-zero.9 The ex-
treme sparsity indicates that a power-iteration algorithm will be the most efficient for
implementing a PCA algorithm.

What we will examine will be the results on several different kinds of matrices M
derived from (constructed from) the base data matrix P. In all cases, the features are
words, and so in all cases, it is appropriate to write X = MT ; that is, we work mostly
with the transpose of the matrix X as usually given in standard texts. This follows from
the standard Link Grammar dictionary: the word is followed by the disjuncts it can
employ.

9I plan to send out the revised, expanded statistical analysis “real soon now”.
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PCA of the frequency matrix
Should we identify P and XT , so that XT X = PPT ? We can, but then we don’t get what
we want. Computing the principal component of this matrix for a recent dataset (see
later section below), we get the following vector shown below. The “weight” gives the
magnitude of the vector component. The other two columns are the support for the
word, and the number of observations, and are shown for comparison.

XXXX the table below is still from the broken corpus!!!! discard it!!!

word weight |(w,∗)| N(w,∗)
. 0.9358 2031 341112

the 0.1212 1403 106378
and 0.1098 1225 96276
to 0.1035 1276 96308
” 0.0920 506 45809
, 0.0904 1703 111982
a 0.0842 958 73760
in 0.0808 750 56751
of 0.0783 890 64753
his 0.0666 691 48728
it 0.0567 606 44211

with 0.0531 480 33681
him 0.0482 425 30345
that 0.0464 729 49714
for 0.0450 479 33092

What does this mean? What can we do with this? Why is the weight of the period
so high? In essence, this vector is stating that the greatest variety of disjuncts are
associated with the period. Since periods are sentence enders, and every sentence has
one, a link to the end of the sentence will attach to just about any word. That is, the
period almost single-handedly accounts for almost all of the variance of the disjuncts in
the dataset. The rest of the list is filled out with words that also attach freely and easily
to just about anything: “the” should attach only to nouns, but common nouns wildly
outnumber all of the other parts of speech put together. Similar remarks for “and” and
“to”. The comma can connect in a large variety of situations, and the closing quotation
mark ” behaves much like a sentence-ender (This particular dataset contains a lot of
dialog). The two columns labeled as |(w,∗)| and N(w,∗) confirms this interpretation:
so, |(w,∗)| is the total number of unique, different disjuncts that were observed with
w, and N(w,∗) is the summation over all of the counts with which these disjuncts were
seen.10 The top words, in terms of the variety and number of disjuncts, are more or less
the makeup of the principal component of PPT . This should not be a surprise. Anyway,
this is not what we wanted: we want to classify sets of similar words; discovering which
words account for the greatest variation in disjuncts is of secondary interest.

10If these numbers seem small, it is because they were taken from a sharply filtered dataset, the
en_pairs_ttwo_mst dataset with the (50,30,10) cut applied. This cut is discussed later, below.

74



PCA of the cosine similarity
We had previously defined the cosine similarity of two words as

sim(w1,w2) =
∑d p(w1,d)p(w2,d)√

∑d p2(w1,d)
√

∑d p2(w2,d)

and so, perhaps we should use this as the basis for judging the similarity of words. This
suggests defining a matrix S with matrix components

S(w,d) =
p(w,d)√

∑d p2(w,d)

and then setting setting X = ST so that XT X = SST . The idea here is that PCA allows
a whole-set analysis of similarity, rather than point-wise similarity. That is, for nor-
mal clustering algorithms, one computes a large number of values for sim(w1,w2) and
then employs a clustering algorithm to categorize these, word by word. Here, instead,
perhaps PCA can reveal entire clusters in one gulp, by simultaneously evaluating the
similarity between all words in a cluster.

Power iteration converges at about half of the rate as for the frequency matrix,
which is not a surprise, as the off-diagonal entries are closer to one-another. The PCA
vector, however, is not all that different: 0.978 ”.” + 0.137 “,” + 0.080 “the” + 0.068
“to” + 0.067 “and” + 0.039 “a” + ... and so on, the remaining entries filled out in
roughly the same order, by the same words, as in the frequency PCA.11 Why is this?
It’s worth taking a look at the matrix:12

. , the to and a
. 1 0.549 0.731 0.6435 0.668 0.627
, 1 0.711 0.824 0.888 0.765

the 1 0.790 0.744 0.896
to 1 0.906 0.857

and 1 0.755
a 1

So what is this saying? There are plenty of pairs that have greater similarity; here’s
an arbitrary sampling:

11Created as follows:
(define fsi (add-subtotal-filter psa 50 30 10))
(define pci (make-cosine-matrix fsi))
(define pti (make-power-iter-pca pci ’left-unit))
(define lit (pti ’left-iterate feig 8))
(pti ’left-print lit 20)
12Created with
(define poi (add-pair-cosine-compute fsi))
(poi ’right-cosine WORD-A WORD-B)
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pair sim
(he, she) 0.982

(this, that) 0.894
(run, walk) 0.878
(big, small) 0.908
(high, low) 0.910
(soft,hard) 0.809
(easy,hard) 0.846
(easy,soft) 0.749

So why aren’t some of these in the PCA vector?

IMPORTANT:

Some readers have misunderstood this section. We are NOT doing PCA to obtain
similarity! We are examining it as an algo for CLUSTERING! That is, instead of
doing k-means clustering, or agglomerative clustering, or something like that, the idea
is/was to use a thresholded PCA for CLUSTERING! and NOT for similarity, because
we’ve already got reasonable adequate similarity. Higher-quality similarity might be
nice, but that is of secondary importance, right now.

A bit of sheaf theory
I recently realized that much of what is being discussed here can be anchored in the
vocabulary of a generic mathematical theory, namely, sheaf theory. Sheaves allow
topological structure to be discussed in a local way: sheaves describe how the local
neighborhoods of a point glue together, to form a manifold as a whole. Link Grammar
disjuncts and connector sets are really just the stalks and germs of sheaf theory, in mild
disguise. This can be seen as follows.

A standard way of expressing a graph is to list all of the vertexes in the graph, and
to list all of the edges. Knowing these, one knows the graph. However, this is a global
description: One does not know the local structure until one looks at specific vertexes,
and what they attach to.

A different way of describing a graph is to make a list of pairs: a vertex v and all
the edges that attach to it. More generally, one can consider pairs where a vertex v is
attached to a vertex w by means of a path of length N or less.

(vertex v,{w s.t. vertex w is attached to v})

This describes the graph, as a whole, just as well as the simpler vertex+edge list does.
However, the language is different: these pairs are presheaves, obeying all the axioms
of a presheaf, e.g. the composition of restriction morphisms. They become a sheaf
because they also obey the gluing or collation axiom as well: they can be glued together
to form the original graph from which they were taken.

Thus, we can see that the set

(vertex v,{ edges attached to v})
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is the same thing as a Link Grammar dictionary entry.
To be more precise, we need to distinguish the graph-sheaf that arises for a single

sentence (from the dependency parse of the sentence) from the sheaf that arises from
the entire language. If we take the language to consist of the set of all possible sen-
tences, then the sheafification is to parse each of the sentences in the language, to get a
dependency graph for each sentence, create the individual (word, connector-set) lists,
and then take the quotient, identifying together all words that have the same spelling.
This gives the sheaf of the entire language.

From what I can tell, this realization that language can be sheafified is not new;
when the language is not a natural language, but is instead first-order logic, then it’s
sheafification gives the Kripke–Joyal semantics. According to Wikipedia, this was
noted in 1965 for existential quantification. I don’t know if this was ever noted for nat-
ural language before, but, as I’ve blathered on the mailing list before, this provides the
“answer” to why the logic of Link Grammar appears to be modal logic: Link Grammar
dictionary entries are sheaves, and the disjuncts are the different “possible worlds” that
a given word can inhabit. For a natural-language sentence, “there exists” (existential
quantification) a collection of disjuncts that can parse the sentence. Bingo.

I used to say that LG disjuncts had something to do with linear logic, because linear
logic also has the general whiff of “possible worlds” around it. I now see that in fact
its actually modal logic, and it is the language of sheaves that provides the direct route
from Link Grammar, to modal logic. It would be very interesting to see all the details
worked out.

Most interesting is perhaps this: the sentences of a language are observed with
some a priori frequency or probability. What’s the correct way of converting this to
a probability distribution on the sheaf? Next, given a probability distribution on the
sheaf, what is the corresponding probability distribution on the corresponding modal
logic?

