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Abstract

Extract from the language-learning diary, reporting on an initial dataset con-
taining connector sets. This is a revised (6 August 2017) version of the original
11 May 2017 report. It re-analyzes and expands the original analysis on a newer,
larger dataset. This was motivated in part due to several errors found and fixed
in the processing pipeline in late June/early July. In retrospect, it appears these
errors mostly did not affect the earlier analysis, as the most significant error was
introduced after the inital analysis was made. None-the-less, it seemed prudent to
redo the report. Sadly, several months were lost in the confusion, requiring large
datasets to be discarded.

Introduction
This is a report on a dataset of disjuncts and connector sets, extracted from MST parses
of a batch of sentences. First, a recap of what these are, then a characterization of the
database contents, and finally, a report on the grammatical similarity of words in the
dataset.

The errors
The original report, dated 7 May 2017, was prepared on a painfully small dataset,
which also (may have?) incorporated a fatal bug in the disjunct code: disjuncts were
being assembled incorrectly, due to a reversed sign in the MI calculations. This bug
was eventually uncovered, and so it seemed best to entirely discard the initial analysis,
and instead repeat it with a newer and larger dataset that was correctly assembled. The
revised analysis was done mostly in July. Sadly, the discovery of this bug required that
multiple large datasets be discarded and reconstructed. This caused a month of effort
to be lost.

Simultaneously, there was a lot of confusion about the efficacy of the cosine sim-
ilarity measure. Initial work on cosine similarity used a filtered dataset, with the goal
of filtering to reduce “noise” in the dataset, as well as to manage dataset size. It turns
out that this filtering also had the undesired side-effect of destroying much of the “sig-
nal” as well – it rendered many grammatically unrelated words to be judged to be very
similar. Between the accidental sign reversal, and the excessively strong data cuts, it
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was all very confusing, and has taken another month to recover from this – I’m back to
where I was in May, just older and wiser, now.

Summary of results
The primary results reported below are these:

* Most scores and metrics that can be assigned to connector sets give a (scale-
free) Zipfian ranking distribution, and are thus fairly boring. Although there are some
oddities here and there.

* The greater the average number of observations per disjunct, the more grammat-
ically acceptable (accurate) the disjunct seems to be. This is good news: it means that
the general technique is not generating ungrammatical garbage.

* Connector sets can be given a mutual information score. The distribution for the
MI scores appears to be Gaussian (i.e. bell curve). This comes as a bit of a surprise. I
am not aware of what kind of network theory gives a natural rise to Gaussians.

* The MI score seems to be quite good at identifying words that participate in
idioms, set phrases and institutional phrases.

* The average number of connectors per disjunct, which should have indicated the
part-of-speech that the word belongs to, fails to do this. This seems to be due to the
fact that the dataset is polluted with lists and tables (including tables-of-contents, and
indexes), all of which are mis-interpreted as sentences by the processing software. This
causes some very unusual disjuncts to be constructed.

* In the earlier sample, derived from Wikipedia, it became clear that there were
very few verbs that aren’t relationship verbs. Wikipedia articles describe concepts and
events. The relationship between these require the copula and other relationship verbs:
“is”, “has”, “was”. Wikipedia is almost completely devoid of narrative verbs: “ran”
“jumped” “hit”, “ate” “thought” “took”. Thus, we discern two very different styles of
human communication: the exchange of facts, and the exchange of stories. Narratives
contain a far richer selection of verbs, and thus, for language learning, a text corpus of
narratives is required. Ideally, this would be from young-adult literature, which is a bit
more direct in its kinesthetic content than adult literature might be.

* Cosine similarity applied to connector sets seems to be an effective way of deter-
mining the grammatical similarity of words. Yet, it is not so unambiguously great, that
other kinds of measures shouldn’t be contemplated.

Recap
The story so far: Starting from a large text corpus, the mutual information (MI) of
word-pairs are counted. This MI is used to perform a maximum spanning-tree (MST)
parse (of a different subset of) the corpus. From each parse, a pseudo-disjunct is ex-
tracted for each word. The pseudo-disjunct is like a real LG disjunct, except that each
connector in the disjunct is the word at the far end of the link.

So, for example, in in idealized world, the MST parse of the sentence "Ben ate
pizza" would produce the parse Ben <–> ate <–> pizza and from this, we can extract
the pseudo-disjunct (Ben- pizza+) on the word "ate". Similarly, the sentence "Ben
puked pizza" should produce the disjunct (Ben- pizza+) on the word "puked". Since
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these two disjuncts are the same, we can conclude that the two words "ate" and "puked"
are very similar to each other. Considering all of the other disjuncts that arise in this
example, we can conclude that these are the only two words that are similar.

Any given word will have many pseudo-disjuncts attached to it. Each disjunct has
a count of the number of times it has been observed. Thus, this set of disjuncts can be
imagined to be a vector in a high-dimensional vector space, which each disjunct being
a single basis element. The similarity of two words can be taken to be the cosine-
similarity between the disjunct-vectors.

Equivalently, the set of disjuncts can be thought of as a weighted set: each disjunct
has a weight, corresponding to the number of times it has been observed. A weighted
set is more or less the same thing as a vector, and these two are treated as the same, in
what follows. Note that the disjunct vectors are sparse: for any given word, almost all
coefficients will have a count of zero. For example, the dataset that will be examined
next has over a quarter of a million different pseudo-disjuncts in it; most words have
fewer than a hundred disjuncts on them.

Some terminology and notation are introduced next, followed by a characterization
of the dataset. This is followed by a statistical analysis of the word-disjunct pairs, and
is followed by an analysis of the resulting word-similarity.

Terminology
It is useful to introduce some notation for counting words, disjuncts, and connectors.
Let N(w) be the number of times that the word w has been observed, in the dataset. Let
N(w,d) be the number of times that the disjunct d has been observed on word w. The
pair (w,d) is referred to as a “connector set” or “cset” in the text below. Thus, for a word
w, there is a set (w,∗) = {(w,d)|N(w,d)> 0} of associated csets, called the “support”
of the word. The size of this set can be written using the standard notation for set-sizes
as |(w,∗)|. Similarly, a disjunct d, is supported by the set (∗,d) = {(w,d)|N(w,d)> 0}
of associated csets.

The primary contents of the database are the counts N(w,d) and everything else of
interest in this section can be obtained from this. Note that N(w,d) can be understood
as a matrix, where the disjuncts identify columns, and the words identify rows. In
general, this is a very sparse matrix: the number of non-zero entries |(∗,∗)| is far less
than the number of rows times the number of columns.

Every time a word is observed in an MST parse, a disjunct is extracted for it; thus,
word observations and disjunct observations are on one-to-one correspondence. In
notation:

∑
d

N(w,d) = N(w,∗) = N(w)

Similarly, the total number of times that a disjunct was observed is just

N(∗,d) = ∑
w

N(w,d)

Frequencies can be obtained by dividing by the total number of observations, so
that p(w,d) = N(w,d)/N(∗) and p(w) = N(w)/N(∗) with N(∗) = ∑w N(w) the total
number of observations of words.
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A single disjunct is always composed of a fixed number of connectors, indepen-
dently of any observations; let C(d,c) be the number of times that connector c appears
in disjunct d. Note that C(d,c) is almost always either zero or one; however, a con-
nector can appear more than once in a disjunct, so this count can rise to 2 or 3 or very
rarely higher. The wild-card sum C(d,∗) = ∑c C(d,c) is the total number of connec-
tors in the disjunct; it is the vertex degree of all edges connecting to that disjunct. It
is also useful to define C(d,+) and C(d,−) as the total number of right-linking and
left-linking connectors.

Dataset characterization
This section was originally written in May 2017 and used to report data for a dif-
ferent dataset. However, a serious flaw was found in the code: all MI values had a
minus sign in them, and thus all computed disjuncts were maximally-bad. The statis-
tical analysis of this maximally-bad data wasn’t horrible: it did behave reasonably.
However, in the end, its still bad data, and so all charts and graphs are being re-
vised with a new dataset. The old dataset was also terribly tiny. The new dataset is
much larger. You can get the old version by digging in git, and pulling up commit
27a66643a52c0985adc5b38caf94fc25f5e2e684 (or maybe a bit earlier, circa late June
2017 as that is when the bug was spotted.).

The following charts and analyses are derived from a single dataset, called ’en_pairs_rfive_mtwo’.
It contains data for word-pair statistics derived from parsing text from tranche-1,2,3,4,5
(See the download.sh scripts), followed by MST parsing of tranche-1 and 2. The word-
pair statistics were obtained by applying random-tree parsing to entire sentences. The
dataset is summarized in section ?? and repeated here. The column labels are explained
there.

Size Pairs Obs’ns Obs/pr Entropy MI Dataset
839K x 851K 30.1M 1.35G 44.9 18.54 1.84 en_pairs_rfive

The support and count for the pairs are given below.

Size Support Count Length Dataset
L R L R L R L R Name

839K 851K 80.6K 80.6K 249 230 28.2 24.5 en_pairs_rfive

The disjunct stats are these:

Size Csets Obs’ns Ob/cs Entropy Hle f t Hright MI Notes
137K x 6.24M 8.63M 18.5M 2.14 20.96 19.14 9.71 7.90 en_pairs_rfive_mtwo
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The dataset contains 851964 words. Of these, 137078 words that have disjuncts
attached to them. These words have been observed a total of 18489594 times, for an
average of 18489594/137078 = 21.70 observations per word. This dataset contains
6239997 different, unique disjuncts, for an average of 18489594 / 6239997 = 2.963
observations per disjunct.

The period appears 849354.0 times, suggesting that this many sentences were ob-
served. Each sentence thus has an average of 18489594 / 849354 = 21.77 words per
sentence.

The dataset contains 6239997 unique connector-sets, for an average of 18489594 /
6239997 = 2.96 observations per cset. This last number that makes this dataset feel thin
and sparse. Its not clear how accurate that perception is: an earlier dataset was about
one-tenth to one-twentieth the size, in the number of words, disjuncts and observations,
yet it had a ratio of 1.5 observations per cset. That is, making more than ten times the
number of observations only doubled the observations per cset.

The dataset is sparse in a completely different sense: viewing N(w,d) as a matrix
whose size is 851964× 6239997, but only a very small number of these is non-zero:
this is 8629163/(851964×6239997) = 1.623×10−6. The sparsity of this matrix can
be defined as − log2 of this number, which is 16.60. The sparsity appears to increase
with the number of observations: the previous, ten-times-smaller dataset had a sparsity
of 15.

