
Identifying Speculation from Syntax

Linas Vepstas, Mike Ross, Ben Goertzel

Abstract

The RelEx semantic relation extractor
is a dependency parser that generates
feature markup identifying hypotheti-
cal and speculative statements, ques-
tions and clauses. These are identified
by means of fixed, linguist-generated
rules applied to syntactically parsed
sentences. By using purely syntactic
information, obtained from single sen-
tences, this approach provides a base-
line for extracting the semantic con-
tent of speculative sentences. This
short note reviews the operation of
the RelEx system, focusing on how it
identifies of hypothetical and specula-
tive statements.

1 Overview

The RelEx semantic relation extractor (Ross
et al., 2005) is an open-source dependency
parser built on top of the CMU Link Grammar
Parser (Sleator and Temperley., 1991; Sleator
and Temperley, 1993). Starting with a parse
generated by Link Grammar, it applies a set
of rules or graph transformations to generate
commonly recognized dependencies (such as
subject, object, adjective and noun modifiers,
etc.) and feature tags (such as noun number,
verb tense, etc.). At this level, it is roughly
comparable to other dependency parsers, such
as the Stanford parser (Marie-Catherine de
Marneffe and Manning, 2006; de Marneffe
and Manning, 2008) or Dekang Lin’s Mini-
Par (Lin, 1998); indeed, it has an explicit
Stanford-parser compatibility mode.

Aside from these basic functions, it also
generates somewhat more semantically ori-

ented feature and relation markup, which is
not found in other parsers. This includes ba-
sic entity extraction; identification of times,
dates, distances and units; identification of the
query type, and the queried variable in a ques-
tion; of the comparison variable in compara-
tive statements and questions; and the identi-
fication of speculative and hypothetical state-
ments and questions. All of this is done purely
by means of a set of rules applied to a graph
representation of the parsed sentence. Inso-
far as this information is obtained by purely
syntactic methods, scoped to single, grammat-
ically well-structured sentences, it should pro-
vide a baseline for what is possible, or could
be expected from more sophisticated, seman-
tic approaches.

Hypothetical statements occur in several
forms: in statements about the future, in
assertive questions, and as many dependent
clauses. So, for example, predictions about
the future are always hypothetical. In the sen-
tence "The dog will eat it", the verb "eat" gets
marked as being hypothetical – the dog hasn’t
eaten it yet, and there are no assurances that
it will happen – only that it could happen. In
this case, an imperative or future tense verb is
sufficient to indicate the speculative nature of
the statement. RelEx designates hypothetical
or speculative statements by means of a fea-
ture tag – a single bit of markup, HYP, that is
used to tag the verb making the hypothetical
assertion. The generated output is thus:

_subj(eat, dog)
_obj(eat, it)
tense(eat, imperative)
HYP(eat, T)

Here, _subj and _obj are standard subject and
object dependencies; as usual, the head word

is always listed first. The tense and HYP are
feature tags: they identify a property, naming
the word as the first argument, and the prop-
erty value as second. Here, T, for ’true’, sim-
ply means that the property is present. This
listing, and the ones to follow, does not show
all of the RelEx output; feature markup for
part of speech, noun number, gender, tense,
and other tags will be omitted except as rele-
vant to the examples.

Speculation may be explicit or implicit: so
"It might rain" is explicitly speculative, while
"It will rain" seems to be very certain of it-
self, but is speculation none-the-less. All as-
sertions about the future are inherently hypo-
thetical until the future has become the past.
Thus, "It might rain" generates:

_subj(rain, it)
_to-do(might, rain)
tense(rain, infinitive)
HYP(rain, T)

while "It will rain" generates:
_subj(rain, it)
tense(rain, future)
HYP(rain, T)

In both cases, the relation _subj(rain,

it) is used for the copula; the rela-
tion _to-do(might, rain) notes the explicitly
speculative nature of the copula.