It seems to me that one could make this very generic: every language, and not
just first-order logic, but any language, as considered in model theory, has a set of
sentences. This sentences are composed of the terms in their term algebra, and these
terms and how they connect, define a graph. That graph can be viewed in terms of
sheaves, germs, stalks, etale spaces. This implies that every model, of model theory,
has a corresponding cohomology. Writing this out could be interesting. Perhaps this
has already been done; perhaps this is what topos theory is. But I suspect that it’s not
been sufficiently popularized: certainly, the standard computer-science textbooks that
tell you what a language is do not tell you that it has a cohomology associated with it.
And yet, this seems blatantly obvious, in retrospect, and naggingly it might actually be
important for some reason or another.

Anyway: this is not just all-talk, no-action. I’ve written some code that implements
some sheaf-based parsing on the atomspace. It is in the github atomspace repo. The
README file there explains more.

Disjuncts are compositional
One reason that a disjunct representation of a graph is important is that disjuncts can be
composed, so that the product is again a disjunct. This is in contrast to the vertex-edge
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model. where neither vertexes nor edges can be composed to obtain a new vertex or
edge. That is, disjuncts form a monoidal category, and, specifically, a compact-closed
category. This section tries to spell out very clearly what this means, if it is not already
apparent.

So, for example: the Link Grammar parse for “this is a test” involves four disjuncts:

• this: S+

• is: S- & O+

• a: D+

• test: D- & O-

The determiner connectors D+ and D- can be composed to form a determiner D link,
leaving a phrase that is still describable by a disjunct, a single object O- connector that
can attach to verbs:

• “a test”: O-

This has only one connector, but it is a perfectly ordinary connector, not differing
from that which might be found on a single word. That is, Link Grammar makes no
particular distinction between words and word-phrases. Using the same argument, it is
why Link Grammar can work for morpho-syntax. One can continue composing:

• “is a test”: S-

which has a subject connector S- that can connect to any subject. One can also, perhaps
foolishly, perform some net-very-sensical disjuncts:

• “is a”: S- & O+ & D+

or

• “this ... a”: S+ & D+

This last has to use elipses as an awkward notation to indicate the projectivity con-
straint. Projectivity can be discard, provided some other means ensures a tight parse.

The point here is that the category of disjuncts can be taken to be a monoidal cate-
gory, i.e. a category with a tensor product⊗, with tensoring simply being the writing of
two disjuncts next to each other. As the first three examples illustrate, the typical usage
is not only to tensor together two disjuncts, but also to contract some of the connectors,
as well.

The contractability of connectors into links means that the Link Grammar forms a
compact-closed category. I’ve been through this one too many times, so won’t try to
sketch this here. It is a good homework exercise for novices.

Bob Coecke has written repeatedly on this topic, any one of his papers on pregroup
grammars or closed monoidal categories applied to linguistics is adequate to grasp the
concept. His notation is easily and readily translated into Link Grammar notation. The
primary insigh is to understand that the Link Grammar connector letters should be un-
derstood as type labels: they provide a simple, easy notational device, overcoming the
notational complexity that is otherwise required when presenting categorial grammars.

What’s the point of all this? Well categorical grammars are all the rage, and the fact
that LG is a categorical grammar seems to be frequently overlooked or misunderstood.
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Conclusions
Conclusions from the above:

• Pair-wise similarity is very promising.

• The cosine similarity measure penalizes better, more accurate measurements,
because better measurements are more likely to find dissimilarity. We need a
better measure.

• PCA and sparse PCA, in the naive sense, applied to frequencies, or to cosine
similarities, are inappropriate for classification. Its still possible that perhaps
PCA applied to some sigmoid of the cosine similarity (e.g. cosine to the fourth
power) might work better, but the selection of this sigmoid seems ad-hoc, and
not anchored in any principles.

• First principles suggest something Bayesian, based on the Gibbs measure, maybe
some sort of hidden multi-variate logistic regression. Hidden, because we don’t
know the grammatical categories in any a priori sense; we must deduce them.

• It would be great if someone worked out the precise details in going from sheaves
to modal logic. This was already done, in 1965, for topos theory; no one has done
this for natural language, though.

Other similarity measures
Its worth noting that one of the other similarity measures, such as qim and pim, dis-
cussed previously, can also be treated in this way. Note also that a matrix can be
constructed so that XT X becomes explicitly Markovian. This is given by

A(w,d) =
p(w,d)
p(∗,d)

and B(d,w) =
p(w,d)
p(w,∗)

and then setting XT X = AB. This has the property that

∑
w1

[AB] (w1,w2) = 1

That is, the matrix AB is a Markov matrix. It is straight-forward to compute using the
standard power-iteration algorithm employed throughout this section.

A modified PCA algorithm
This suggests a feed-foreward-neural-netish variant on iterative PCA, described below.
I is entirely of my own design, cribbed from nowhere at all, just popped into my head
as I sit still immobilized.

0. Pre-condition, filter the data. See step 10, below, for what to filter, and why.
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1. Start with bn = 1/
√
|w| where |w| is the number of unique words. This starting

point is a unit-length vector, i.e.
∣∣∣−→b ∣∣∣ = 1. Its convenient to change notation,

here, and write b(w) for the value of
−→
b at word w. That is, b(wn) = bn is the

same thing.

2. Let M be the matrix for which the PCA is to be computed, with matrix compo-
nents M(w,d) for word w and disjunct d. This matrix is derived from (defined in
terms of) the frequency matrix p(w,d) describing the base dataset. Compute the
double-sum

s(v) =
[
MMT b

]
(v) = ∑

d
M(v,d)∑

w
M(w,d)b(w)

which is basically a pair of dot products. Its still a large, time-consuming com-
putation, even for sparse vectors.

3. Normalize: set
−→
b ←−→s /

∣∣−→s ∣∣ so that
−→
b is of unit length. In theory, this is not

needed; in practice, each iteration can sharply shrink the value of
−→
b , making it

very small, eventually leading to exponent underflow.

4. Repeat these steps k times: go to step 2 and run the summation again. The
repetition here is the ’power iteration’ or the ’von Mises iteration’ method for
computing the largest eigenvalue of

[
MMT

]
. It is not guaranteed to converge,

and if it does, it might not do so quickly. But we deal with this in the next step,
so its sufficient to keep k small, just enough to get a trend going. Another way to
think of this is as a Markov process (specifically, a Markov chain). That is, the
matrix

[
MMT

]
will behave essentially as a Markov chain, and iteration on it just

identifies the primary Peron-Frobenius stable state (step 3 makes it Markovian,
by preserving to total probability measure). That is,

[
MMT

]
defines a weighted

adjacency matrix for a graph, and iteration creates a measure-preserving process
(walk) on this graph.

5. After the above repetitions, apply some standard neural-net sigmoid function to−→
b . That is, set b(w)← σ(b(w)) for some sigmoid. This has the effect of driving
some of the elements to zero, and others to one.

6. Repeat this m times: go to step 2, and repeat steps 2-5. Viewing this as a dy-
namical system, the effect of the sigmoid function is to force the system into a
block-diagonal form, with the vector

−→
b identifying a highly-connected block.

Another way to look at this is as a graph factorization algorithm: the vector
−→
b

is identifying a well-connected subgraph, which is only weakly connected to
the rest of the graph. The vector (viewed as a measure-preserving dynamical
system) is spending most of its time in one particular block. Again,

[
MMT

]k,
the k-th power iterated matrix from step 4, can be thought of as a surrogate for a
weighted graph adjacency matrix. A third way of thinking of this is as an m-layer
neural net, with the link weights between one layer and the next being given by

80



[
MMT

]k. All three ways of looking at this are essentially equivalent: a measure-
preserving dynamical system, a chaotic and mixing process on a graph, or as an
m-layer neural net. Pick your favorite.

7. Classify. Pass the vector
−→
b through the step function, i.e. b(w)← Θ(b(w))

where Θ(x) = 0 if x < 1/2 and Θ(x) = 1 if x > 1/2. The step function is a
super-sharp sigmoid. This step identifies and isolates an active, well-connected
subgraph of

[
MMT

]
. It identifies a square block, of dimension |b| × |b| where

|b| is the total number of non-zero entries in this final
−→
b . To belabor the point:

the block-matrix is explicitly

B(v,w) = b(v)b(w)∑
d

M(v,d)M(w,d)

The non-zero elements of this final
−→
b identify a class of words that can be con-

sidered to be grammatically similar or identical. This is the “clustering” step.