The total word-entropy for the dataset is defined as

Hword =−∑
w

p(w) log2 p(w)

and was measured to be Hword = 9.71 bits.1 The total connector-set entropy is much
larger. It is defined as

Hcset =−∑
w,d

p(w,d) log2 p(w,d)

and is measured to be Hcset = 20.96 bits. The disjunct entropy is dual to the word
entropy:

Hdis junct =−∑
d

p(∗,d) log2 p(∗,d)

and is measured to be Hdis junct = 19.14 bits. The total mutual information between the
words and disjuncts is then

MIcset = ∑
w,d

p(w,d) log2
p(w,d)

p(∗,d)p(w,∗)
= Hword +Hdis junct −Hcset

and is measured to be MIcset = 7.897 bits.

Connector-set distribution
Some connector-sets will be observed far more often than others. Likewise for the
two sides of the connector-set: some words will have far more observations, and some
disjuncts will be seen more often.

1This and the following entropies were measured with the word-entropy-bits, disjunct-entropy-bits, etc.
functions in disjunct-stats.scm Alternately, the print-matrix-summary-report now reports this.
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Two graphs, dual to one-another. The one on the left shows N(w,∗), ranked by
count. The one on the right shows N(∗,d), also ranked.2. The first follows the canoni-
cal Zipf distribution. The green line is an eyeballed, approximate fit, of exponent -1.1.
The second has an exponent of about -0.85.

The first ten words in the word ranking are: "LEFT-WALL" "," "." "the" "and" "to"
"of" "a" """ "in". This is the ranking of how often these words appear, overall, in the
MST-parsed corpus. The number of connections to LEFT-WALL should be equal to
the number of sentences in the corpus, as the parser is set up to make one LEFT-WALL
connection to a sentence. Most sentences will end in a period; some with question
marks of other punctuation. Commas and the word “the” can appear more than once
in a sentence. The frequent occurrence of the straight double-quote mark is due to the
fact that the corpus is heavily weighted with dialog: i.e. with fictional novels, where
the characters are speaking a lot.

This list is repeated in the table below. The support is |(w,∗)|, that is, the number
of different kinds of disjuncts observed for that word. The count is N(w,∗), that is, the
total number of times those disjuncts have been observed for that word. The frequency
is just the count divided by 18489594. The length is len(w,∗) =

√
∑d N2(w,d), that is,

the root of the sum of the squares of the observations.3

word support count frequency − log2frequency length
LEFT-WALL 64215 972963 0.05262 4.248 122353.9

, 243987 957593 0.05179 4.271 25475.4
. 106195 849354 0.04594 4.444 55168.0

the 215324 727027 0.03932 4.669 9264.2
and 126861 420942 0.02277 5.457 28694.7
to 117110 401967 0.02174 5.523 11480.0
of 108951 371211 0.02008 5.638 11047.5
a 102720 289631 0.01566 5.996 6855.1
" 51289 256785 0.01389 6.170 21388.8
in 64011 208745 0.01129 6.469 14758.1

2Obtained by running (print-ts-rank sorted-word-obs outport) from the disjunct-stats.scm file, on the
en_pairs_rfive_mtwo database. The second one prints sorted-dj-obs. The graphs generated with ranked.gplot

3A printing utility for these three is ‘show-counts‘ in the ‘disjunct-stats.scm‘ file.
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The main point of this table is to demonstrate the log-likelihood column. At this
point, these numbers won’t seem to have much meaning; however, they provide an
overall scale that will be seen, repeatedly, in the analysis below. The range of magni-
tudes – 4 to 7 – is no accident, and similar ranges will be seen later.

The first ten pseudo-disjuncts in the disjunct-ranking are ""+" ",-" "the+" "He+"
"The+" "the-" "LEFT-WALL-" "I+" "“+" "to-". The meaning of the plus and minus
signs was explained above; but to recap: the disjunct “xxx+” means that there are many
words that expect to be followed by the word “xxx” (on the right). The disjunct “the-”
means that there are many words that want to link to the word “the” on the left. This
is grammatically correct: “the” is a determiner, and it is always the dependent of some
noun. The disjunct “The+” is at first appears to be grammatical garbage/nonsense:
it states that there are many words that want to link to the word “The” on the right.
Naively, this is never correct for English; determiners always precede the noun that
they modify. The capitalization gives away what is really happening: the word “The”
is a sentence opener, and it is being linked by the LEFT-WALL, indicating the start of
the sentence; ergo, it is lining backwards. Similar remarks apply to ""+" "the+" "He+"
"I+" "“+": Clearly, the capitalized “He” is a sentence opener, and “I” is plausibly so.
The two different styles of quotation marks (symmetrically vertical and right-leaning)
open up dialog in fictional novels, which make up a large portion of the corpus.

The above avoids the question of whether its is syntactically correct to link the
LEFT-WALL to “The”. This is determined not by raw frequency counts, but by mutual
information. This is explored later. At this point we can only say that such a linking is
frequent, and cannot judge whether it is correct.

The ranking of connector sets is shown below. It’s a graph of the ranked counts
N(w,d). Recall that we define a “connector set” as the pairing of a word, and one
particular disjunct that is associated with that word.4

The top-ten connector-sets are "LEFT-WALL: He+;" "LEFT-WALL: The+;" "LEFT-
WALL: “+;" "LEFT-WALL: "+;" ".: "+;" "LEFT-WALL: I+;" "and: ,-;" "LEFT-WALL:
It+;" "LEFT-WALL: She+;" ".: ”+;"

4Graph of sorted-cset-obs, op cit.
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These are hard to read, so, decoded: the four are connectors from the left side of the
sentence to the words “He” and “The”, and two different styles of double-quote marks:
a right-leaning double-quote, and a vertical double-quote. This was commented on
before: the corpus has many novels, and so many sentences will begin with quotes.
Next comes a period which links to a double-quote on it’s right. Last comes period
followed by a leaning double-quote. Clearly, this is expected in the corpus. Also
visible are the sentence openers “I” “It” “She”. In that list is the word “and”, which
connects to the left to a comma. Not a surprise.

Not visible in the top-ten, but can be seen in the top-fifty are mirror-images, for
example: ",: and+;" in 14th place, which states that the comma expects to be followed
by the “and”. The counts differ: the sixth-place "and: ,-;" had 32755 counts, while
14th place had 17745. Presumably this is due the comma having a different or more
complex linkage about half the time. Other items in the top-50 that are not sentence
openers include "”: ?-;" ",: but+;" ".: him-; "in: the+;" ".: ’+;" "”: .-;" "of: the+;". The
first disjunct with more than one connector in is is "It: LEFT-WALL- was+;" which
states that “It” wants to be a sentence opener, but wants to be followed by the word
“was” on the right. Not surprising. Proceeding down the list, the disjuncts continue in
this manner. This does not necessarily mean that they are “high quality”, only that they
were frequently observed in MST parses. It might be the case that the quality is given
by the MI between the word and its disjunct; this is explored later.

Word distribution
It is also interesting to turn the word distribution graph “on it’s side”. This is meant
to be a simple exercise, so as to place some later graphs into context. Despite the
simplicity, the analysis turns out to be somewhat surprising, and somewhat subtle. In
particular, the last graph elicits some features in the dataset that are not otherwise easily
visible.

In this dataset, there were 53076 words observed exactly once (out of a total of
18.5M observations of 137K words). This is quite something: of all the words ob-
served, almost half were seen only once. More than half were seen twice, or less.
These are presumably rare typos, foreign words, IPA pronunciation guides: any word
that appears only once must be unusual; and yet, there are a lot of them! There are
17120 words that appear twice, 9081 that appear exactly 3 times, etc. These counts are
graphed below.5

5Graph of binned-word-counts.dat, generated in disjunct-stats.scm
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This graph indicates that most (almost all) words were observed less than 100 times.
In this dataset, there were only 9425 words that were observed 100 or more times,
5683 words that were observed 200 or more times, and 3263 words that were observed
400 or more times. Percentage-wise: about 6.8% of the words were observed 100
times or more. This should be enough to give confidence in the syntactic usage of the
commonly-used English words; but most of the rest of this dataset includes oddities of
various sorts, including place names and given names. The challenge will be to see if
these can be grouped into grammatical categories.

Writing N for the number of times that some word was observed, it appears that
there are approximately 53076×N−3/2 words observed that many times. In formulas,
the size of the set of words {w|N(w) = N}is given by

|{w|N(w) = N}| ∼ N−3/2 (1)

where {w|cond} is a set of words (subject to the condition cond) and |{w|cond}| de-
notes the size of that set of words.

There is something interesting about this chart: it is more stable under varying
dataset sizes than the Zipfian distribution. The slope of the Zipfian distribution changes,
as datasets grow larger, typically trying to approach a slope of 1.0 very slowly. By
contrast, the above N−3/2 behavior seems to provide a much better description, even as
the size of the dataset varies. I cannot demonstrate that assertion here, but have noticed
it to be true when looking at other datasets.

The next graph belabors the point, and yet it’s important.6 It shows nothing new,
but it does show it in a format that will be recur frequently, later. Thus, its worth
understanding now. This graph shows exactly the same data as the previous graph: it is
the same graph, except that the x-axis is now labeled differently, and some of the counts
have been binned together. So first: note that− log2(1/18489594) = 24.140 and so this
is the location of the first spike on the far-right. Next, − log2(2/18489594) = 23.140
and − log2(3/18489594) = 22.555 are the locations of the second and third spikes:
these correspond to words that have been observed 1,2 and 3 times. Words that have

6Generated from binned-word-logli.dat
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been observed exactly N times will have a log-likelihood of − log2(N/18489594) =
24.140− log2 N. The formula 1, which was based on the graph above, can be rewritten
as

|{w|N(w) = N}| ∼ 2−3/2×log2 N

which effectively predicts the height and location of the spikes. This is clearly demon-
strated by the straight green line.

But then something else happens. As long as the bins are narrow, so that they are
either full, or empty, then the nice power law holds. Once the bins become too wide to
just hold single, discrete counts, but instead lump together different logli’s, the apparent
distribution changes. It is worthwhile to understand this phenomenon.