Assertive questions are always hypotheti-
cal. For example, the question "Fred is dead?"
might validly get an affirmative or a nega-
tive reply; Fred’s being dead is hypothetical.
Thus:

_predadj(Fred, dead)
TRUTH-QUERY(dead, T)
HYP(dead, T)

indicates that "deadness" is uncertain – if
it was certain, there’d be no point in ask-
ing a question. The tag TRUTH-QUERY indi-
cates not only that the sentence was a ques-
tion, but that the truth of the assertion is be-
ing queried about. (The relation _predadj,
the predicative adjective, is used here instead
of _subj(dead, Fred), to distinguish copular
statements such as “Mr. Smith is late” from
“The late Mr. Smith”, the later generating
_adj(Smith, late)).

Seemingly factual statements can be hypo-
thetical as well. For example, in the sentence

"John says you like swimming", the words
"like" and "swimming" both get marked as
hypothetical. "Like" is hypothetical, because
John may be lying, or John may be in error
about your likes and dislikes. "Swimming"
is hypothetical, because you may indeed like
something, just not swimming. Therefore, the
claim that "you like swimming", appearing as
a clause, is speculative.

_subj(swim, you)
_to-do(like, swim)
tense(swim, progressive)
HYP(swim, T)
HYP(like, T)

This example demonstrates the relation
_to-do, which indicates a clausal comple-
ment. In general, both clausal complements,
and adjectival complements (_to-be) indicate
hypothetical statements; this will be seen ex-
plicitly in the rules.

The next section reviews the the operation
of the RelEx rule engine, together with a dis-
cussion of some of the rules used to identify
hypotheticals.

2 The Rule Engine

RelEx is a rule engine that extracts semantic
content from syntactic constructions. Specif-
ically, it represents syntactic relations as a
graph, and then applies a sequence of rules
to enlarge, prune, or transform the graph.
This section reviews this mechanism; the next
examines the rules used to identify specula-
tive/hypothetical statements.

RelEx generates feature and dependency
grammar markup by applying a sequence of
pattern-matching rules to a labeled directed
graph. An example of labeled directed graphs
can be found in the hierarchical file systems
used by most operating systems. In a file sys-
tem, a directory listing shows either files or di-
rectories, both having names. One may move
to a sub-directory, again containing named
files or named directories. The graph is not
acyclic; most hierarchical file systems allow
’links’, which point to directories or files
in other locations. Thus, although one can
choose to think of the structure as a hierarchi-
cal tree with links connecting sub-trees every

which-way, the proper way of conceptualizing
is to think of a general graph, with individual
edges being labeled arrows.

In retrospect, it appears that a better design
point would have been to use a hypergraph for
the data structure, as many relations are more
easily expressed, and operations more easily
performed, on hypergraphs. The OpenCog
project (Hart and Goertzel, 2008; Goertzel,
2009), for which RelEx provides the NLP
front-end, uses, at its core, a full hypergraph
representation for its data.

The graph is initially populated with Link
Grammar parse data. Link Grammar parses
result in non-directional, labeled links be-
tween pairs of words (which may or may not
be immediate neighbors). For example:

+-Ds-+--Ss--+--I-+-Ox+
| | | | |
the dog.n will.v eat it

The two words ’dog will’ and the connector
Ss are imported into RelEx as shown in fig-
ure 1. The strings dog and will appear in the
“subdirectories” named str. The previous and
next words appear in “subdirectories” labeled
PREV and NEXT. Additional relations connect-
ing these words to the Link Grammar connec-
tor Ss are shown.

The graph is transformed by applying a se-
quence of rules, pattern-matching to an an-
tecedent, and creating the consequent. That is,
each rule has the form of ’if(antecedent) then
consequent’, where the antecedent and conse-
quent are both (sub-)graphs themselves. The
rule engine searches out matching subgraphs,
and creates the consequent when a match is
found. An example of applying a rule conse-
quent is shown in figure 2.

3 Identifying Hypotheticals

As of the current version (1.3.0), RelEx has
twelve rules for identifying hypothetical or
speculative verbs in clauses; these rules treat
six classes of sentences. This section reviews
these rules.