8. Associated with this class of words is a disjunct set, the “average disjunct” for
the class. It can be taken to be the set {d|0 < ∑w b(w)N(w,d)}. The observed
counts associated with this set can be taken to be N(b,d) = ∑w b(w)N(w,d) and
the frequencies similarly: p(b,d) = ∑w b(w)p(w,d). From here-on, the set of
words b ≡ {w|0 6= b(w)} can be treated as if it was an ordinary word, behaving
like any other, with the indicated disjuncts, counts and frequencies.

9. Since words can have have multiple meanings, or rather, multiple different kinds
of grammatical behaviors based on their part of speech, the identified words
need to be subtracted, en block, from the matrix p(w,d), and then the process
repeated, to identify another class of words. Put another way, if b is to be added
to the set of words, as “just another word”, then the frequencies p(b,d) have to be
subtracted from the matrix P, and shunted to this new “word”, so as not to loose
the overall normalization. That is, one must preserve the identity ∑w,d p(w,d) =
1. So define, in the next iteration

p(w,d)←

{
p(b,d) if w = b
p(w,d)−b(w)p(b,d) otherwise

(Hmmm. This may not be right, its late and I’m tired). This still sums to the
identity except that now some of the values might go negative, and we don’t
want that.

10. And so we get to what should be called step zero: We want to truncate, and
discard the negative entries. This should have been carried out as an actual step 0:
a pre-conditioning of the matrix: some noise filtering, e.g. discarding all words
that were observed less than a handful of times, discarding rare or preposterous
disjuncts. Pre-conditioning in this way will have the effect of removing some
(possibly many) of the words from the matrix: the size of the matrix shrinks.
This is the step where the actual dimensional reduction takes place: the size of
the set of words is shrinking, as they get classified into sets.
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11. Go to step 0 and repeat, until the preconditioning and noise-removal has left
behind an empty matrix (or alternately, a matrix where all words have been clas-
sified into some group). So, for example, words which have only one part-of-
speech or meaning would (hopefully should) get classified after just one step;
words that are more complex, and have two parts of speech, would require at
least two iterations. This is perhaps optimistic; I expect dozens of iterations to
get anything vaguely accurate.

12. There’s one more step. After the formation of the class b, we arrive at a situa-
tion where no (pseudo-)connectors connect to b directly. Instead, all disjuncts
connect to words inside of b. But this is a problem: we don’t know if any given
connector actually connects to some w ∈ b or if it connects to the same w, but
outside of b. (e.g. if b are nouns, then does “saw+” connect to “saw” the noun,
or “saw” the verb?) Thus, after some small number of iterations of step 11, there
needs to be a re-parse of the entire text, using these newly discovered classes of
words.

That’s it. I think this should work fairly well. Clearly, there are many nested loops, and
so this is potentially a very time-consuming computation. The number of iterations k
and m need to be kept small, and the classification in step 11 needs to be kept greedy,
because step 12 is expensive. An alternate strategy is to brutally precondition p(w,d)
to make it as small as possible; but this risks throwing out the baby with the bathwater:
early on, we want to cluster together the rare, obscure, unused words as best as pos-
sible into large bins, and then devote large CPU resources to correctly classifying the
remaining much smaller set of verbs and prepositions, which we know, a priori, to be
complex and difficult, due to their grammatical variability.

Dataset
The previous dataset EN_PAIRS_SIM, analyzed above, proved to be inadequate in many
respects. Thus, data analysis here resumes with a different, considerably larger dataset,
collected on a higher-quality corpus. This will be the EN_PAIRS_TTWO_MST dataset,
listed above. To recap, it is this one:

Size Csets Obs’ns Ob/cs Entropy Hle f t Hright MI Notes
176K x 3.4M 6.43M 14.3M 2.23 21.01 14.91 10.01 -3.91 en_pairs_ttwo_mst

To avoid accidental corruption of this dataset, a copy was made, in which assorted spo-
radic results are maintained. The copy is the EN_PAIRS_TTWO_SIM dataset.

Filtering, Step 0
The filtering performed in step 0 (described in step 10, above) removes some of the
noise in the dataset. Basic filtering is implemented in the (OPENCOG ANALYSIS)
scheme module, and specifically in the FILTER.SCM file. One can remove rows and
columns that have subtotal counts less than a cutoff, and also remove individual entries
that have fewer than some number of counts. By removing very infrequently observed
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connector sets, some of drivers of accidental similarity or dis-similarity between words
should be ameliorated.

How much data does filtering actually discard? This dataset has 175559 rows.
Each row corresponds to one unique, distinct word (columns correspond to disjuncts).
Of these words, only 84984 were observed twice, or more: slightly less than half! Only
64882 words were seen three times or more; only 10% of the words were seen 32 times
or more. The distribution is shown in the graph below.13
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The fraction of rows with more than N observations drops a little faster than
√

N.
Note that this graph is not scale-free; for larger datasets, the graph should progressively
flatten. Since cumulative distributions are integrals of distributions, this is essentially
the integral of some of the graphs shown before. A table of plausible cutoffs to use
with this dataset is given below. There are three cuts one can make: discard words that
are observed N or fewer times; discard disjuncts that were observed N or fewer times,
and discard connector-sets (word-disjunct pairs) that were observed N or fewer times.
These three cuts are given in the first three columns; the resulting dataset is given in
the remaining columns.14

13From the cnt-obs-rows function.
14Stats can be gotten by creating the add-support-compute object on the filter object, and then invoking

’left-basis-size, ’right-basis-size, ’total-support and ’total-count.
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Word cut Dj cut Cset cut Size Csets Obs’ns Ob/cs
0 0 0 176K x 3.4M 6.43M 14.3M 2.23
1 1 0 85K x 1.15M 4.10M 12.0M 2.94
4 4 0 49K x 145K 2.81M 9.51M 3.39

10 10 0 32.2K x 40.3K 2.42M 8.73M 3.60
30 30 0 17.9K x 14.4K 1.98M 8.05M 4.07
30 10 0 17.9K x 40.3K 2.26M 8.48M 3.75
30 10 4 17.9K x 40.3K 269K 5.52M 20.5
50 30 0 13.1K x 14.4K 1.88M 7.86M 4.19
50 30 4 13.1K x 14.4K 256K 5.41M 21.1
50 30 10 13.1K x 14.4K 101K 4.36M 43.4

The last cut seems plausible for further work: it suggests that each disjunct is ob-
served a fairly strong number of times; and that given the word/disjunct ratio, a lot of
words are using disjuncts in similar fashion; thus, there should be a lot of similarity.

Note, by the way, that the previous sections carefully described entropy and mutual
information distributions that no longer hold for the cut dataset. Filtering changes
these!

Power iteration, Steps 1-4
Step 1-4 are implemented in the (OPENCOG ANALYSIS) scheme module, and specifi-
cally in the THRESH-PCA.SCM file. The implementation uses lazy evaluation to avoid
unneeded computation, and caching of evaluation results to avoid repeated evaluations.
This seems like the best way of working with the extremely sparse matrices involved.

Iteration appears to converge very rapidly. After three iterations, the ranking, by
weight in the vector, appears to be established. This is shown in the figures below. Six
iterations are performed, and the words w are then ranked according to the strength
b(w) in the sixth iteration. Then the values of b(w) are plotted for the first five iter-
ations, using this rank. After the third iteration, there is no discernible change in the
weights.
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In this case, the principle component is revealed to be15

word weight
. 0.9358

the 0.1212
and 0.1098
to 0.1035
” 0.0920

The significance and interpretation of this vector was already discussed in a previ-
ous section.

Reboot: 23 June 2017
The cosine similarity gives OK pair-wise similarity results; the overlap similarity gives
noticeably worse results. There’s no obvious matrix-based algorithm that will group
together multiple words into a cluster, efficiently, in one shot. Its time for a rethink.

What are we trying to do here, really?

• Grammatical categories: By grouping multiple words into categories, we hope
to discover grammatical categories of words that behave similarly, with respect
to grammar.

15Computed as follows (simplified, various checks were done to verify correctness):
(define psa (make-pseudo-cset-api))
(psa ’fetch-pairs)
(define fsi (add-subtotal-filter psa 50 30 10))
(define pti (make-power-iter-pca fsi))
(define feig (pti ’make-left-unit (fsi ’left-basis)))
(define lit (pti ’left-iterate feig 4))
(pti ’left-print lit 20)
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• Compression: By grouping multiple words into categories, we hope to compress
the size of the overall dataset of connector-sets, without loosing much fidelity.