This graph was generated by bin-counting. The x-axis was divided into 1200 equal-
sized bins, and whenever the log-likelihood of a word landed within a particular bin,
the count was accumulated into that bin. On the right side of the graph, many (most)
bins are empty, because they do not correspond to logarithms of integers; this results
in the spikes. The width of each bin is (24-9)/1200, and so when

log2 N− log2(N−1)≈ log2

(
1+

1
N

)
≈ 1

N log2
<

24−9
1200

=
15

1200

then multiple counts will be shoved into one bin. For this chart, this happens when
N ≈ 115 so there are about 115 distinct spikes, and then they merge when the logli is
24.140− log2 115≈ 17.3 which is the spot where the above graph bends from the green
line to the blue line. From this point on, when multiple counts are being jammed into
one bin, we expect the distribution measure to be given by the Jacobian determinant7

of the point measure. We can compute this explicitly. Changing notation slightly, write

C(N) = KN−3/2

7https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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for the number of words that were observed N times. This is the same formula as
before. For this dataset, K = 53076. The bincount at logli= x is

bincnt(x) = ∑
x≤log2(T/N)≤x+ε

C(N)∆N

For this dataset, T = 18489594. The binsize used in the above graph was ε = 15/1200=
1/80. In the above formula, ∆N = 1 is a notational trick to allow us to convert the sum
into an integral when N gets large. We replace ∑ by

∫
and replace ∆N by dN and write

bincnt(x)≈
∫ x+ε

x
C(N)

dN
dy

dy

Here, there is a change-of-variable to y = log2 (T/N) or equivalently N = T 2−y. The
Jacobian determinant is then |dN/dy|= N log2 and so

bincnt(x)≈ K log2
ε
√

T
2x/2

Comparing this to the graph above, with logli= x, we expect the bincounted region to
have a slope of 0.5, and yet, the eyeballed fit above clearly shows 0.8. What’s going
on? WTF? Blame the data. Try again. The graph below shows exactly the same data,
but this time there are only 60 bins grand-total, and so only the first three spikes show.
After that, the spikes merge together into bins. The green line is drawn exactly with the
same slope and offset as before: that’s because the first three spikes are in exactly the
same locations as before, and have the same height. The blue line shows an eyeballed
fit to the merged counts, and initially, it really does have a slope of 0.5, which is exactly
what the Jacobian determinant was telling is it should be. Yayy! Declare victory and
go home!

The purple line is an eyeballed fit to what the data is doing, when the number of
observations really does become large. The knee in the graph is at about logli= 15.5 =
24.140− log2 N or, equivalently at N = 400. Thus, we have to revise the apparent
distribution. It is, for this dataset:

|{w|N(w) = N}| ∼

{
N−3/2 for N < 400
N−1.8 for N > 400
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It was noted before that there are 3263 words in the dataset that were observed 400 or
more times.

What does this mean? What is this saying? Its not entirely clear. It seems to suggest
that there are about 3.3K words that are used preferentially more often than the rest.
That is, they are used more often not only in absolute terms, but also in relative terms:
the form a core of the vocabulary, enjoying a popularity exceeding the trend line for
less-frequently used words.

Its not clear if this is a generic feature of the English language, or if this is peculiar
to the particular corpus. Let’s review the corpus again. The corpus comprises assorted
late-19th and early 20th century texts from Project Gutenberg, a dozen sci-fi/fantasy
novels, and a sampling of fan-fiction. These texts will contain stray markup, including
tables of contents, chapter headings, indexes, figure captions and itemized lists. Quite
often, ASCII artwork is used to delimit chapters or sections. Chapter headings are
often written in all-upper-case. There are stray quotations in Latin, snippets of Latin
prose and poetry. Travelogues will include miscellaneous foreign sayings and unusual
place-names. All of this stuff adds up: it will be observed only once, twice, maybe a a
few dozen times. It may as well be random text, from the point of view of the word-
pair MI statistics, and from the point of view of the MST parser. There is no easy way
to remove this “garbage” in any a priori fashion. It is there, and it is unavoidable. It
is indistinguishable from random sentences. However, it seems that the fact that some
significant portion is “ungrammatical” should not affect word-count statistics, unless it
just so happens that there is a core of 3.3K vocabulary words, followed by 130K words
that are given names, arcane terms, and other “junk”. This does not seem plausible.

Thus, it is unclear on what the meaning of this knee in the graph really is, and how
it should be explained. Note that this knee is NOT visible in the Zipfian distribution –
nothing happens at N = 400 - it is smooth as silk. It maybe could have been visible in
the on page 9 graph, except that the far edge of that graph ends at exactly N = 400,
and does not continue past there! This seems to be a fairly subtle effect.

Ranked average observations per disjunct
A more interesting distribution arises by looking at the average number of observa-
tions per disjunct (per word). That is, a single word may have hundreds of disjuncts,
observed thousands of times; what is the average number of times that a disjunct is
observed? By “average”, it is explicitly meant N(w,∗)/ |(w,∗)|, the number of obser-
vations divided by the support for those observations.

This number gives a hint of how “narrow” the grammatical usage of a word is. If
the average is high, it suggests that the word just does not have very many disjuncts
on it; the few that it does have are observed a lot. Recall that these disjuncts (pseudo-
disjuncts) connect to individual words, and not to word-classes. Thus, if a disjunct is
seen a lot, it probably connects to another word, forming a high-MI pair. This can be
explicitly seen in the example further below.

A graph of the ranked average number of observations, per disjunct, per word, is
shown on the left, below.8 The ranking is distinctly not Zipfian; this is confirmed by

8Computed with the sorted-avg list in disjunct-stats.scm
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slicing the data three ways: excluding words with less than 400 observations (leaving
3263 words), excluding words with less than 100 observations (leaving 9425 words),
and excluding words with less than 20 observations (leaving 25505 words out of 137K
words).

The graph on the right expresses an alternate view of the same idea: it shows a
bin-count of all of the words. Reaffirming the graph on the left, it indicates that almost
all words have an average disjunct observation count of less than four. It also conveys
the sense that when the average disjunct count is greater than about four, that this is
unusual, and perhaps meaningful in some way.

The first ten on the ranked list are "*" "Literary" "Archive" "Gutenberg" "Notes"
"...." "|" "Foundation" "Project" "Summary". This suggests that these all come from
exactly the same parse of a small group of sentences having a very regular, formulaic
structure, occurring repeatedly in multiple texts. One of those sentences is easily found;
it begins as: “The Project Gutenberg Literary Archive Foundation has been created...”

Closer examination indicates that more or less all words having an average of more
than three observations per disjunct are associated with the Project Gutenberg legal
boilerplate. The first 80 entries in the 400+ list have an average observation count of
above three, and they are all boilerplate words: "fee" "copies" "trademark" "agreement"
"electronic" "copyright" "donations", and so on. This suggests that pretty much all of
the “bump” on the above-left graph is entirely due to license boilerplate!

Its entertaining to look at some of these close-up.9 The word “Prince” shows up
99th on the list, with an average of 2.885 observations per disjunct. It has a total of 773
different disjuncts on it. The top six disjuncts are just single links, shown in the table
below. Clearly all are princes. This leaves 767 other disjuncts with far fewer counts.

disjunct number of observations
Andrew+ 626
Vasili+ 149

Andrew’s+ 46
Edouard+ 46

Hans+ 33
Bagration+ 32

9View disjuncts by saying (filter (lambda (cset) (< 10 (get-count cset))) (cog-incoming-by-type (Word
"foo") ’Section)) where 10 is the minimum number of counts.
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The word “think” appears as number 140 on the list, with an average of 2.6104
observations per disjunct. It has 5462 disjuncts in total; only six are observed more
than 200 times. The last in the list below is the first clear appearance of a transitive
verb.

disjunct number of observations
I- 1321

you- 308
don’t- 265

to- 244
do- you- 211

I- it+ 202

The word “long” appears as 195 on the list, with an average of 2.3825 observations
per disjunct. It has 5412 different disjuncts on it; only five are seen more than 200
times. These are:

disjunct number of observations
a- 385

as+ 335
how- 236

a- time+ 212
enough+ 201

The skewness appears to be very sharp. This suggests that we should not waste
time looking at mean-square variations in the average, although we’ll do this anyway.
But first, its worth graphing the skewness directly. Again, this is done on a log-log
graph, in a Zipfian way.

Disjunct count distribution
The graph below shows the distribution of the disjunct observations on the five words
“Prince”, “think”, “long”, “fact” and “from”. Indeed, it looks Zipfian; since we know
that all but the first three or four disjuncts are noise, this graph illustrates “pink noise”
or “1/f noise”.10

10Computed with the dj-prince and dj-think etc. arrays in disjunct-stats.scm
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Can one get a smoother distribution by summing together these two graphs? Sure...
and one can sum together not just these two words, but all words (that have been ob-
served at least 100 times).

That graph is shown below.11

Its kind of a strange graph. Yes, the x-axis of this graph does imply that there are
thousands of words with more than a thousand disjuncts on them, and hundreds that
have more than ten-thousand (unique, different) disjuncts on them! Exactly what does
this mean? This is covered in the next section.

Disjunct Support Distribution
Is it possible that some words have a large number of disjuncts on them?

Yes, it is. For example, the comma was observed to have 243987 unique, different
disjuncts associated with it. The word “the” has 215324 unique, different disjuncts,

11Computed with the accum-dj-all function in disjunct-stats.scm
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the word “and” has 126861. Rounding out this list are "to" "of" "." "a" "was" "LEFT-
WALL". Its not clear what fraction of these disjuncts are grammatically valid, and
what fraction are junk.

The graph below shows the distribution of the size of the support: the ranking of
|(w,∗)|. Again, the graph appears to be approximately Zipfian.12 The eye-balled fit
has a slope of 0.9, but, from the eyeball-perspective, this is not all that different from a
slope of 1.0.

Terminology: the “support” of a vector is the number of basis elements that have a
non-zero coefficient. This is the set (w,∗) defined earlier. Equivalently, this is the size
of the set of disjuncts associated with a word, when counted without multiplicity.

Ranked Euclidean length (RMS Size)
A different distribution arises by looking at the ranked RMS sizes of the disjunct sets13.
Here, the RMS size14 is computed by taking the root-mean-square of the counts on
each disjunct in the set, that is, by computing

√
∑d N(w,d)2 for each word w and then

ranking. Interpreting d as a basis element of a vector space, this can be recognized as
the Euclidean length of the count-vector.

The RMS size of the set is thus larger not only when more disjuncts have been
observed, but also when most of the observations are made of only a small handful of
disjuncts. That is, the RMS size should be relatively larger, if the word is less gram-
matically flexible. So for example, prepositions tend to be very flexible; adjectives,
not so much. Thus, we expect adjectives to appear higher-up on this ranking list, than

12Generated by sorted-support in disjunct-stats.scm
13Obtained by running (print-ts-rank sorted-lengths outport) from the disjunct-stats.scm file
14The word “length” can be used to describe the root-mean-square size of the set of disjuncts associated

with a word. That is, each element of the set is a disjunct, and that disjunct has a count, the number of times
it has been observed. The root-mean-square of these counts can be taken as the set-size. But this set can also
be interpreted as a vector, and so the RMS size is the same thing as the Euclidean length of the vector. Thus,
the word “length” is sometimes used for the RMS size; they’re the same thing.
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the observation-based list. And this might be true, relatively, but certainly not true
absolutely.

The first dozen words of the RMS-size-list are: "LEFT-WALL" "." "and" "," """ "”"
"in" "to" "of" "“" "as" "the". Not that interesting: these are all words that were observed
a lot in the text. The RMS size is dominated by the total number of observations of
a word in text. In and of itself, its insufficient to indicate how “concentrated” the
disjuncts are, how grammatically narrow a word is. For this, some other quantity is
needed.