One of the rules for tagging assertive ques-
tions (“Fred is dead?”) as hypothetical is the
following:

Figure 1: Relation Graph

This figure illustrates a match for the rule an-
tecedent F_R str = will. Starting at the indi-
cated match point, there is an arrow labeled
F_R pointing at a node with another arrow la-
beled str which points at a leaf node holding
the string ’will’.

if
<LAB> = \Qd\.*
<F_L str> = LEFT-WALL

then
<F_R head-word ref TRUTH-QUERY> = T
<F_R head-word ref HYP> = T

This rule looks for a Link Grammar Qd link at-
tached to the LEFT-WALL. In the Link Grammar,
the LEFT-WALL is the pseudo-word preceding
the first word of the sentence; the Qd link is
one of several commonly used when identify-
ing questions of a certain form. If this pat-
tern is found, then the head-word of the sen-
tence is tagged with both the truth-query and
hypothetical flags. The head-word was pre-
viously identified by an earlier sequence of
rules; typically, it is the primary verb in the
sentence. For the example “Fred is dead?”,
“dead” was previously identified as the head-
word; the above rule merely confirms that the
sentence was a declarative question, and then
tags “dead” appropriately. A second rule,
very similar to this, is used to tag a Link

Figure 2: Edited Graph

This figure illustrates the result of applying
the rule consequent F_R ref HYP = T at the
indicated match point. Two arrows, labeled
ref and HYP have been created, the last arrow
pointing at the leaf node T.

Grammar parse variant for copular declarative
questions. It should be clear here that Link
Grammar performed the “hard work” of de-
termining that a Qd link is syntactically appro-
priate for the parse; this rule reveals the se-
mantic content associated with this link. It
works because the Qd link, when attached to
the left wall, is always associated with truth
query questions (which thus are hypothetical).

Questions that ask about quantity, or, more
generally, inquire about a putative property of
an object or situation are deemed hypotheti-
cal. The core semantic idea here is that if its
putative, then its hypothetical. These are han-
dled by three closely related rules. One is

if
<LAB> = \Dm.*
<F_L str> = how_much|how_many

then
<F_L ref name> = _$qVar
<F_L ref QUERY-TYPE> = how_much
<F_R head-word ref HYP> = T

which is used to tag a question such as “How
much coffee did you drink?”. Here, the ques-

tion is asking for a quantity, thus a query
variable is identified, as well as the type of
the query. The question is accusative, and
thus implicitly speculative: you may not have
drank any coffee at all. The resulting output is

_subj(drink, you)
_obj(drink, coffee)
_quantity(coffee, _$qVar)
QUERY-TYPE(_$qVar, how_much)
HYP(drink, T)

The above rule keyed off of a Link Gram-
mar Dm link, used to identify determiners for
uncountable (mass) nouns, together with pre-
vious rules that were used to identify the
’how_much’ polyword. Both the determiner,
and one of the two polywords must be explic-
itly present in order for the head-word (’drink’
in this example) to be labeled as hypothetical.

Not all questions in this class make use of a
determiner; more generally, these employ ad-
verbial constructions, such as “How quickly
did you read the book?”, “How tall is that
building?”, or adjectives playing an adver-
bial role: “How safe is that vehicle?”. Here,
“quickly” and “tall” are the adverbial modi-
fiers; “safe” is an adjective acting as an adver-
bial modifiers; these are connected with Link
Grammar EE or EA links. The questions are
inherently speculative or putative: the vehicle
may not be safe at all.

Note also that the above rule also deter-
mined a query variable, and the type of the
query. A distinct rule determined that the
query variable is for a quantity of coffee. In
general, all questions in this class will not
only have the head-verb tagged as hypothet-
ical, but will also result in a query variable
being identified. These are all presented at
the output in the form of dependencies; these
dependencies are not strictly syntactic in na-
ture, because they introduce nodes that are
not present as words in the input sentence.
This should be contrasted to the output of
purely syntactic parsers, such as MiniPar or
the Stanford parser, which generate no such
output. Roughly speaking, RelEx attempts to
get at some of the deeper structures behind
the surface, such as those discussed in depen-
dency frameworks like Mel’cuk’s Meaning-

Text Theory (Mel’cuk and Polguere, 1987;
Steele, 1990).