• Idioms: By observing word-disjunct pairs with high MI scores, we hope to dis-
cover idioms and set phrases.

• Meaning: By developing a coherent framework for working with graph sections
(of which the connector sets are a special case), we hope to discover synonymous
phrases.

• Reference resolution: By developing a coherent framework for working with
graph sections, we hope to discover reference resolution (of pronouns and of
given names) across multiple sentences.

These seem like they should be achievable. Preliminary results looking promising, but
not yet great. What’s the grand scheme of things?

• Discover that certain nouns refer to objects in the physical world.

• Discover that certain verbs refer to actions in the physical world.

• Discover that certain nouns refer to abstract, non-physical concepts.

• Discover the meaning of the verb-phrases “is-a”, “has-a”, “is-a-part-of”, “belongs-
to” ... or, generally, discover the meanings of prepositional phrases.

• Perform reasoning on relationships; specifically, on “is-a”, “has-a”, ... relation-
ships.

• Develop a database of common-sense knowledge.

• Translate between multiple languages, by employing common-sense knowledge
and reasoning.

The first two seem impossible without embodiment. The third bullet holds out hope
that progress might be possible for textual-only analysis. The fourth bullet asks for
an algebraic structure to be discerned: “is-a” relations are symmetric: “A is-a B” if
“B is-a A”, and it should be possible to data-mine such symmetric relations. Likewise
for “next-to” and “near” relationships. It is at least plausible that such relations could
be data-mined, with no a priori knowledge of the words. Anyway, this provides the
setting for the initial grammatical tasks. So, back to the initial grammatical tasks.

Idioms: based on preliminary evidence, we could make lists of idiomatic phrases,
now, based only on high-MI word-disjunct relations. But these are useless, until we
can build a list of synonymous words.

Discerning synonymous words based on grammatical usage is tricky. First, it is
often antonyms that get observed: e.g. the (black,white) pairs reported above. To dis-
cern antonymy, we would also need to discern is-a relationships, apply common-sense
reasoning, and notice that antonyms never describe the same objects, never describe
the properties of the same objects. So, antonym detection appears to be an advanced
topic.
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Clustering
We could go full-speed ahead on trying to discern grammatical categories, but for sev-
eral issues:

• Merging two items into one necessarily entails a loss of information. That is, one
necessarily has that −(pa + pb) log2(pa + pb) ≤ −pa log2 pa− pb log2 pb. That
is, information is necessarily lost. How can we minimize information loss?

• If a classification error is made early on, can it be spotted, and later corrected?
What is the mechanism, and how might it work?

We can use the “information loss” to our advantage if the “lost information” is in fact
just noise in the data. That is, the data is necessarily noisy, and the naive calculation
of the entropy and mutual information encodes both that noise and the signal we are
searching for. Clustering together items, and the associated information loss, is desir-
able if the loss results in the filtering out of noise. How can we characterize the noise
in the observations?

Word Meanings
Take as an assumption that word-meaning is strongly correlated with grammatical us-
age. That is, “saw”, the noun, has a different meaning than “saw”, the verb. Thus, as a
hypothesis, write

[w,m1] = {(w,da), (w,db), (w,dc), · · ·}

that is, the word w might have meaning m1 whenever is used with any of the disjunts
dk from the indicated set. The meaning m2 of a word will be associated with a different
set of disjuncts. In general, the sets [w,m1] and [w,m2] will overlap.

Individually, [w,m] is just a set, and has no weights or probabilities associated with
it. However, if the disjunct (w,d) is observed, one can say that there is a frequency or
probability p([w,m]|(w,d)) that the meaning m of word w is intended when (w,d) is
obeserved. This is written as a conditional probability, so that one has

∑
m

p([w,m]|(w,d)) = 1

That is, given that (w,d) was observed, there must be some meaning m that was in-
tended; the list of possible meanings is complete and exhaustive. I’m assuming that
one possible meaning is “nonsense” or “junk” or “unknown”; just add it to the list of
possible meanings.

One of the tasks is to discover the complete set of meanings {mi} for a word.
Another task is to discern the probabilities p([w,m]|(w,d)).

Word Classes
Any given word might belong to one of many different word classes (noun, verb, ...)
and the collected disjunct usage observations on that word will in general be a linear

87



combination of such different usages. Distinguishing word-classes require untangling
these relationships.

The setup for this problem is mostly identical to the problem above, except that
the “meaning” m is re-interpreted as the word-class g, short for “grammatical class”.
That is, the above did not specify the definition of m, rather, it was presented in general
terms. Here, likewise, but a stricter defintion is proposed for a “word class”.

A word class g is a set of words {wi}, together with a set of disjuncts {d j}, such
that all words in the word-class are commonly used with any of the disjuncts in the
disjunct-set. That is,

g = ({wi},{d j})

subject to the constraint that the vector

[w1,g] = {(w1,da), (w1,db), (w1,dc), · · ·}

is judged to be similar to the vector

[w2,g] = {(w2,da), (w2,db), (w2,dc), · · ·}

according to some similarity measure (e.g. cosine similarity). The idea is that any of
the words in g use any of the disjuncts in g in similar ways.

Any given word might belone to multiple different classes g. For example, the verb
“saw” will belong to a different class than the noun “saw”. As a general rule, whenever
g1 6= g2 then the set of disjuncts in g1 and g2 will not overlap very much, if at all.

Assigning Word to Word Classes
Assigning a word to a word-class has a knock-on network effect. That is, words appear
not only in isolation, but also as connectors in disjuncts. If two words are considered
to be similar, then perhaps two connectors should be judged to be similar. If two
connectors are similar, then perhaps the disjuncts they appear in are similar. If two
disjuncts are similar, then perhaps some other pair of words can now be considered to
be similar. The question arises of how far to follow this network effect, and how to
assign cutoffs.

Note that the network can be traced in either one of two directions. Given a pair of
similar words, one can ask if any of the disjuncts attached to those words are similar to
one-another, or not. In the other direction, one can ask how similar connectors imply
similar disjuncts. This is made more explicit below.

Starting with a single word, one can examine all of the disjuncts on that word, to see
if any of them are similar. For example, the word “the” should have disjuncts “book+”
and “novel+” on it, and one can ask if “book” and “novel” are similar. If so, they can
be merged into a grammatical class g = {book,novel} and the two disjuncts “book+”
and “novel+” replaced by g+. The observation count (and likewise the probability) on
(the, g+) should be the sum of N(the, book+) and N(the, novel+). The process is then
repeated recursively, examining each of the words appearing in the disjuncts.

Alternately, one may walk the network in the “other” direction, and merge disjuncts
as they appear in similar words. Let disjunct d be a sequence of connectors: d =
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(c1,c2,c3, · · ·) and each connector is a word and a direction indicator: c=(w,±). Given
two similar words wa and wb, one can trace through the connectors ca+ = (wa,+) and
cb+ = (wb,+) and likewise for the - direction. One then forms the set of all disjuncts
in which ca+appears: {

dk = (c1,c2,c3, · · ·)|c j = ca+ for some j
}

Then, given one dk, one constructs d̃k so that cb+ replaces ca+. One then constructs the
set of all words that appear with d̃k :

υ =
{

w|N(w, d̃k)> 0
}

and ask whether any of these words already belong to the same grammatical class. If
not, then they should be compared to one-another, to see if they might.

If a pair of words in υ already belong to the same grammatical class, then the two
disjuncts dk and d̃k can be merged into one. Do this by forming the grammatical class

g = {wa,wb} and construct the connector cg+ = (g,+). Then construct
︷︸︸︷
dk so that

that cg+ replaces ca+, and replace both dk and d̃k by
︷︸︸︷
dk in the relevant sections. The

observation counts are copied over. The process is recursive, repeating for each pair of
words judged sufficiently similar. Alternately, one might defer the creation of g until
one has walked enough of the network to determine general similarity.

Merging Words to form Word Classes
After the grammatical behavior of two words is considered to be similar, how should
a merged word-class be created? How should the merger be performed? There are
several different ways in which words can be merged together to form word classes.
These are reviewed below.