The slope appears to be exactly -1.0, continuing the scale-free trend.

Mean-square to size ratio
More interesting is the ratio of mean-square size to the total size. In formulas, by
ranking according to √

∑d N2(w,d)
N(w,∗)

=

√
∑d p2(w,d)
p(w,∗)

This seems like the interesting ratio, because the Zipf exponent of -0.65 would be dou-
bled, when working with mean-square sizes, thus making the two rankings comparable.

Words high in this score will be words that have relatively few disjuncts on them,
or at least, few that matter much, that rise above the level of noise. The first ten words
on this list, excluding punctuation, and excluding all words with fewer than 100 obser-
vations: "It" "and" "but" "in" "Two" "as" "Notes" "not" "There" "Summary". A review
of the input corpus shows that the word "Summary" appears in only one input text:
Charles Darwin’s “On the Origin of Species”, and then only to indicate an actual sum-
mary! The word “Notes” appears in less than a dozen input texts, with almost every
usage being formulaic and rigid. The grammatical usage of these two words in the
input corpus is fairly constrained, and thus it is no surprise that these have relatively
narrower disjunct distributions on them.
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Excluding the capitalized words, and punctuation, in this list what remains is quite
surprising. It is shown in the table below.15

rank score word
7 1956 and

10 1147 but
12 1043 in
14 814 as
16 776 not
21 590 been
22 568 be
26 453 one
27 440 at
30 386 own

rank score word
34 329 of
35 328 to
36 324 with
37 319 other
38 315 it
42 284 when
43 275 for
45 271 he
46 265 have
49 248 that

It is surprising because, grammatically, we expect most of these words to have a
large number of varied disjuncts attached to them. We expect them to be diffuse, not
sharp: we expect that these would have a large number of observations smeared over a
large variety of disjuncts, instead of having their weight concentrated in only a handful
of disjuncts, the way that “Prince” was, above. So what is going on, here?

The distribution, shown below, is a power-law.

Are there other interesting measures? One could contemplate the ratio of the mean-
square size to the support ∑d N(w,d)2/ |(w,∗)|. Another possibility would be this, mi-
nus the average-squared, which would give the second moment, aka, the mean-square
deviation from the average, specifically

∑d N(w,d)2

|(w,∗)|
−
[

N(w,∗)
|(w,∗)|

]2

=
1

|(w,∗)|∑d

[
N(w,d)− N(w,∗)

|(w,∗)|

]2

Neither of these variations seem promising; they seem to offer up more of the same, at
least on this dataset. A larger and more refined dataset might reveal otherwise.

15Extracted from ranked-sqlen-norm.dat
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Mutual information
The concept of the “fractional mutual information” for a pair is interesting to explore.
Define this as

MIpair(w,d) =− log2
p(w,d)

p(w,∗)p(∗,d)
(2)

This is “fractional” in the sense that the total MI for the set of all pairs can be written
as

MIcset = ∑
w,d

p(w,d)MIpair(w,d)

Fractional MI is interesting because it usually has a reasonably nice distribution. For
this particular dataset, it ranges from about -11 to +24. The distribution is shown in the
graphs below. 16

These graphs are generated by computing the value for MIpair(w,d) for each of the
8629163 (w,d) pairs (aka ’connector sets’), and approximating it’s distribution by bin
counting. In each graph above, there are 200 bins, each of width of about 35/200, and
each pair is assigned to one of the bins, according to it’s MI value. The graph on the
left then shows how many pairs there are in each bin. The graph on the left is similar,
but not the same: it sums the frequencies for all the pairs in each bin. In formulas: the
graph on the left shows the value of

sizeof
{
(w,d)|MIpair(w,d) is in bin

}
while the graph on the right shows

∑
MIpair(w,d) is in bin

p(w,d)

where ’x is in bin’ simply means lo≤ x < hi with the bin being the interval [lo,hi).
Both of these graphs show “combs” in the right side. These combs are exactly

the same combs as noted in the last figure in section Word distribution on page 10.
The combs are due to the large number of words that have been observed only a small
handful of times. In essence, the combs attest that the bulk of the high-MI pairs have
been observed more than just a few times; i.e. the high MI values are meaningful.

16These are graphed by binned-cset-mi and weighted-cset-mi in the disjunct-stats.scm file.
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Both graphs show an eyeballed fit in green. The left graph shows that the distri-
bution can be approximated by a Gaussian (visually a parabola, due to the logarithmic
scale), given by exp−(0.23(MIpair− 11))2/2. The shape of the graph on the right is
harder to pin down. It has hints of parabolic behavior, yet the left edge appears more
straight than curved, that is, to be exponential, given by 21.3MIpair = exp0.9MIpair. The
eyeballed blue parabola is given by exp−(0.15(MIpair− 12))2/2, it’s clearly missing
a large excess in the middle of the graph.

Marginal Mutual Information of Words
The marginal mutual information of a single word can be defined by summing the
(fractional) mutual information between a word, and all of it’s disjuncts:

MIword(w) =
1

p(w) ∑
d

p(w,d)MIpair(w,d)

This is also written in the “fractional” style, so that, again, the total MI of the entire
dataset can be written as

MIcset = ∑
w

p(w)MIword(w)

That is, MIword(w) is the fractional contribution of the word to the total MI. The frac-
tional marginal MI is very convenient for comparing different words, since it factors
out the frequency of how often a word is observed: the MI of two words with two very
different frequencies can be directly compared.

As can be seen from the graph below, the fractional marginal MI ranges between
+3 and +18 for this dataset. The total MI for the dataset is measured to be 7.8969 bits.
The distribution can be visualized in two different ways. The graph on the left, below17

shows the ranked MI of the 9425 words that have been observed more than 100 times
in this dataset. Note that it is a semi-log plot; it is NOT Zipfian. Note that the MI seems
to decay logarithmically, for a good long ways, and then drops off a cliff.

The graph on the right shows the distribution, for all 137078 words, bin-counted
into 100 bins. The combs on the far right are again the same combs as noted in the last
figure in section Word distribution on page 10. The distribution appears to be Gaussian,
and of approximately the same width as before, although located at a different center:
the green line in the graph is the Gaussian given by exp−(0.24(MIword − 20))2/2 as
compared to 0.23 for the non-marginal MI distribution above. The difference between
0.24 and 0.23 seems to be significant: changing one to the other seems to give a no-
ticeably poorer fit.

17This is graphed by sorted-word-mi-hi-p in disjunct-stats.scm
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What are the disjuncts like at either end of this distribution? The first few words
in the ranking are: "LICENSE" "FULL" "formats" "BREACH" "AGREE" "WAR-
RANTIES" "WARRANTY" and are clearly parts of the set phrases that make up the
Project Gutenberg license agreement. The word “Prince”, examined previously, is
7378th in this rank.

Its entertaining to look at some of these.18 The word "LICENSE" is surely under-
sampled, as, in this all-capitals form, it only appears in the Gutenberg boilerplate, and
nowhere else. This we cannot expect accurate MST parses, and cannot expect accurate
disjuncts for this word. Yet other set phrases quickly top the list. The word “San”,
number 33 in the list, is seen only with the disjuncts “Francisco+” and “Antonio+”.
The word “Tomb” is 40th in the list and has three disjuncts observed more than twice:

count disjunct for “Tomb”
19 Great- of+ Nazarick+
15 Underground- of+ Nazarick+
7 The- Great- of+ Nazarick+

It is already clear from this one example that the high marginal-MI words will
be those that take part in idioms, “set phrases” or “institutional phrases”, and that the
disjunct identifies the words taking part in the setting. The word “prominently” appears
50th in the list, and suggests that it is only used only in a rather rigid and formulaic
way:

count disjunct for “prominently”
51 appear- whenever+
51 without- displaying+

The word “Corps” appears 95th in the list. Note that both the English and French
word-ordering appears: “Diplomatic Corps” and “Corps Diplomatique”, as witness on
the different sign on the disjuncts:

18View disjuncts by saying (filter (lambda (cset) (< 10 (get-count cset))) (cog-incoming-by-type (Word
"foo") ’Section)) where 10 is the minimum number of counts.
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count disjunct for “Corps”
8 Supply-
6 Marine-
4 Medical-
3 Diplomatic-
3 Diplomatique+

At the other extreme, the ten words with the lowest MI are: "it" "in" "of" "that"
"to" "and" "the" "LEFT-WALL" "," "." ranging from 5.07 for "it" down to 3.33 for the
period. These are already familiar from previous rankings: they occur with very high
frequency; the disjunct lists on them will be lengthly variable, diffuse.

These samplings of disjuncts are sharply reminiscent of the technique of collocation
used in corpus linguistics, but with a big, important difference. There, the linguist
examines a window that is some 6-8 words wide, and examines the frequency of all
phrases appearing within that window, containing the word-of-interest in the center.
Here, we again have a word-of-interest, but this time, instead of seeing phrases, we
see the grammatical structure revealed directly, by means of the disjuncts extracted
from MST parses. The philosophical basis used to justify corpus linguistics, i.e. that
of frequentism, is accepted and applied here as well. In this case, it is used to obtain
grammatical structure.

Mutual information of disjuncts
Symmetrically, one also has the mutual information of a disjunct, in comparison to all
of the words it connects to:

MIdis junct(d) =
1

p(∗,d) ∑
w

p(w,d)MIpair(w,d)

Again, this is presented in the “fractional” style, so that the total MI of the entire dataset
can be written as before:MI = ∑d p(∗,d)MIdis junct(d)The dataset contains 6239997
(6.24 million) unique disjuncts, observed for a total 18489594 (18.5 million) times.
The distribution is shown below, with the disjuncts sorted into 200 equal-sized bins.19

The combs on the far right are again the same combs as noted in the last figure in
section Word distribution on page 10. The green line shows an eyeballed fit to a
Gaussian. As before, the width appears to be almost 1/4th, but not quite. It is given by
exp−(0.27(MIdis junct − 13.7))2/2. That is, the mean MI is 13.7, and with a standard
deviation of about

√
1/0.27 = 1.92.

19Use binned-dj-mi to get this.
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The origin of the noise that seems to build up for MI<10 is unclear.

Fractional Entropy
There is a simpler variant than the mutual information, that is also worth understanding:
the fractional contribution to the total entropy. This is given by the sum

Hword(w) =−
1

p(w) ∑
d

p(w,d) log2 p(w,d)

This is written in the “fractional” style, so that the total entropy of the entire dataset
can be written as

Hcset = ∑
w

p(w)Hword(w)

Analogously, one also has the fractional contribution of the disjuncts:

Hdis junct(d) =−
1

p(∗,d) ∑
w

p(w,d) log2 p(w,d)

where, again, one has that

Hcset = ∑
d

p(d)Hdis junct(d)

The ranked fractional entropy is shown in the left graph below.20 It only shows
those words that have been observed 100 times, or more.