Another class of speculative questions ask
for a perpetrator: “Who ate my lunch?” As
before, the accusative nature of the question
renders it speculative: was it really eaten? The
rule for identifying these is simple:

if
<F_R ref QUERY-TYPE> = who

then
<F_R head-word ref HYP> = T

the hard work having been the previous iden-
tification of the form of the question. The out-
put for “Who ate my lunch?” is:

_obj(eat, lunch)
_poss(lunch, me)
_subj(eat, _$qVar)
QUERY-TYPE(_$qVar, who)
HYP(eat, T)

Another class of sentences are those with
adjectival or clausal complements; these are
tagged as hypothetical. For example: “Mary
says the rose smelled sweet” results in

_subj(say, Mary)
_that(say, smell)
_subj(smell, rose)
_to-be(smell, sweet)
HYP(smell, T)
HYP(sweet, T)

Here, the _to-be relation identifies the copu-
lar construction of the clause. RelEx treats all
such clausal constructions as inherently spec-
ulative: this seems semantically reasonable,
as there is always a claimant who may not
be accurately reporting the facts. The rule for
this tagging is trivial:

if
<_to-be> != %

then
<_to-be HYP> = T

which searches for a subgraph where the
labeled directed edge _to-be exists (is not
empty); if this edge exists, then what it is
pointing at is tagged as hypothetical. The
heavy lifting was done by prior rules that
identified the clause itself. Observe also that
previous rules identified an implicit _that re-
lation in the sentence: “Mary says <that> ...”.
In English, one may omit the word “that” in
such constructions; however, it remains im-
plicitly present as a dependency relation be-
tween the main sentence and the dependent

clause. In a similar vein, a distinct rule marks
the clause following an explicit subordinating
“that” as hypothetical: “I assumed that we
would go” results in the markup HYP(go).

Semantic and syntactic dependencies do
not always correspond; they may be inverted.
A fourth rule is used to tag clauses subor-
dinate to “if ”: “I will do it if you say so”.
The head word of the main clause is “do”, it
is tagged as hypothetical. The syntactically
dependent clause is “if you say so”. Unlike
the previous examples, it is not the dependent
clause that is hypothetical; but instead, the pri-
mary clause is. “I will do it” is a promise,
but it depends on your saying so; the seman-
tic dependency runs in the opposite direction
from the grammatical dependency. The “do-
ing” remains hypothetical precisely because it
is a semantic dependent. But, as before, this
inverted usage is readily visible in the syntac-
tic structure of the sentence. The RelEx rule
is nearly trivial:

if
<if> != %

then
<if HYP> = T

the semantically dependent “I will do it” hav-
ing been identified as the target of “if ” by pre-
vious rules.

That last class of expressions that are
marked as hypothetical are negative asser-
tions; for example: “John wasn’t there” or
“that isn’t the case”. The linguistic reason-
ing to support this is not well-grounded, but
is based on the notion that such negative as-
sertions are generated as replies to speculative
questions, and thus are inherently argumenta-
tive, inheriting the speculative nature of the
question. A proper study, based on corpus lin-
guistics principles, might clarify whether such
tagging is indeed semantically appropriate.
More importantly, this case illustrates the lim-
its of a purely syntactic approach to identifi-
cation of speculative/hypothetical statements.
The speculative nature of a negative assertion
is no longer readily apparent from its gram-
matical construction; the context of the sur-
rounding paragraphs or dialog provides a se-
mantic backdrop that is necessary to prop-

erly interpret the remark. Syntactic pars-
ing works precisely because the most fre-
quent, “common-sense” meaning is encoded
in a fixed way in sentence structure. Syntac-
tic parsing breaks down whenever the speaker
is “playing games” with the words, encod-
ing a meaning that runs counter to the usual
“common-sense” structure of a sentence. In
the vast majority of speech and writing, the
direct, common-sense interpretation of sen-
tence structure is used by the speaker, and
is assumed by the listeners. For negative
assertions, the syntax no longer suggests a
relatively unambiguous meaning; using sim-
ple rules operating on single sentences is no
longer a productive way of extracting the se-
mantic content.