Merging is not straight-forward, because the process needs to result in an orthog-
onalization of the space for grammatical behavior. That is, the disjunct counts on
any given word might be partly representative of its behavior as one of many differ-
ent kinds of fine-grained parts of speech. That is, the goal is to take the disjuncts on
any given word, separate them into two classes, and merge one class into an existing
(or new) grammatical class, while leaving the rest as-is, which might be subsequently
re-organized into some other class, ad infinitum.

Linear merging

Linear merging treats words as vectors, computing thier sum to define the new merged
class, and then computing the perpendicular components as the left-over, un-accounted-
for remainders. More precisely, the disjuncts are considered to be the basis elements
of the vector space, and the count (or frequency) of each disjunct defines the vector.

Consider merging two words or word-classes wa and wb (that is, each of wa and
wb can be either a word, or a word-class). Let M(w,d) be a number associated with
the word-disjunct pair (w,d). Typically it will be the count N(w,d) that the pair was
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observed (or equivalently, the normalized frequency p(w,d) = N(w,d)/N(∗,∗)). The
corresponding vector is then

~w = ∑
d

M(w,d) d̂

where d̂ is the basis element. The merged word-class can then be defined as ~wc =
~wa +~wb.

Erasure vs. orthogonal replacement

After the merger, there are two alternatives for what to do with ~wa and ~wb in the dataset.
One alternative is to remove both ~wa and ~wb entirely. The other alternative is to com-
pute the components of ~wa and ~wb that are orthogonal to ~wc, and replace ~wa and ~wb
by these orthogonal components. That is, given a vector~v (which might be ~wa or ~wb),
compute

~v⊥ =~v− ŵc (ŵc ·~v)
where ŵc = ~wc/ |~wc| is the normalized unit vector pointing in the ~wc direction.

The goal of maintaining the orthogonal components is that perhaps ~wa and ~wb have
admixtures of other grammatical categories in them; what these are cannot be known
a-priori. The discard option effectively discards these admixtures, hiding them from
later iterations. This kind of hiding/data-destruction seems undesirable.

The orthogonal component potentially has negative coefficients appearing in it; it
seems that these must be zeroed out to preserve “physicality”.

Linear overlap

This would work like linear merging, described above, except that the intersection
of the sets of disjuncts on these two words is computed first, and the vector basis is
taken only over this intersected set. The intersection is presumably substantial, if the
two words are grammatically similar. For the replacement step, one has three alter-
natives: total discard, which seems inappropriate (as the non-intersected disjuncts get
discarded); partial discard, which discards only the intersected components, and or-
thogoanl replacement.

Noise
If an event is normally distributed, then we can characterize the uncertainty as being
1/
√

N after N observations. We don’t actually know if our observations are normally
distributed. Its not even clear quite how to even obtain the distribution. But lets assume
they are. Then, given that p(x,y) = N(x,y)/N(∗,∗) and estimating the noise to go as√

N(x,y) we get that the error in the frequentist probability estimate is given by

N(x,y)±
√

N(x,y)
N(∗,∗)

= p(x,y)±

√
p(x,y)
N(∗,∗)

where only the pair observations N(x,y) are considered to be noisy and the value of
N(∗,∗) is held fixed (the natural variation in it is ignored).
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The error in the frequentist estimate of the entropy to be

− log2

[
p(x,y)±

√
p(x,y)
N(∗,∗)

]
=− [log2 p(x,y)]± 1

log2

√
1

p(x,y)N(∗,∗)

where the estimate log(1+ ε) ≈ ε is used for small ε . Summing to estimate the total
entropy, one gets

H±∆H =−∑
x,y

[
p(x,y)±

√
p(x,y)
N(∗,∗)

]
log2

[
p(x,y)±

√
p(x,y)
N(∗,∗)

]
which expands out to

∆H =
−1√

N(∗,∗) ∑
x,y

√
p(x,y)

(
1

log2
+ log2 p(x,y)

)
What might these values be, in practice? As a worked example, consider the word-

pair (big, deal) in the EN_PAIRS_RTHREE dataset. It is observed 1039 times, out of
638845863 pair observations (639M) total. Plugging and chugging, one gets H =
− log2 p(big,deal) = 19.23 and ∆H = 0.552 which seems to be eminently reasonable.
The value of ∆H depends only on N(x,y) and N(∗,∗) and is graphed below, for fixed
N(∗,∗) = 639M. It does not take very many observations to drive the uncertainty to a
fairly small value.
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Error correction
If a classification error is made early on, can it be spotted, and later corrected? What is
the mechanism, and how might it work?
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Worked example
Bothe the cosine similarity and the overlap similarity suggested that the words “black”
and “white” are similar. What happens when these are grouped together? We not only
consider throwing both words into the same bag, but we then may want to consider
what happens to other disjuncts, that connected to other words.

Also, when clustering, should we create a single common category “bw” holding
both words, or should we create three categories: bw, white-prime and black-prime,
where bw just has the common disjuncts, and white-prime and black-prime is what’s
left after taking differences?

English wordpair small dataset July 2017
This report provides a quick sketch of a small dataset containing English wordpairs.
This is the EN_PAIRS_RONE dataset described in section . To recap, its this one:

Size Pairs Obs’ns Obs/pr Entropy MI Dataset
134K x 135K 5.54M 174M 31.4 17.67 1.94 en_pairs_rone_mst

The size and support is recapped here below, just copied from section . The expla-
nation of the column labels can be found there.

Size Support Count Length Dataset
L R L R L R L R Name

134K 135K 17.4K 17.4K 143 129 16.6 14.0 en_pairs_rone

The dataset contains 5544578 pairs.

Distribution of Mutual Information
The figure below shows the distribution of the mutual information of English word-
pairs.
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The peak of the distribution occurs near an MI=1.0. The two straight lines are
eyeballed to fit the bimodal distribution. The “meaningful” mode, with positive MI, has
a slope of -0.4. The negative-MI mode has a slope of 2.16 Note that this is qualitatively
similar to the Chinese hanzi pairs distribution, shown below, although the slopes are
different, and the peak is slightly shifted.

Chinese character pair dataset July 2017
This report provides a quick sketch of a dataset containing Mandarin Chinese character
pairs. This differs from English in two important ways. First, obviously, its not English.
Second, there was no word segmentation done: each character (hanzi, ideogram) is
treated as being distinct, and so all pairs are between hanzi. The goal/hope here is that
word segmentation will appear “naturally”, as a by-product of high-MI hanzi pairs.
The dataset is the ZH_PAIRS_SONE dataset described in section . To recap, its this one:

Size Pairs Obs’ns Obs/pr Entropy MI Dataset
158K x 159K 5.92M 729M 123 18.45 2.02 zh_pairs_sone

The size and support is recapped here below, just copied from section . The expla-
nation of the column labels can be found there.

Size Support Count Length Dataset
L R L R L R L R Name

158K 159K 6819 6411 548 487 41.7 37.7 zh_pairs_sone

As mentioned before: the dimensions of the dataset are larger than the number of
hanzi, because the dataset treats all Latin-alphabet words as single words. Since this
dataset is generated from Wikipedia, we can expect that many of the entries correspond
to English-language technical terms and named entities, such as product names, geo-
graphical place names and the names of people. There is also likely to be a mixture of
simplified and traditional hanzi in the dataset.

The dataset contains exactly 5922477 pairs.

Distribution of Mutual Information
The figure below shows the distribution of the mutual information of the hanzi pairs.

16Graph obtained from the binned-enpr-mi data, in the en-pairs.scm file.
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The peak of the distribution occurs near an MI=-0.25. The two straight lines are
eyeballed to fit the bimodal distribution. The “meaningful” mode, with positive MI,
has a slope of -0.25. The negative-MI mode has a slope of 2.4.17 Note that this is
qualitatively similar to the English word-pairs distribution, shown above, although the
slopes are different, and the peak is slightly shifted.

Idioms and word boundary detection
Higher-level structures in language are important. By “higher level” I mean both the
problem of detecting idioms in English, and segmenting words in Chinese. I claim that
applying traditional algorithms to sheaves is sufficient to get good results.

In English, one is interested in discovering idioms, entity names, set phrases and in-
stitutional phrases set in English: one is looking for a sequence of neighboring “words”
that commonly occur together. Examples include: “Sun Trust Bank” (an entity name),
“gone fishin” “out to lunch” (set phrases), “blessing in disguise”, “dime a dozen” (id-
ioms). The words are not necessarily sequential: there are set circumpositions: “if...
then...” “first... second...”, “not only ... but also ...”