It resembles the graph for the ranked fractional marginal MI, above. The graph on
the right shows the distribution of the entropy, for all of the words. This affirms (or
explains?) the sharp knee in the graph on the left: the knee occurs because almost all
words have a large disjunct-entropy. Remarkably, the distribution is anti-Gaussian, in
that it appears to diverge, the larger the entropy. In that respect, it cannot even be a
proper distribution, as it cannot be normalized to a probability of 1.0 - the distribution
increases without bound! Yet, as the graph illustrates, that is what it seems to be. The
green curve is the anti-Gaussian, given by exp(0.27(FME− 13.7))2/2. As before, it
has a width of approximately 1/4th.

20Generated from sorted-word-ent in disjunct-stats.scm.
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The top-ranked words (which have been observed 100 times or more) are "claw-
ing" "manages" "noting" "anyways" "circling" "choke" "neared" "urging" "pursuing"
"exited". This is not a list that has been exposed with other statistics. Almost all of
these are verbs, a grammatical class that never appeared in any of the previous lists.
Why these?

All of these words have an entropy of exactly 24.14021 = log2 18489594. Since
there are a total of 18489594 observations of disjuncts in this dataset, the only way in
which this entropy is possible is if every disjunct on these words was observed once
and only once.

Looking deeper into the disjunct set, the sensation that the words with the highest
entropies are almost all verbs continues quite strikingly. A sampling is given in the
table below. All of these words have a large support (i.e. have at least 100 observations
of disjuncts on each), but each disjunct is observed only once, rarely twice; almost
never more than that. For example, “gripped” has only one disjunct that was observed
three times, seven that were observed twice, and 320 that were observed only once.
A quick examination shows that many, maybe most, are grammatically reasonable,
for example, for “gripped”: (He- staff+) is the disjunct observed three times. Four
of the seven observed twice are (had- him+) (she- his+ hand+) (He- staff+ tightly+)
(his+ hand+) and look to be a part of rather formulaic sentences (possibly from the
fan-fiction part of the corpus). The other three disjuncts observed twice are strange
nonsense: (hands- Ross- at+ edge+ vanity+) (hand- jaw- other- top+) (LEFT-WALL-
jockeyings- by+ them+). These seem to be the result of failed MST parses, depending,
presumably, on word-pairs that were witnessed only a few times.

This observation, and the table below, reinforces the need to the urgency of clus-
tering words: by clustering words together into grammatical categories, this should in-
crease the number of observations of category-pairs, improving MST parses, as well as
increasing the number of observations of disjuncts, hopefully drowning out the weak
and bizarre disjuncts. Given that the high-entropy words seem to be predominantly
verbs, this suggests that clustering will be absolutely required to pick out the grammat-
ical form of verbs.
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Entropy rank Word |(w,∗)|3 |(w,∗)|2 |(w,∗)|1
24.1402 1 clawing 0 0 102
24.1293 41 licking 0 1 183
24.1241 79 toys 0 1 124
24.1202 164 grabbing 0 3 300
24.0846 567 gripped 1 7 328

The table employs a bit of notation worth reviewing. Recall the definition of the set
that supports a word:

(w,∗) = {(w,d)|N(w,d)> 0}

The notation |(w,∗)| was used to indicate the size of this set. Extend this notation as

|(w,∗)|k = sizeof {(w,d)|N(w,d)≥ k}

That is, |(w,∗)|k is the size of the support for when the disjuncts on word w have been
seen at least k times.

From this table, it is now clear why “large entropy” can be intuitively understood
to mean “many possibilities”. Each of these words was seen in a very broad setting of
possibilities: in a sense, the broadest possible. Each of these words was observed with
a vary large set of different disjuncts, and this set was as spread-out as possible: the
vast majority of disjuncts were observed exactly once.

More terms
Some curious terms show up in relating the fractional mutual information to the frac-
tional entropy. Expanding out the above summations, one obtains

MIword(w) = Hword(w)+ log2 p(w,∗)+ 1
p(w) ∑

d
p(w,d) log2 p(∗,d)

The last term is bizarre...

Vertex degrees and hubiness
Vertex degrees can be defined as the average number of connectors per disjunct. In
principle, the vertex degree is an excellent indicator of the part of speech. For example,
determiners, adjectives and adverbs typically have a degree of one: they have one
connector, which is modifying the noun (or verb) that they act on. By contrast, nouns
typically have a degree of two: one connector to attach to a verb, another to a modifier,
and that’s it. Verbs have a degree of three: one connector to a subject, one to a direct
object, a third to an indirect object or a modifier. Of course, nouns might have two or
more modifiers, or maybe zero modifiers; verbs are also quite variable, but the general
concept of vertex degree is appealing. Closely related to this is the idea of “hubiness”,
which can be defined as the second moment of the degree.
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Thus, its worth looking at this. Define the average degree as

K(w) =
∑d,c N(w,d)C(d,c)

N(w,∗)

This is graphed, below, for all words that have at least 100 observations.21

This graph is unexpected. Having an average number of connectors that exceed 5
or 6 is intuitively surprising. In proper grammar, it would be hard to reach even this
degree without having a transitive or ditranstive verb with several modifiers, and a par-
ticle or preposition. The first ten items are out of control. What’s happening here? The
first ten items in the ranking are: "|" "#" "+" "||" "_" "ASCII" "electronically" "Northup"
"disclaimer" "u". The first five are presumably formating markup or possibly decora-
tive markup in the texts. Three of the words appear to be license boilerplate. The name
"Northup" appears in only one text in the corpus: an autobiography, “Twelve Years
a Slave”, by Solomon Northup. Besides the title-page, the word Northup appears re-
peatedly in the table of contents, which is bound to make for awkward parsing. This
presumably “explains” why the average connector count would be 11.2 for this word.

Moving further down this list, many of the words and symbols suggest that they
appear in tables or lists embedded in the corpus. The “grammar” of tables and lists is
necessarily awkward, and seems unlikely to get much of a meaningful parse from the
MST parser. This is further strengthened by an earlier analysis of a Wikipedia-based
dataset, re-reported below.

Vertex degree in Wikipedia

A similar analysis, performed on a much smaller dataset consisting entirely of Wikipedia
articles found a similar behavior. The first ten items in the ranking were: "-" "de" - "y"
":" "(" ")" "General" "Department" "x" "Act".

21Computed with sorted-avg-connectors in disjunct-stats.scm
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Consider “de”. There are 12 observations of the disjunct “Janeiro+”. There are 9
observations of the disjunct “la+”. There are 51 observations of a disjunct that has 117
connectors on it!! This starts out as “Diego- Francisco- Francisco- Alonso- Carlos-
Fernández- Carlos-” and ends with “Figueroa+ (+ (+ y+” suggesting that there were
possibly 51 really bad parses of a very long table of Spanish kings, which was mistaken
for being a single sentence. Clearly, its junk; its frequently-occurring junk, which
suggests that the table was repeatedly transcluded in maybe 51 different Wikipedia
pages.

Similarly, “Department” has 18 observations of a disjunct with 41 connectors on
it. It starts with “Education- Education- Health- Services- Services- Immigration-” and
ends with “Veterans+ of+ Treasury+ Treasury+”, again suggesting a bad parse of a
table mistaken for a sentence, and included in 18 different Wikipedia pages.

The list continues in a similar way, for quite a while. The green line suggests that
if some 30 or so pathological cases are ignored, the system settles down to a more re-
spectable behavior. Entries 30 through 50 in the rankings are "Bay" "Street" "Island"
"of" "century" "right" "Game" "Georgian" "or" "a" ";" "near" "Party" "team" "law"
"Australia" "her" "research" "Church" "east" "Government". Notable is a preponder-
ance of capitalized words, suggesting more tables of various sorts, and a complete lack
of verbs. A spot-check of words like “team” and “law” shows that the pathological
behavior continues. Several conclusions are possible.

One conclusion is that there is a severe shortage of verbs in Wikipedia articles,
and this makes sense: its primarily descriptive, rather than active: running, jumping,
hitting, putting, mixing, giving, setting are not the kinds of verbs that are required to
describe a typical encyclopedia topic.

Another conclusion is that perhaps the number of observations of pairs are insuf-
ficient to get deep, reliable MST parsing. Junk links get used because there were not
enough appropriate word-pairs seen to give a good-quality MST parse. A related con-
clusion is that the connector-set dataset is also too thin: The grammatically reasonable
connectors are observed not even a few dozen times, barely pushing them out of the
noise-floor of onesie-twosie observations of junk.

So: bigger datasets, and an urgent need for non-Wikipedia content. Fiction, and
presumably teen fiction should be filled with the kinds of active verbs describing hu-
man motions and actions, and should be absent of tables and lists masquerading as
sentences.

Hubiness
Similar to the above, hubiness can be defined as the second moment of the connector
count:

hub(w) =
∑d,c N(w,d)C2(d,c)

N(w,∗)
−K2(w)

Given the earlier Zipfian results on the average degree K(w), it should be no surprise
that a ranked listing of words by hubiness is very nearly identical to the listing for
average degree. This is, after all, what the scale-free nature of the Zipfian distribution
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really means. Not only is the ranking nearly the same, but one also has the approximate
equality hub(w)≈ 2K(w) to some ten or twenty percent.

Disjunct Cosine Similarity
The cosine similarity between two vectors is simply their inner product. In this case,
given two words w1 and w2, it is given by

sim(w1,w2) =
∑d N(w1,d)N(w2,d)

len(w1)len(w2)

where len(w) is the root-mean-square length (Euclidean length) of the connector-set
vector:

len(w) =
√

∑
d

N2(w,d)

The current dataset being analyzed (the EN_PAIRS_RFIVE_MTWO dataset, same as
above) contains 797 words whose length is greater than or equal to 128. The ranking-
by-length was already shown up above, in the graph Ranked Euclidean length (RMS
Size) on page 17. The similarity between all pairs of these was computed; this resulted
in 797× 796/2 = 317206 pairs. These can be sorted and ranked.22 They are shown
below.

Well, that’s new! The similarity ranking is very well fit by a parabola at the
high end, and a cubic at the low end! In the above, the green line is given by 1−
log2(rank)/160 and while the blue line is given by − log3(rank/317206).

There are 427 words observed 256 or more times, these form 427×426/2 = 90951
pairs. There are 245 words observed 512 or more times; these form 245× 244/2 =
29890 pairs. There are 130 words observed 1024 or more times, these form 130×
129/2 = 8385 pairs. The ranking for these are shown below. There are 69 words
observed 2048 or more times; these form 69× 68/2 = 2346 pairs. The ranking of
these are shown below.