4 Conclusions

A fair amount of speculative content can be
identified purely from the syntactic structure
of isolated English sentences, without refer-
ence to surrounding context. Such extraction
is straightforward when one has access to a
dependency parse of a sentence, and a rule
engine that can identify the appropriate pat-
terns. As always, though, syntactic analy-
sis succeeds only when sentences are well-
formed, are constructed in a reasonably un-
ambiguous fashion, with no sly, ironic or sar-
castic intent on the part of the speaker. Out-
side of this domain, straightforward syntactic
methods are doomed. Perhaps some simpler
approaches can provide a more robust under-
standing of slang, euphemisms or even of “un-
grammatical” or sloppy dialects. More dif-
ficult are situations that require the semantic
backdrop of the conversation, knowledge of
the speaker’s role and intent, grasp of the so-
cial posturing and social dynamics of the text.
Such dynamics can radically alter meaning,
and strongly decouple the semantics from the
syntax – the superficial “common-sense” in-
terpretation obtained from the syntactic struc-
ture of a sentence may no longer apply (but
curiously, would still be required to fully ap-
preciate a witty twist of phrase).

The rules described in this note were

linguist-developed, painstakingly crafted by
hand to capture semantic content. The authors
are involved in active research to automati-
cally learn such rules, ideally using a form of
unsupervised learning, such as that described
in Dekang Lin’s DIRT (Lin and Pantel, 2001)
or Poon & Domingos USP (Domingos et al.,
2006).

The source code for RelEx is publicly avail-
able, under the Apache License; it is written
in Java. It depends on Link Grammar, which
is publicly available under the BSD license,
the Link Grammar parser is written in C. Both
projects are actively maintained, and are kept
in a stable or “production quality” state.

References
Marie-Catherine de Marneffe and Christopher D. Man-

ning. 2008. The stanford typed dependencies rep-
resentation. In CrossParser ’08: Coling 2008: Pro-
ceedings of the workshop on Cross-Framework and
Cross-Domain Parser Evaluation, pages 1–8, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

Pedro Domingos, Stanley Kok, Hoifung Poon,
Matthew Richardson, and Parag Singla. 2006. Uni-
fying logical and statistical ai. In AAAI’06: Pro-
ceedings of the 21st national conference on Artifi-
cial intelligence, pages 2–7. AAAI Press.

Ben Goertzel. 2009. Opencogprime: A cognitive syn-
ergy based architecture for embodied artificial gen-
eral intelligence. In Proceedings of ICCI, Hong
Kong.

David Hart and Ben Goertzel. 2008. Opencog: A soft-
ware framework for integrative artificial general in-
telligence. In Proceedings of the First Conference
on Artificial General Intelligence. IOS Press.

Dekang Lin and Patrick Pantel. 2001. Dirt: Discovery
of inference rules from text. In Proceedings of the
Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’01),
pages 323–328. ACM Press.

Dekang Lin. 1998. Dependency-based evaluation of
minipar. In Proc. Workshop on the Evaluation of
Parsing Systems, Granada.

Bill MacCartney Marie-Catherine de Marneffe and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the fifth international conference on
Language Resources and Evaluation (LREC-06),
pages 449–454.

Igor A. Mel’cuk and Alain Polguere. 1987. A formal
lexicon in meaning-text theory. Computational Lin-
guistics, 13:261–275.

Mike Ross, Linas Vepstas, and Ben Goertzel.
2005. Relex semantic relationship extractor.
http://opencog.org/wiki/RelEx.

Daniel Sleator and Davy Temperley. 1991. Pars-
ing english with a link grammar. Technical report,
Carnegie Mellon University Computer Science tech-
nical report CMU-CS-91-196.

Daniel D. Sleator and Davy Temperley. 1993. Parsing
english with a link grammar. In Proc. Third Inter-
national Workshop on Parsing Technologies, pages
277–292.

James Steele, editor. 1990. Meaning-Text Theory: Lin-
guistics, Lexicography, and Implications. University
of Ottowa Press.