The Chinese word-segmentation problem is discerning when two hanzi characters
belong to the same word, or not. It is similar to the problem of discerning idioms in
English.

What is a word?

As background knowledge: there are multiple definitions of a word: Jerome Packard,
in “The Morphology of Chinese A Linguistic and Cognitive Approach” (2000) Cam-
bridge University Press lists the following:

• Orthographic word

• Sociological word

• Lexical word
17Graph obtained from the binned-hanpr-mi data, in the zh-pairs.scm file.

94



• Semantic word

• Phonological word

• Morphological word

• Syntactic word

• Psycholinguistic word

Sheaf structures are important

The proposal being advanced here is that the general sheaf-theoretic techniques can be
used to discover all of these structures.

The simplest case would seem to be word-boundary detection in Chinese. Here, a
word boundary might be one, two or three hanzi characters in a row. It seems that basic
MST techniques should be enough to discover these. So, for example, given a hanzi
sequence A B C D E, if the MST parse provides a link B-C and C-D but no link A-B
and no link D-E, then the sequence BCD is a candidate for being identified as a word.
However, observing this once is not statistics: only if the sequence BCD is observed
many times, can one consider it to be a word.

More complex structures can be found using sheaf-theoretic techniques. The ex-
ample below is taken from the existing Link-Grammar lexis to illustrate a search for
circumpositions. Consider the sentence “I will do it if you say so”. It has the parse:

+−−−−−−−>WV−−−−−−−>+−−MVs−+−−−CV−>+
+−−Wd−−+−Sp∗ i+−−I−−+Osm+ +Cs+−Sp−+−−O−+
| | | | | | | | |

LEFT−WALL I . p w i l l . v do . v i t i f you say . v so

Inside of this, there is a single “germ”, “gerbe” or “disjunct” located at the word “if”:

+Cs+
| |

i f ?

Extending out from this are numerous “sections” or “partial linkages”. One of these is

+−−MVs−+−−−CV−>+
| +Cs+−Sp−+−−O−−+
| | | | |
? i f ? say ?

The above structure might occur in many other sentences, and not just in this sentence.
One can keep an eye out for this structure. If it occurs more often than usual, one can
deduce that it is some set phrase or idiom. This particular example is not a set phrase
in English, but it does illustrate how one can describe structure, and search for it, in a
way that is more sophisticated than using n-grams.
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Word boundaries - Chinese
So ... how does one find word-boundaries in Chinese? The basic idea is to count the
frequency of patterns such as the below, where BCD are sequentially linked, and there
are no links AB or DE. There may be additional links from the triple BCD going else-
where, but not to neighboring words. Ideally, those links attach to just one morpheme.

..−−+ + − . . . +−− . . .
| +−−+−−+ |
| | | | |

A B C D E

If this was a European language, we would expect any extra links to attach to the
last morpheme; this is due to the morphology of Indo-European, where the semantic
(meaning-carrying) stem is always to the left of the grammatically active suffixes. Note
Japanese, although it has a minimal morphology, as also similarly structured; i.e. the
suffix carries the syntactic structure. With Chinese, this is less obviously the case, and
ideally, the correct attachment will be discovered.

Meaning
So here’s one approach to meaning. It is already clear that disjuncts are correlated
with meaning, so one provisional approach might be to assign each disjunct a unique
meaning. Alternately, this can be used as a doorway to the intensional meaning of a
word.

Consider the phrases “the big balloon”, “the red balloon”, “the small ballon”... The
pseudo-disjuncts on balloon in these three cases would be “the- big-” “the - red-” and
“the- small-” (plus an additional connector to the verb). Examining this connector-by-
connector, we expect that the MI for the word pair (the, balloon) to be small, while the
MI for the word-pairs (big, balloon), (red, balloon) and (small, balloon) to be large(r).
Its thus tempting to identify the set {big, red, small} as the set of intensional attributes
associated with “balloon”. The strength of the MI values to each of the connectors
might be taken as a judgement of how much that attribute is prototypical of the object
(see other section on “prototype theory”).

The disjuncts associated with “balloon” will also connect to a verb. These verb
connectors may be taken as another set of intensional attributes, for example {floats,
drifts, rose, popped}. It should be possible to distinguish these as an orthogonal set
of attributes, in that one might observe “the- red- floats+” and “the- red- drifts+” but
never observe “floats- drifts+”.

Meaning bibliography:

• “The Molecular Level of Lexical Semantics”, EA Nida, (1997) International
Journal of Lexicography, 10(4): 265–274. https://www.academia.edu/36534355/The_Molecular_Level_of_Lexical_Semantics_by_EA_Nida
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Meaning Redux
(9 June 2018) I keep explaing, over and over, why K-means and SVD cannot be used.
Here’s a snapshot from a recent email, explaining it again:

Why SVM and K-means don’t work
Here’s WHY both SVM and K-means are fundamentally wrong, and are total failures
for this particular task. Lets start with K-means. One minor issue with K-means is that
you have to pick K in advance, but you don’t know what K is. But whatever, that’s
not important. Its OK to guess that K=100 or so. The big problem is that K-means
then takes the MEAN (the AVERAGE) of the vectors. That’s what the word "mean" in
"K-means" means. But we already know, a priori, that taking the average is wrong -- it
wipes out, erases the different word senses.

For example: the word-token "saw" is going to have a vector that contains disjuncts
for both "cutting tool", "the verb cut" "the past tense of to see". With K-means, this
word token can only be assigned to just one cluster: it will be the cluster for nouns, or
the cluster for past tenses, or the cluster for cutting-manipulation-actions. No matter
which cluster its assigned to, when the average/sum of the vector is merged into the
cluster, the wrong disjuncts will be averaged in as well.

So, for example: lets assume k-means places "saw" into the "nouns cluster". After
averaging, the noun cluster will now contain disjuncts for both past-tense verbs, and
also disjuncts for present-tense manipulation-verbs. Clearly, noun-clusters should not
contain these. Two bad things happen: (a) the noun cluster is polluted with verb-vector
components, and (b) the vector has not been factorized, and so "saw" cannot also be
placed into other clusters as well.

Ergo -- K-means is fundamentally incorrect -- it cannot correctly cluster linguistic
data!

Lets write some formulas: let v be a vector. The MST observation counts give us
vsaw. We know that, a priori,

vsaw = vtool + vpast−tense + vcutting

However, we do NOT know what these parts: vtool ,vpast−tense, vcutting what they are.
We need to factorize them out. K-means erases them, lumps them all into one. It does
not factorize.

SVM is a little bit better, if you use it correctly. I am not convinced that you are
using it correctly. So, for example, lets say we had only four words: vsaw, vlook, vheard
and vtool . Suppose that SVM was told to decompose into three dimensions, and that
the three that were picked were mostly pointing along the direction of vlook and vheard
and vtool -- these were the three principle components.

Where should vsaw go? In traditional SVDM, the three principle components are
used to define three hyperplanes or classifiers, and so the single vector vsaw would then
be classified as to being either "on the same side of the hyperplane as vlook, and thus
a part of the vlook singular value", or "on the same side of the hyperplane as vtool , and
thus a part of the vtool singular value", etc.
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But this is again wrong. We want to factor or decompose vsaw along these three
different principle components, thereby automatically discovering that some of the dis-
juncts on vsaw are tool-like, that others are verb-like, etc.

THIS is where word-sense disambiguation comes from. It is NOT done in some
pre-cleaner, pre-disambiguator stage. It is done at the clustering stage.

But, as I hope is now clear, both SVM and K-means are fundamentally wrong
approaches, because both ERASE word-sense information from the dataset!

Now, IF you are very careful, you might be able to modify SVM, and after finding
principle components, go back for a second pass, and perform the factorization needed
to extract the different word-senses. Maybe. I can see/guess at a way of doing this, but
its hard.

Dimensional reduction
There’s a completely different issue - "dimensional reduction" which must not be ig-
nored; its important, a big part of the task.

So: My large dataset has 24 million disjuncts in it -- that’s the dimension of the
vector space -- all vectors are 24M-dimensional. How do you perform dimensional
reduction? Well, its "easy" -- if two disjuncts have connectors that belong to the same
word-class, replace them by one disjunct in that word-class. (The vector space is now
(24M minus one)-dimensional) Lets suppose that one of the disjuncts is

bird: the- & saw-
When doing the dimensional reduction, the saw- needs to be replaced by: ??? either
TOOL- or PASTTENSE- or by CUTTING-.Obviously, that disjunct was obtained
from an MST parses of childrens-lit sentences like "John saw the bird. Susan saw the
bird too. Mary saw it also". When you dimensionally reduce the saw- in this disjunct,
which cluster do you assign it to?