22See the good-sims and ranked-sims in disjunct-stats.scm file.
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The graph below shows the distribution of cosine similarity.23 There are 797 words
for which 128 < len(w). This shows the distribution of the 317206 word-pairs formed
from these words, for which 0.1 ≤ sim(w1,w2). The eyeballed fit is for exp(−3.5×
sim).

Similar graphs are produced for a bigger set. In this case, once can consider

23Produced by binned-good-sims.
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The top-ten similarity pairs (for which 128< len(w)) are: ’Stats .. Category’ ’Notes
.. Summary’ ’Stats .. Rating’ ’Category .. Rating’ ’She .. He’ ’Category .. Fandom’
’Stats .. Fandom’ ’Category .. Character’ ’Stats .. Character’ ’she .. he’. The first one
has a cosine of exactly 1.0, and the rest are above 0.975.

The two words “Stats” and “Category” have exactly one disjunct: it is ’LEFT-
WALL- :+’ That is, these appear as the first word in a sentence, and are immediately
followed by a colon. The word ’Notes’ has 27 distinct disjuncts, but only three are
observed more than 6 times: ’Chapter- or LEFT-WALL- or End-’ That is, ’Notes’
appears either all by itself, or as the phrase ’Chapter Notes’ or as ’End Notes’. The
word ’Summary’ has 47 distinct disjuncts, but only two appear more than 6 times:
’Chapter- or LEFT-WALL-’ i.e. either as a solitary word, or as the phrase ’Chapter
Summary’. This is why ’Notes’ and ’Summary’ are considered to be so similar.

Continuing in this fashion: ’Rating’ has 7 disjuncts, four of which are observed
more than 6 times: ’(LEFT-WALL- :+) or (LEFT-WALL- :+ Audiences+) or (LEFT-
WALL- :+ Explicit+) or (LEFT-WALL- :+ Mature+)’ This suggests it appears in a table
of some sort. The first disjunct ’(LEFT-WALL- :+)’ accounts for its high similarity to
both ’Stats’ and ’Category’. So, yes, all these words have been discovered to behave in
a grammatically similar fashion; however, this behavior is somewhat boring: they arise
from the regularity of some table listing.

The first non-capitalized word-pair appears at position ten. Of the top thirty, the
table below shows the non-capitalized word-pairs.
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rank cosine word-pair
10 0.977 ’she .. he’
16 0.955 ’guess .. suppose’
17 0.954 ’city .. house’
19 0.950 ’would .. might’
20 0.945 ’re .. non’
21 0.944 ’village .. city’
24 0.931 ’father .. mother’
25 0.928 ’village .. house’
26 0.928 ’don .. sama’
27 0.923 ’world .. city’
28 0.921 ’son .. daughter’
29 0.918 ’suppose .. hope’

The table below shows several more pairs worth closer examination.

rank cosine word-pair
32 0.915 ’though .. but’
33 0.914 ’should .. might’
54 0.893 ’should .. must’
61 0.885 ’when .. until’
67 0.881 ’leave .. take’
68 0.8794 ’believe .. think’
69 0.879 ’in .. by’

It is worth looking at a few of these, to see how they work out. The word ’she’
has 27578 distinct disjuncts on it; the word ’he’ has 57330 disjuncts. The table below
shows the top-ranked disjuncts for each. It makes quite clear why the two have a high
similarity.24

she he
count disjunct count disjunct
2501 said+ 4673 said+
1060 was+ 2643 was+
983 had+ 1959 had+
656 asked+ 1293 could+
593 ”- 1281 asked+
474 could+ 909 that- was+
372 that- was+ 813 ”-

24Print the disjuncts with the ‘print-disjuncts‘ function.
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The list above contains the pairs ’guess .. suppose’ and also ’suppose .. hope’.
The word ’guess’ has 859 disjuncts on it. The word ’suppose’ has 805 disjuncts on it.
The word ’hope’ has 1735 disjuncts on it. The table below indicates why their cosine
distance is close.

guess suppose hope
859 total obs 805 total obs 1735 total obs

count disjunct count disjunct count disjunct
272 I- 377 I- 393 I-
57 I- .+ 66 I- you+ 160 I- you+
21 I- it’s+ 45 I- .+ 77 that+
20 I- you’re+ 39 I- that+ 59 of+
16 I- so+ 33 I- it+ 55 I- that+
15 could- 27 I- ?+ 51 we- that+ you+
15 I- you+ 25 I- ,+ 33 I- so+

The pair ’re .. non’ seems strange, but closer examination shows that both are
usually followed by a hyphen, and that this accounts for all of the observed similarity
between these two. The pair ’don .. sama’ is also strange. The similarity is due entirely
to their linking to dashes and other punctuation. It seems to be due to a Finnish text
that has snuck into the corpus.

Some more verbs are worth looking at. Here is ’leave .. take’, below. Almost all of
the similarity is due the infinitive form; the only other shared disjunct appearing in the
table is ’to- it+’, although there are more common disjuncts at lower counts.

leave take
3017 total obs 5693 total obs

count disjunct count disjunct
298 to- 619 to-
40 to- the+ 105 would-
33 to- .+ 95 to- care+
32 took- 88 will-
31 you- 87 to- a+
28 to- him+ 74 to- it+
26 to- room+ 70 to- her+
25 to- it+ 67 I- it+

The pair ’believe .. think’ is as follows; several kinds of constructions are clearly
shared.
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believe think
2190 total obs 5462 total obs

count disjunct count disjunct
339 I- 1321 I-
116 I- that+ 308 you-
94 to- 265 don’t-
79 to- that+ 244 to-
54 that+ 211 do- you-
51 I- you+ 202 I- it+
51 I- it+ 168 I- you+

The first prepositions in the list are ’in .. by’ and so are worth a look. Most of
the similarity is accounted for by having them precede a determiner. Why there is a
strong link to a determiner is unclear. Whether there is also a strong link between the
determiner and a subsequent noun is also unclear.

in by
64011 total obs 20907 total obs
count disjunct count disjunct
12484 the+ 2064 the+
4776 a+ 497 a+
4720 his+ 271 followed-
1529 front+ 266 his+
1429 her+ 252 surrounded-
1113 this+ 214 which+
1092 my+ 207 means+

The pair ’would .. might’ is accompanied by ’should .. might’ and ’should .. must’.
The disjuncts are shown below. The reason for the similarity is readily apparent, and
corresponds with what might be expected.

would should might must
20039 total obs 6388 total obs 6861 total obs 5860 total obs

count disjunct count disjunct count disjunct count disjunct
1648 have+ 1064 have+ 654 have+ 666 have+
1510 be+ 840 be+ 468 be+ 558 be+
621 it- be+ 415 I- 154 he- have+ 215 it- be+
445 he- have+ 246 I- be+ 150 it- be+ 195 you-
315 he- be+ 155 we- 91 he- be+ 183 I-
290 not+ 134 he- be+ 89 I- 137 we-

The words ’city’, ’house’, ’village’ and ’world’ are all similar. These are shown
below.

33



city house village world
1332 total obs 3330 total obs 1019 total obs 3024 total obs

count disjunct count disjunct count disjunct count disjunct
258 the- 598 the- 157 the- 646 the-
96 the- ,+ 275 the- ,+ 57 the- .+ 265 the- .+
94 the- .+ 226 the- .+ 57 the- ,+ 202 the- ,+
27 the- and+ 80 a- 23 street+ 158 in- the-
24 this- 79 into- the- 21 the- Mbonga+ 117 in- the- .+
17 the- of+ 58 the- and+ 14 a- 112 in- the- ,+
15 The- the- .+ 54 his- 12 their- 82 this-
14 the- the- .+ 48 my- 11 the- and+ 43 .+
13 a- 45 the- was+ 9 the- of+ 39 the- is+

The above table clearly indicates why the cosine similarity between these four
words is high. Yet, it is also disappointing: the primary reason is that they all take
the determiner ’the’, and occur at the end of phrases (the- ,+) or at the end of sentences
(the- .+). This seems superficial, at best. After that, there’s not so much similarity, and
what there is still falls back onto the presence of determiners.

The similarity above is predicated on the frequent pairing of a word with a deter-
miner. The pairing itself is correct, but perhaps not entirely significant: the word-pairs
that needed to appear in the MST parse to extract these disjuncts had almost abysmally
low MI values. They were clearly high enough to allow the MST parse to move for-
ward, but are not otherwise terribly promising. They are shown below.

word-pair fractional mi
the city 2.7827

the house 2.4228
the village 2.6635
the world 3.0578

city . 1.0167
house . 1.0095
village . 0.8765
world . 1.2255

Recall that, for word-pairs, that MI scores below 4 are considered to be quite poor.
That the scores above are poor is not surprising: determiners link with almost any noun,
but not to verbs: this is enough to get them into the 2-3 range for MI. By contrast, the
period can appear after almost any word, except maybe for prepositions, adjectives and
adverbs. This is apparently enough to drive the MI positive, but that’s all.

The above suggests that using the raw observation count to compute the cosine
similarity is perhaps not the best way to compute similarity.
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Score Cosine
The above results suggest that perhaps the correct way to assign a score is to total up
the word-pair MI scores for each disjunct, and use that to form a cosine. That is, define

sc(w,d) = ∑
c∈d+

mi(w,c)+ ∑
c∈d−

mi(c,w)

where d+ ⊆ d is the subset of connectors that connect to the right, and d− ⊆ d is the
subset of connectors that connect to the left. Here, c ∈ d is simply one of the words
that the connector is connecting to. Then, mi(w,c) and mi(c,w) are the word-pair MI
scores. The cosine similarity might then be defined as

sos(w1,w2) =
∑d sc(w1,d)sc(w2,d)√

∑d sc2(w1,d)
√

∑d sc2(w2,d)

The idea here is that connectors to punctuation, and connectors to determiners,
which might be observed quite often, but have a naturally low MI score, will contribute
relatively little to the overall cosine similarity.

Why is this a reasonable thing to do? Well, the previous two tables already sug-
gested that the four words ’city’ ’house’ ’village’ and ’world’ should be placed into the
same grammatical class, simply because of the high frequency with which they connect
to a determiner. More subtle differences carrying a semantic signal might be getting
washed out in this process. Perhaps the sos cosine score would be more sensitive to
those processes.

Prototype Theory
Another way to interpret the table on the previous page is that the highest MI entry
defines the “prototype” for the class of similar words. That is, the cosine score sug-
gests that (world, city, village, house) should be taken as a grammatical category. The
highest-MI entry suggests that “world” should be taken as the prototype for this class.

Here, the intended sense for “prototype” is that of “prototype theory” of cognitive
semantics, which suggests that a good representative of a class provides the underlying
“meaning” of an otherwise flat description of the extensional and intensional qualities
of a set. To create a brige to the statistical tools available here, one might say that an
intensional or an extensional description of a class is a flat, unweighted collection of
features or members. In fact, some features or members are more important than others,
so that a “robin” is a better representative of “birds” than a “penguin” is. There are at
least two ways of judging a “better representative”: frequency, and MI. A frequency
approach means that “robins” are more prototypical of birds simply because cultural
English speakers (Americans, Europeans) see robins more frequently than penguins,
and so are aculturated to this prototype. The MI approach means that robins are more
prototypical of birds because they have a high MI, when correlating intensional and
extensional qualities. That is, a large value for

mi(robin) = ∑
f eat∈bird− f eatures

mi(robin, f eat)
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states that robins have many bird-like qualities. Likewise, feathers are more represen-
tative of birds than weight or color, suggesting a large value for

mi( f eather) = ∑
bird∈birds

mi(bird, f eather)

where the individual MI score was computed over all pairs (thing, feature) over the
class of all things and all features.

What determines a category itself? Wikipedia summerizes this aptly:

• maximize the number of attributes shared by members of the category, and

• minimize the number of attributes shared with other categories.

Taking “attribute” to be a disjunct, and “member” to be a word, this suggests that a
grammatical category is a coolection of words that share many disjuncts (large overlap,
large cosine similarity), while minimizing the disjuncts shared with other words (large
MI).

The later point is perhaps the most important: MI scores provide a sense of “mutual
exclusion”: a word-disjunct pair has a high MI exactly when that disjunct is not shared
with other words. This motivates a measure such as the “quality cosine”, given below.

Quality Cosine
Some disjuncts are more important than others. This is indicated by the word-disjunct
MI, and gives a different perspective than the word-disjunct frequency. This suggests
that either a cosine score, or an MI-weighted overlap similarity may capture the gram-
matical similarity of words better.

The motivation for using cosine similarity is to find pairs of words that act in a
grammatically similar fashion: they are used in the same way, with the same kinds of
disjuncts. However, observational counts are subject to the vicissitudes of the input
text: perhaps, the “quality” of the disjunct itself is better judged by it’s MI. A dis-
junct could be judged as being “high quality” if mi(w,d) = MIpair(w,d) as defined in
equation 2 on page 19 is high. This motivates a “quality cosine”:

qim(w1,w2) =
∑d mi(w1,d)mi(w2,d)√

∑d mi2(w1,d)
√

∑d mi2(w2,d)

But what if the high quality is based on a pathetically small number of observations?
Whenever one has a small number of observations, one has, almost automatically, a
high MI value, simply because these two things are seen together, and nothing else is.
Perhaps there should be some observational weighting. One can contemplate defining
pi(w,d) = p(w,d)mi(w,d) and so the cosine

pim(w1,w2) =
∑d pi(w1,d)pi(w2,d)√

∑d pi2(w1,d)
√

∑d pi2(w2,d)

The suitability of these different means of judging similarity is not clear.
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Overlap Similarity
Cosine similarity is perhaps too strict: it judges that two words are similar when they
share not only the same collection of disjuncts, but have these occur with the same
frequencies. Perhaps its enough to say that two words are grammatically similar, if
they simply share the same set of disjuncts. This suggests ignoring the relative counts,
or at least, sharply filtering them. Thus, the overlap similarity can be defined as

ovl(w1,w2) =
∑d σ(N(w1,d))σ(N(w2,d))
∑d σ(N(w1,d)+N(w2,d))

where σ(x) is some sigmoid function. In the most basic case, its a step function:
σ(x) = 1 if x >C for some constant C and zero otherwise. Each term in the numerator
sum is one only when both disjuncts are present. Each term in the denominator is one
when either disjunct is present.

This similarity measure essentially boils down to a normalized cylinder-set mea-
sure. That is, instead of interpreting the disjuncts as a basis for a vector space, they can
be taken as independent observations in a Cartesian product space. This makes more
sense than pretending that these form a vector space. Why is that? What makes the co-
sine angle, and vector dot products so appealing, is that they are preserved by rotations;
yet there really is no reason to expect or desire rotational symmetry. In short, the idea
that we are dealing with vector spaces give the wrong idea of what’s going on: its more
appropriate to view the set of disjuncts as elements of a product space. Product spaces
have a natural measure: the cylinder-set measure. The overlap similarity is essentially
µ(A∩B)/µ(A∪B) with µ the Borel measure, and the intersection/union being taken
over the associated disjunct sets.

Continuing in this vein, what should be taken as the measure µ(A) of A? The
counting measure is a natural choice; that is, µ(A) = |A| being the number of elements
in set A. Because we also have a count associated with the members of the set, we
can consider using the lp norms for the measure. That is, |A| is just the l0 norm;
perhaps µ(A) = ‖A‖p could also work. For the purposes here, this may be enough;
note, however, that only l0 and l1 satisfy one of the axioms of measure theory: namely,
that when A∩B =∅ then µ(A∪B) = µ(A)+µ(B). The other lp norms do not satisfy
this.

The (opencog matrix) module currently implements an overlap similarity which
computes the l0-norm based similarity:

ovl0(w1,w2) =
|{d s.t. 0 < N (w1,d)}∩{d s.t. 0 < N (w2,d)}|
|{d s.t. 0 < N (w1,d)}∪{d s.t. 0 < N (w2,d)}|

where {d s.t. 0 < N (w,d)} is the set of disjuncts d such that the cset (w,d) was ob-
served at least once. As always, |{x}| is the number of elements in the set {x}.

Some experimentation was done with this similarity measure, but the results were
not particularly impressive. What does become quickly apparent is that the most fre-
quently observed words will necessarily have a low similarity to the low-frequency
words. This is because the high-frequency words will have a large number of disjuncts
observed with them, thus causing the denominator to grow large. The numerator, by
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contrast, stays small, essentially limited by the number of disjuncts observed on the
low-frequency word. This behavior is not what we want. Intuition suggests that we
really do want to be able to compare words, independent of how frequently they occur.

This suggests a modified form of overlap similarity, by normalizing to a common
count. That is, one should work with N(w,d)/N(w,∗), which can be understood as
the normalized probability of observing a disjunct d on some word w. So, arrange the
words such that N (w1,∗)>N (w2,∗) and define K (w1,d)=N (w1,d)N (w2,∗)/N (w1,∗)
– this makes the counts on w1 directly comparable to those on w2, giving

rovl(w1,w2) =
|{d s.t. 1≤ K (w1,d)}∩{d s.t. 1≤ N (w2,d)}|
|{d s.t. 1≤ K (w1,d)}∪{d s.t. 1≤ N (w2,d)}|

That is, the condition 1≤ N (w2,d) simply tests for the presence or absence of disjunct
d on w2, while K (w1,d) gives the probability of observing disjunct d on w1, if w1 had
been observed as often as w2.

The above considerations suggest a more appropriate definition for overlap simi-
larity that allows for frequency-independent observations: namely

ovl(w1,w2) =
∑d σ( f (w1,d))σ( f (w2,d))
∑d σ( f (w1,d)+ f (w2,d))

with f (w,d) = N(w,d)/N(w,∗). In this form, the numerator now starts to resemble
the numerator of the cosine similarity measure: both the cosine numerator, and this
numerator are computing a kind-of overlap or intersection of sets of disjuncts. The
denominators differ. Based on gut intuition, the above measure may be be more suitable
for judging similarity than the cosine measure, precisely because it emphasizes the set-
like qualities of connector sets, as opposed to vector-like qualities.

Disjunct Subsets
The above line of thinking suggests that another interesting comparison can be made
by looking for a subset relationship between the disjuncts on different words. For
example, transitive verbs should have all the connectors that intransitive verbs do, plus
some more.

The overlay similarity can be adapted for this purpose: two sets obey a subset
relation A⊂ B if A∩ (1−B) =∅.

This re-affirms the previous observation: we expect connector-sets to behave in a
set-like fashion, not a vector-like fashion.

Quality Overlaps
Overlap alone may be too weak: again, some of the observed disjuncts may just
be junk, or may correlate poorly with the word. This suggests several different ap-
proaches. One would be to trim the dataset to discard low-MI word-disjunct pairs,
before computing overlap. Another would be to weight the overlap with the MI (dis-
carding negative MI values).
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Connector Similarity
There is another, dual kind of similarity that is very different from the above proposals.
A single disjunct is an ordered list of (pseudo-)connectors:

d = (c1,c2, · · · ,ck)

where each pseudo-connector is a word, and a direction indicator. We can judge two
connectors to be similar, and thus, two words to be similar, if they appear in a large
number of disjuncts that would be identical, but for that one connector.

There are some practical difficulties of writing code to discern this.

Word-Pair Cosine Similarity
To correctly gauge the advantage of disjunct-based techniques, one should compare
them to the same kinds of measures, but applied to word-pairs, instead of word-disjunct
pairs. For example, the disjunct-based cosine similarity, can be contrasted against the
simpler word-pair-based cosine similarity. This is given by

simpair(w1,w2) =
∑w Npair(w1,w)Npair(w,w2)

len(w1)len(w2)

where len(w) is the root-mean-square length (Euclidean length) of the pair vector:

len(w) =
√

∑
v

Npair(w,v)Npair(v,w)

and Npair(w,v) is the count of having observed the ordered word-pair (w,v). Equiva-
lently, writing the normalized frequency of observing a word pair as p(w,v)=N(w,v)/N(∗,∗),
this similarity can be written in the form

simpair(w1,w2) =
∑w p(w1,w)p(w,w2)√

∑v p(w1,v)p(v,w1)
√

∑v p(w2,v)p(v,w2)

Note that this similarity measure is NOT symmetric: sim(w1,w2) 6= sim(w2,w1). This
is because it’s built out of a manifestly non-symmetric count: p(w,v) 6= p(v,w) and
should really be written as p(w,v) = p(R;w,v) with the relation R encompassing all
of the constraints of pair-wise word relationships (including, for example, that the pair
might have been extracted from a random planar tree parse). Of course, one could
construct a symmetrized similarity measure.