Well, if the text has the sentences: "John knew the bird was there. John heard the
bird", and if clustering determined that "knew", "heard" belongs to PASTTENSE then
the dim reduction is clear:

bird: the- & PASTTENSE-

and we know that the following is wrong:

bird-: the- & TOOL-
The problem here is that both K-means and SVD are completely ignorant of the struc-
ture of the basis elements of the vector space. Both assume that the basis elements of
the vector space are irreducible, atomic, indivisible. Its a natural assumption for some
machine-learning tasks, but completely wrong for language-learning where we know,
a priori, that the basis elements have structure. This is kind of a key idea from sheaves!

Merge Results 5 June 2018
After a very long hiatus, restart. All earlier merge data lost!?

Here’s a sample of automatically-discovered grammatical classes, using the ’ortho-merge’
strategy from ’gram-class.scm’. I seem to have lost/corrupted a previous, larger
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dataset, so this was remade from scratch the last few days. Source dataset is ’en_pairs_cfive_class’.
The merge paramters are: cosine-similarity-accept cutoff = 0.65; union-merge-fraction
= 0.3.

This run took 48 hours (its very far from done, this is a snapshot), it found 230
words that it could classify into 38 classes. (Seven more words got classified as I
prepared this, so the counts may be off.) The table below lists them exhaustively.
Note that some words appear in multiple classes: for example, “mother father”. Some
words are clearly mis-classified, but there are not many of those. Some classes are
a bit confusing as to thier content, but most seem very clear. The classes are clearly
semantic in nature; for example, there are two distinct classes of prepositions. The
semantics is entertainingly insightful: “voice mother hands heart head father mind face
feet” are parts of oneself, with some unexpected members: “mother, father” are not
normally considered to be body parts, but are, in some sense, deeply, “parts of oneself”.
Similarly, “wife arm daughter friend mouth friends brother” are mostly relatives and
relationships, yet “arm mouth” are not. Perhaps the arm and mouth have a mind of
thier own, functioning a bit independently from the true self?

I’ll try to run this a few more days, and present a newer report. While reviving
this old code, I realized that the classification algorithm being used here has multiple
faults and is a bit crude. I’m writing a nicer algo right now. I don’t really know how to
compare the quality of the algos, at this point.

Meanwhile, you shuld be able to get similar results, by applying the code in ’gram-class.scm’
to a dataset that contains disjuncts dervied from MST parses.
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Size Members Comments
43 village city question subject sea town girl public land French English

fire King war boy air morning words others poor best second world
door book heart body case night room whole light country people
house children last present ground water family first other

Nouns, mostly

18 for in from at on by of with all towards within near against under
through over upon into

Prepositions

12 help hear keep leave take find get make see give say go Personal verbs
12 fine word large moment certain small woman new good man great

little
Adjectives,
mostly

10 fall action history character state position sense force knowledge
pleasure

9 full nature part death power most some out one
9 voice mother hands heart head father mind face feet Body-parts
8 till whether since because until where if when Time
7 will would might should may can must could Imperatives
7 or but perhaps nor though And while Conjunctions
7 wife arm daughter friend mouth friends brother Relatives
6 feel believe myself am know think Beingness
6 rest end body name side power
6 heard taken given already done seen Past perfect -

action
5 really always still also now
5 year place same day way
5 kept held called made found Possesive

verbs
4 son arms own eyes
4 her me him us Anaphora
4 heard felt knew saw Simple past -

action
3 making such like
3 our its their Possesives -

plural
3 five three four
3 during between among Prepositions
2 once least
2 thus sometimes Deduction
2 therefore indeed Deduction
2 is was to be - Singular
2 are were to be - Plural
2 ! ? Sentence end
2 , ; Punct
2 And The Sentence start
2 they we Anaphora
2 cannot shall Imperatives
2 mother father
2 sort number
2 France England
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Here’s a graph of the above distribution. Its on a log-log scale. It looks to be
approximately Zipfian. That’s no surprise. Total of 38 classes shown.
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Here’s a graph of the number disjuncts in each grammatical class. (There were 259
words classified into 42 classes when this was prepared). The “number of disjuncts” is
the same as the “support” or l0 norm of the vector.
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Continuing, below is the total count of the number of observations of the disjuncts
(There were 269 words classified into 44 classes when this was prepared). The “count
of disjuncts” is the same as the “count” or “Manhatten distance” or l1 norm of the
vector.
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And again, below is the length of each vector, viz, the root-mean-square count of
the number of observations of the disjuncts (There were 269 words classified into 44
classes when this was prepared). The “RMS count of disjuncts” is the same as the
“length” or l2 norm of the vector. The initial part of this graph is the most Zipfian so
far, with a slope of exactly 1.0, as eyeballed.
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Conclusion: Looks good, more proccessing needed; comparison of experiments
needed.
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Merge Experiments
Three different merge experiments are being run. These are reported below. The sum-
mary is here:

Block-5x5 Same as above, pushed out farther. This is run on a copy of the en_pairs_cfive_mst
dataset (all five MST tranches) on the LXC container. Using a cutoff of 20 ob-
servations minimum per word, this contains 62607 words to be classified. The
classifier is the merge-ortho classifier, using a minimum cosine of 0.65 to
propose a merge, and a fixed fraction of 0.3 for the union-merge. The agglomer-
ation algorithm is the block-diagonal algorithm. (This dataset has 40M sections;
viz about 80M atoms, viz about 120GB to load in full)

Fuzz-5x2 This is run on a copy of the en_pairs_cfive_mtwo dataset (only two
MST tranches) and thus has fewer words: a total of 25505 words with more
than 20 observations. As above, this uses the merge-ortho classifier, using a
minimum cosine of 0.65 to propose a merge, and a fixed fraction of 0.3 for the
union-merge. The agglomeration algorithm is the greedy algorithm. (this dataset
has about 13M sections) Run this as: ‘(gram-classify-greedy-fuzz 0.65 0.3 20)‘.

Discrim-5x2 This is run on a copy of the en_pairs_cfive_mtwo dataset, as
above: a total of 25505 words with more than 20 observations. This uses the
merge-discrim classifier, which is like the merge-ortho classifier, but
uses a variable fraction for union-merge. Because the variable fraction should
behave nicely, the minimum cosine is set to 0.50. The agglomeration algorithm
is the greedy algorithm. Run this as: ‘(gram-classify-greedy-discrim 0.5 20)‘.

Basically, the last two are directly comparable: they differ only in the merge strategy.
The first two are harder to compare: they use different datasets and different agglomer-
ation algos. All three are using the screwy merge-ortho classifier, which is almost
right, but altered counts in a somewhat screwy way. Thus, these experiments need to
be repeated ... again.

The table below is a “progress report” on Fuzz-5x2, as its being computed. Each
row represents a snapshot in a different point in time for the computation. Fuzz-5x2
crashed; the last row are the stats at the time of the crash.

num-classes num-words doubles singletons dupes dup-cls uniq-dup cpu
46 429 18 259 12 24 15 3400
56 482 21 487 14 28 17 6230
65 533 26 682 15 30 19 8800
70 581 28 915 18 36 21 11760
75 635 28 1138 24 48 26 14760
81 670 31 1301 25 50 28 17200
85 707 33 1544 25 50 28 20720
90 822 33 1846 29 58 31 25256
93 835 33 1927 33 66 34 26624
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The columns are as follows:

num-classes Total number of grammatical categories (word classes).

num-words Total number of words assigned to grammatical classes, with two or more
words per class.

doubles Total number of classes having exactly two words in them.

singletons Total number of words examined, but could not be assigned to any exist-
ing grammatical class. These can be thought of as classes that have only one
member; they may eventually grow to more than one member.

dupes Total number of words belonging to more than one class. These roughly corre-
spond to words that have been found to have more than one syntactic form (i.e.
more than one “meaning”)

dup-cls Total number of classes that the dupes belong to. Thus, dupe-cls / dupes =
average number of “meanings” that a multi-meaning word has.

uniq-dup Total number of unique classes that have multi-meaning words in them.

cpu The CPU-minutes accumulated so far. This is ad-hoc, it doesn’t count for time
spent in postgres, or inefficient parallelism. It just provides a scale for forward
progress.