The point here is that this measure treats words as similar with they link, pair-wise,
to the same kinds of words, with the same kinds of frequencies. This is not unlike
the similarity that the disjunct-cosine is measuring, except that the disjunct carries
additional grammatical information with it: it captures more complex relationships
between the words in a sentence.
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Cosine Information
The cosine similarity was defined as

sim(w1,w2) =
∑d N(w1,d)N(w2,d)√

∑d N2(w1,d)
√

∑d N2(w2,d)

which, after dividing by N(∗,∗) so that p(w,d) = N(w,d)/N(∗,∗), gives the equivalent
expression

sim(w1,w2) =
∑d p(w1,d)p(w2,d)√

∑d p2(w1,d)
√

∑d p2(w2,d)
Comparing this to the expression for mutual information suggests that using the vector
support, instead of the vector length, could be interesting. In particular, these might be
interesting:

com(w1,w2) =− log2
∑d p(w1,d)p(w2,d)

p(w1,∗)p(w2,∗)
Perhaps the following is closer to the “original intent” of mutual information: let
dot(w1,w2) = ∑d p(w1,d)p(w2,d)

dmi(w1,w2) =− log2
dot(w1,w2)dot(∗,∗)
dot(w1,∗)dot(∗,w2)

Or even

cmi(w1,w2) =− log2
sim(w1,w2)sim(∗,∗)
sim(w1,∗)sim(∗,w2)

The sim(∗,∗) serves to normalize the entire calculation, so that one is effectively com-
puting with norm-sim(w1,w2) = sim(w1,w2)/sim(∗,∗). Some experiments cmi were
performed, and it quickly became apparent that cmi does “the wrong thing”: it sin-
gles out pairs that have a lot to do with each other, but little to do with anything else.
Which discriminates against the clusters of similar words, which is not what we want.
We don’t want strange, unusual pairings; we want common, likely pairings. The level
of discrimination can be severe: some really, really bad pairings show up, but only
because they are unlike anything else. This score is strong when sim is weak, and is
essentially picking up the tail-end of the sim distribution.

One can be inspired to write some crazy concoctions:

mim(w,d) =− log2
p(w,d)

∑w,d p2(w,d)

I don’t know what to call these; the first seems to be some kind of “cosine informa-
tion”, the second, some sort of “mutual length” device.

Cosine Similarity scatterplots
The scatterplot in 1visualizes the cosine similarity between 797 word-pairs.25 The
rows and columns are ranked by frequency of word occurrence, so that the single-most-
frequently occurring word is at the upper-left, with less and less frequently occurring

25Generated with ’scatter.scm’
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words proceeding to the right, and downwards. The color scale is such that red repre-
sents 1.0, yellow represents 0.75, green is exactly 0.5, and blue is 0.25 or less, fading to
black. This is for the same EN_PAIRS_RFIVE_MTWO dataset as above, and examined
in detail in section on page 28. That is, it computes the similarity between the 797
words whose length is greater than 128. Note that cosine similarity is symmetric; this
figure is necessarily symmetric about the diagonal. The diagonal can be seen as a red
line, representing a similarity of 1.0.

Figure 1: Cosine similarity scatterplot

The tartan pattern indicates that some words are very unlike others, and that most
words are very unlike one-another.

It would be nice to re-arrange (permute) the rows and columns to bring the matrix
into quasi-diagonal form. This is easier said than done. The graph 2 shows the same
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Figure 2: Quasi-diagonal cosine similarity

data, with a different ranking. This time, the first word is the the LEFT-WALL, and
the next word is the one word, out of 796, that has the highest cosine similarity to the
period. Next comes the word, out of the remaining 795, that has the highest cosine
similarity to the last.26 This continues on down the list, so that word-pairs with the
highest similarity are next to each-other, in the list. Effectively, we get the two-highest
similarities for each word: the highest being to the word right before, and second-
highest to the word right after. The list is organized so that the highest similarity pair
occurs in the upper-left. The pairs least-similar to anything else end up on the lower-
right. The color scheme is as before.

26Computed with the ‘dranked‘ function, and the ‘dranked-long‘ list graphed, from the ‘disjunct-stats.scm‘
file.
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This ranking exposes block-diagonal structure in the dataset. The block in the
upper-right consists entirely of punctuation and various capitalized words. The mid-
dle portions are quite interesting. The full list of 797 words is shown in table on the
following page. Its sort of interesting to read. So, the word that is most similar to
the LEFT-WALL is the double-dash – perhaps not to surprising, as the double dash is
often used to start new sentence phrases. That various forms of punctuation follow is
not surprising.

After this are various capitalized words. As noted previously, capitalized words
are observed far less frequently than their u-capitalized counterparts – usually only
one capitalized word per sentence! Thus, capitalized words have far fewer disjuncts
on them, thus making it easier for them to appear superficially similar, when they
really should not be. Despite this, it is reassuring to see “Where Who What Why
How” occur in succession. Other confidence-instilling sequences include “2 1 4 3
A” and some names: “Mai Demelza Richard John George”. Then another reassuring
sequence: “nothing something anything everything”. Why “George” should be similar
to “nothing” is best left unasked. But we’ll ask anyway.

The block-ranked words are a kind of “stream-of-consciousness” with regard to
similarity. This is shown in the table below.27 So, the numbers are all quite similar to
each other, but the letter ’A’ is not very similar to ’3’. It just so happens that ’A’ is
more similar to ’3’, than any other subsequent word. ’A’ and ’Mai’ are not similar, but
then all of the given names are quite similar. Next, it turns out that ’George’ and ’noth-
ing’ really don’t have very much to do with one-another. And so the block-diagonal
structure is exposed.

27Created with the ‘prt-sim‘ function.
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Table 1: Block-ranked words
LEFT-WALL – ... .. .... *** Two Bit - The “ And But So Perhaps Though When As
Then While If Have Can Did Do Will Thank Are Where Who What Why How Or Now
Here This That It There He She I You We They Some One Most Instead However Be-
sides Well Oh Ah No Yes Yeah Good Ham 2 1 4 3 A Mai Demelza Richard John George
nothing something anything everything it there who which that what where when until
as because since if before while little small large good great second woman man child
boy girl king house city village world town country ship sun latter land others children
people men things them us me him her his my your their our the this every another
leave take get find see hear speak move stop fight be make give show keep bring meet
follow call ask tell help go live stay talk turn run change use read say understand re-
member know think suppose guess hope promise believe mean am myself fear thought
knew saw felt found called happy fine certain new single word moment minute year day
night evening morning way book letter party distance light fire forest room air sea earth
ground floor table subject story line case question place time thing person family soul
heart body own wife brother sister father mother daughter son hands face feet mouth
eyes hand mind friends friend thoughts arm arms chest staff words office past water
door window truth same whole best present first last least once home back down up at
over on in by from upon under through into for with such having like quite only also
still born gone already been seen done taken known given brought made making tak-
ing after above among between of all near against to will can cannot may must might
would should could did does was is seems seemed appeared used began tried wanted
needed meant came went turned continued said says spoke had has always never ever
usual possible well soon far much late bad strong big young white black dark blue
closed opened open hold put stand sleep answer try return come enough ready trying
going supposed beginning rest sound corner direction presence name side power nature
one most part kind sort number lot bit couple matter group other two three four five ten
several many some out length force death life voice hair husband lips head shoulder
eye bed business point state view sense feeling thinking saying now indeed therefore
however sir yes God dear lady poor old dead wrong right here doing glad afraid sure
sorry coming close hard long short real different clear probably certainly simply just
almost not hardly easily feel have shall wish need want seem next following Queen
captain wall future general London work himself herself smiled sighed nodded asked
replied cried got stood sat looked look smile chance reason means longer doubt idea
end edge bottom top account instead perhaps and or but though although then thus yet
even really heard left lost passed met were are do love told gave took held followed
behind within half an raised free better less more rather often true alone again ) too so
very pretty a its these those anyone you we they he she North Jack Pitch Ross Jim Dal-
las Telzey Goth Sir san together along off away around round about how why – ; , : . . .
! . ? — All From In On By To With After For It’s It’s Not Just Even At See paragraph
spirit cause middle sight front spite charge form attention throat breath money law hu-
man few hundred thousand years hours minutes days times later ago ’ " ” ’ _ etc Mr
Mrs Dr sama don ul looking especially nor either each any no finally suddenly slowly
quietly Mary King Lord Lady Miss Captain I’m I’m My Her His Your ( ‘ Illustration
Stats Category Rating Fandom Character Warning Is Really Please Father Mother May
course being without let set sitting drawing living high heavy cold public fact particu-
lar full relief order hour individual General outside both talking able happened exactly
else hell non re self S t six natural than fell deep wide deal agree don’t don’t didn’t
didn’t received paid care drop provide York agreement ape medium author laws terms
works forward forth shook enjoyed originally access permission instance chapter com-
ment St Princess Old New Summary Notes Our THE # * Of { including Prince notes
states copies copy - YOU THIS OF OR Section CHAPTER Chapter + | Project eBook
eBooks Gutenberg } P tax States fee electronic associated Archive Foundation United
& copyright Literary donations License trademark distribution refund Van distributing
Ooal Additional Posted archive Tags
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Pair Similarity
2 .. 1 0.881
1 .. 4 0.791
4 .. 3 0.835
3 .. A 0.375

A .. Mai 0.351
Mai .. Demelza 0.615

Demelza .. Richard 0.515
Richard .. John 0.602
John .. George 0.648

George .. nothing 0.342
nothing .. something 0.483
something .. anything 0.549
anything .. everything 0.369

everything .. it 0.496
it .. there 0.743

there .. who 0.416
who .. which 0.618
which .. that 0.580
that .. what 0.730

what .. where 0.722
where .. when 0.830
when .. until 0.886

Reading through the list of 797 words in table on the previous page reveals a lot of
interesting runs. All this suggests that cosine similarity really is doing the right thing.
Equally reassuring are the failures of similarity: the end of the list of 797 words is
populated with Gutenberg license boilerplate words. This is good: they are at the end
of the list because they don’t fit into any other grammatical usage patterns. They don’t
fit because they have been observed hundreds of times, which propels them into the
high-frequency category; yet, since they always appear in set phrases, they can’t be
similar to anything else.

Filtering
An earlier draft of this report showed a very different figure, which turned out to have
been created based on what seemed to be a valid assumption, but turns out not to be so
wise. It deserves a some discussion here, which is resumed in a later section.

The idea (recaptured below) is that it can be a good thing to filter out noisy data.
For example, one may choose to ignore words that have not been seen many times.
This is the cut done up above: there are only 797 words observed with a length of 128
or greater. This is a convenient number only because it allows a 797-pixel-wide color
plot to be made. A different cut might exclude words that were observed less than N
times.
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Another possibility, and this seems to be the fatal one, is to exclude disjuncts that
are seen only a handful of times. Superficially, this seems like a very plausible thing to
do. In practice, this turns out to be an almost completely disastrous cut. Setting it too
high renders almost all capitalized words identical to one-another, having a similarity
of exactly one. Capitalized words are observed only infrequently; discarding low-
frequency disjuncts leaves the capitalized words almost naked, and thus essentially
identical. Just about all of them connect to the LEFT-WALL, since they are the first
word in a sentence, and so all of them share a very high observation count of links to
LEFT-WALL, and low observation counts of links to anything else. Ergo: they are all
similar, since they all start sentences.

The damage doesn’t stop there. It turns out that such trimming also raises similarity
across the board: it ends up so that everything seems to be pretty darn similar to every-
thing else, thus erasing too much of the “signal” that we are looking for. The original
hope was to raise the signal-to-noise ratio by applying judicious cuts; but hope is not
enough. Injudicious cuts can destroy the signal all too easily. Careful data analysis is
needed; blind trust is not enough.

The End
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