Some examples of multi-category words:

what belongs to <that as when if what before where because until> and also <what
how why whether> – propostional words and question words.

her belongs to <his her> and <her him me us> – possesives and determiners.

with belongs to <of in with for on by from into upon over through under among> and
also <with like such having> – prepositions and membership-property words.

Here’s a progress report for Discrim-5x2. A quick look-see shows that this is lower-
quality; the cosine=0.50 seems to accept too much, mixing nouns and verbs, although
it is better at placing given names into one category (for example)...

num-classes num-words doubles singletons dupes dup-cls uniq-dup cpu
31 427 8 67 17 34 17 2370
47 715 14 89 62 127 23 4130
63 946 16 169 87 182 30 6375
82 1145 19 343 106 222 41 9700
96 1268 24 573 125 260 44 13420
106 1415 27 757 136 282 49 16400
121 1518 32 994 142 294 54 20600
125 1545 33 1020 145 300 56 21149
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Its clear that Discrim-5x2 is assigning more words into fewer classes than Fuzz-
5x2 is. Particularly notable is the much much smaller size of the ’doubles’ classes and
the ’singletons’ classes. This crashed mysteriosuly after running for 21K seconds...
‘(compute-right-cosine (WordNode "”" #)

Below are distribution graphs for the word-clases obtained using the two differrent
datasets, and three different classification schemes. The general similarity of the graphs
is immedately apparent. One can conclude:

• The different classifcation schemes all generate the same distribution of class
sizes, and that distribution is very nearly purely Zipfian. (Upper-left graph)

• The distribution of disjuncts in the classes is bimodal, and the modality and
inflection is the same for the l0, l1 and l2-norms.

• The distribution of disjuncts is determined primarily by the dataset, and not by
the classification algo. That is, Fuzz-5x2 and Discrim-5x2 are two different clas-
sifiers running on the same dataset; they are in many ways similar, and differing
a bit from the larger dataset Block-5x5.

 1

 10

 100

 1  10  100N
u

m
b

e
r 

o
f 

w
o

rd
s
 i
n

 w
o

rd
-c

la
s
s

Size rank of word-class

Number of words in each word-class

Block-5x5

Fuzz-5x2

Discrim-5x2

170 / N
0.95

10
3

10
4

10
5

10
6

 1  10  100

N
u

m
b

e
r 

o
f 

u
n

iq
u

e
 d

is
ju

n
c
ts

Rank of word-class

Unique disjuncts in each word-class

Block-5x5
Fuzz-5x2

Discrim-5x2
1x10

6
 / N

0.7

3x10
7
 / N

2

10
3

10
4

10
5

10
6

 1  10  100

N
u

m
 o

b
s
e

rv
a

ti
o

n
s
 o

f 
d

is
ju

n
c
ts

Rank of word-class

Total observations of disjuncts in each word-class

Block-5x5
Fuzz-5x2

Discrim-5x2
2x10

6
 / N

1.0

2x10
8
 / N

2.5

10
2

10
3

10
4

10
5

 1  10  100

R
M

S
 o

b
s
e

rv
a

ti
o

n
s
 o

f 
d

is
ju

n
c
ts

Rank of word-class

Root-mean-square disjuncts in each word-class

Block-5x5
Fuzz-5x2

Discrim-5x2
2x10

5
 / N

1.0

2x10
7
 / N

2.5

The overall lack of dramatic differences in the distributions is remarkable. Vi-
sual inspection of the classes indicates that they are all arriving at the same general
and mostly-correct classification of words. It could be interesting to see how much
these classifications differ; measuring this, however, is difficult, as they are in distinct
datasets, and there’s no infrastructure for that.

Quality evaluation
Evaluating the quality is hard. Quick looks suggest its all going as planned... unclear
how to be quantititive, except by tedious hand-scoring.
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Connector distribution from MST parses
(9 June 2018) This is kind-of a repeat of earlier work reported in ‘connector-sets-
revised.lyx‘ but is (a) graphed differently and is (b) for a different dataset. Its actu-
ally a commentary on the quality of data comeing out of MST. First graph: number of
sections having N connectors.
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It shows how many sections there are that have the indicated number of connectors
on them. That is, each section has one and only one disjunct in it. Each disjunct
can have N connectors in it. So, fixing N, how many sections are there that have
N connectors? For “real” linnguistic data, we excpet a much much sharper falloff.
Determiners (the, a this, that ...) should have one connector. Nouns should have 2 or 3
or 4: zero or one to a determiner, zero, one or two (maybe rarely three) to adjectives,
one to a verb. Transitive verbs should have 3 or 4 connectors: one to the subject, one
to the object, one to LEFT-WALL, zero or one to adverbs, particles, prepositions, etc.
Thus, six or more connectors should be very very rare. its not. This suggests that the
MST parser is not producing enitrely beleivable data.

Perhaps the high-connector count disjuncts are observed only infrequently? The
next graph shows the counts, weighted by the number of observations: i.e. how often
that particular disjunct was observed.
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Hmm. The good news: the observation counts for 1- and 2-connector disjuncts
are much higher, with 3-connector disjuncts seen a lot less often. The number of 4-
connector disjuncts remains dishearteningly high, and the fall-off is slower than before.

Both of the above graphs were generated by considering only the sections on word-
clusters. This comes from the Block-5x5, when it had 700 words assigned to clusters.
Its not clear if this pattern is true, in general, for all words. Note that, to obtain these
700 words, the top-most-frequent 1300 words were examined: so the 700 words are
among the most frequent. Note that, due to the orthogonalization algorithm, not all of
the counts are transfered from the words to the clusters; only some are.

Entropy-similarity
Some stats for entropy-similarity. Consider ‘en_rfive_mtwo‘. There are:

• Rows: 137078 – viz that many words. Viz ∑w 1 = 137078

• Columns: 6239997 - viz that many disjuncts – i.e. (Section * dj) with * the
wild-card, and dj held fixed. Viz ∑d 1 = 6239997

• Size: 8629163 - viz this many sections, viz explicit (Section w dj) for fixed w,dj)
Viz ∑w,d [0 < N(w,d)] = 8629163

Let N(w,d) be the count of disjunct d on word w. Then, for en_rfive_mtwo we have:

N (∗,∗) = ∑
w,d

N(w,d) = 18489594.0

viz 18.5M observations total, while

∑
u,w,d

N(u,d)N(w,d) = ∑
d

N(∗,d)N(∗,d) = 63598403588.0

viz 63.6G. Note that

∑
d

N(∗,d)
N (∗,∗)

N(∗,d)
N (∗,∗)

= 1.8603×10−4

Define the product between words as

f (u,w) = ∑
d

N(u,d)N(w,d)

Normalize this as
p(u,w) = f (u,w)/ f (∗,∗)

and define

MI (u,w) = log2
p(u,w)

p(u) p(w)
where

p(u) = p(u,∗) = ∑
w,d

N(u,d)N(w,d) = ∑
d

N(u,d)N(∗,d)

What’s this like? Some pairs below. Note that − log2 1.8603×10−4 = 12.3921
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u w − log2 p(u) − log2 p(w) − log2 p(u,w) MI(u,w) cos(u,w)
other same 21.52 22.13 27.13 4.1232 0.5866
nice fine 26.94 25.21 35.24 4.5210 0.5256
him me 20.81 21.34 25.50 4.2583 0.7842
men women 23.69 25.79 33.24 3.8489 0.6077
up down 22.46 23.31 27.87 5.5085 0.5630

found called 23.62 24.57 32.09 3.7066 0.5576
came went 24.19 24.72 31.32 5.1930 0.5900
eyes hand 23.47 23.19 28.91 5.3589 0.7284
men nice 38.71 -0.477 0.0233
men went 36.08 -0.061 0.0249
nice went 38.22 +1.0490 0.0353

called eyes 38.14 -2.499 0.0049
nice eyes 40.21 -2.193 0.0038
nice called 35.63 +3.4810 0.3794

A table yea.

TODO
Explain how mutual exclusion of concepts as performed by humans when learning new
concepts, resembles optimal strategies for the channel coding theorem, by minimizing
confusion between similar concepts. This is the “mutual exclusion” principle. Well,
MI already provides a certain measure of exclusivity.

The End
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