
PCA “Neural” Classifier

Linas Vepstas

June 6, 2017

Abstract
This describes the classifier algorithm I plan to implement, to plce words into

grammatical categories. Its simple, stright-forward, and a real CPU-cycle burner.
This is an algo I invented out of thin air, it resembles PCA/Markov in the early
stages, a neural net in the middle stages, and true dimensional reduction in the last
few steps. This sounds fancy, but really, its really very simple.

Introduction
The next step in the language-learning process is what I’ve been calling “clustering”.
It really needs to be something more like factor analysis, or better yet, sparse PCA.
Except that’s not right, either.

What is needed is a recognizer,as follows. Consider
−→
b = ∑n bnwn be a vector, with

the wn being individual words, and the bn being weights. Plain-old Principal Com-
ponent Analysis (PCA) computes real-valued weights bn. It’s problematic, because
potentially all of the weights are non-ero for all of the words. Sparse PCA computes
real-valued weights bn such that only some small number of them are non-zero. This
is much better. But what is really needed is a classifier: a set of bn that are either zero
or one, indicating the membership of a word wn in some class of words. (Note, by
the way, that a word might belong to multiple classes, for example, according to its
part-of-speech, or it’s meaning.)

This suggests the following neural-netish variant on iterative PCA (entirely of my
own design, cribbed from nowhere at all, just popped into my head as I sit still immo-
bilized.)

1. Start with bn = 1/
√
|w| where |w| is the number of unique words. This starting

point is a unit-length vector, i.e.
∣∣∣−→b ∣∣∣ = 1. Its convenient to change notation,

here, and write b(w) for the value of
−→
b at word w. That is, b(wn) = bn is the

same thing.

2. Let p(w,d) be the frequency matrix, as defined before: p(w,d)=N(w,d)/N(∗,∗),
and where N(w,d) is the number of times word w has been observed with disjunct
d. As noted earlier, N(w,d) is very large and very sparse: typically 200K×4M
in recent datasets, with only 1 entry out of 215 being non-zero.1 Compute the

1I plan to send out the revised, expanded statistical analysis “real soon now”.

1

double-sum
s(v) =

[
PPT b

]
(v) = ∑

d
p(v,d)∑

w
p(w,d)b(w)

which is basically a pair of dot products. Its still a large, time-consuming com-
putation, even for sparse vectors.

3. Normalize: set
−→
b ←−→s /

∣∣−→s ∣∣ so that
−→
b is of unit length.

4. Repeat these steps k times: go to step 2 and run the summation again. The
repetition here is the ’power iteration’ or the ’von Mises iteration’ method for
computing the largest eigenvalue of

[
PPT

]
. It is not guaranteed to converge, and

if it does, it might not do so quickly. But we deal with this in the next step, so
its sufficient to keep k small, just enough to get a trend going. Another way to
think of this is as a Markov process (specifically, a Markov chain). That is, the
matrix

[
PPT

]
will behave essentially as a Markov chain, and iteration on it just

identifies the primary Perron-Frobenius stable state (step 3 makes it Markovian,
by preserving to total probability measure). That is,

[
PPT

]
defines a weighted

adjeaceny matrix for a graph, and iteration creates a measure-preserving process
(walk) on this graph.

5. After the above repetitions, apply some standard neural-net sigmoid function to−→
b . That is, set b(w)← σ(b(w)) for some sigmoid. This has the effect of driving
some of the elements to zero, and others to one.

6. Repeat this m times: go to step 2, and repeat steps 2-5. Viewing this as a dy-
namical system, the effect of the sigmoid function is to force the system into a
block-diagonal form, with the vector

−→
b identifying a highly-connected block.

Another way to look at this is as a graph factorization algorithm: the vector
−→
b

is identifiying a well-connected subgraph, which is only weakly connected to
the rest of the graph. The vector (viewed as a measure-preserving dynamical
system) is spending most of its time in one particular block. Again,

[
PPT

]k,
the k-th power iterated matrix from step 4, can be thought of as a surrogate for a
weighted graph adjacency matrix. A third way of thinking of this is as an m-layer
neural net, with the link weights between one layer and the next being given by[
PPT

]k. All three ways of looking at this are essentially equivalent: a measure-
preserving dynamical system, a chatoic and mixing process on a graph, or as an
m-layer neural net. Pick your favorite.

7. Classify. Pass the vector
−→
b through the step function, i.e. b(w)← Θ(b(w))

where Θ(x) = 0 if x < 1/2 and Θ(x) = 1 if x > 1/2. The step function is a
super-sharep sigmoid. This step identifies and isolates an active, well-connected
subgraph of

[
PPT

]
. It identifes a square block, of dimension |b|× |b| where |b|

is the total number of non-zero entries in this final
−→
b . To belabor the point: the

block-matrix is explicitly

B(v,w) = b(v)b(w)∑
d

p(v,d)p(w,d)

2

The non-zero elements of this final
−→
b identify a class of words that can be con-

sidered to be grammatically similar or identical. This is the “clustering” step.

8. Associated with this class of words is a disjunct set, the “average disjunct” for
the class. It can be taken to be the set {d|0 < ∑w b(w)N(w,d)}. The observed
counts associated with this set can be taken to be N(b,d) = ∑w b(w)N(w,d) and
the frequencies similarly: p(b,d) = ∑w b(w)p(w,d). From here-on, the set of
words b ≡ {w|0 6= b(w)} can be treated as if it was an ordinary word, behaving
like any other, with the indicated disjuncts, counts and frequencies.

9. Since words can have have multiple meanings, or rather, multiple different kinds
of grammatical behaviors based on thier part of speech, the identified words
need to be subtracted, en block, from the matrix p(w,d), and then the process
repeated, to identify another class of words. Put another way, if b is to be added
to the set of words, as “just another word”, then the frequencies p(b,d) have to be
subtracted from the matrix P, and shunted to this new “word”, so as not to loose
the overall normalization. That is, one must preserve the identity ∑w,d p(w,d) =
1. So define, in the next iteration

p(w,d)←

{
p(b,d) if w = b
p(w,d)−b(w)p(b,d) otherwise

(Hmmm. This may not be right, its late and I’m tired). This still sums to the
identity except that now some of the values might go negative, and we don’t
want that.

10. And so we get to what should be called step zero: We want to truncate, and
discard the negative entries. This should have been carried out as an actual step 0:
a pre-conditioning of the matrix: some noise filtering, e.g. discarding all words
that were observed less than a handful of times, discading rare or preposterious
disjuncts. Pre-conditioning in this way will have the effect of removing some
(possibly many) of the words from the matrix: the size of the matrix shrinks.
This is the step where the actual dimensional reduction takes place: the size of
the set of words is shrinking, as they get classified into sets.

11. Go to step 0 and repeat, until the preconditionaing and noise-removal has left
behind an empty matrix (or alternately, a matrix where all words have been clas-
sified into some group). So, for example, words which have only one part-of-
speech or meaning would (hopefully should) get classified after just one step;
words that are more complex, and have two parts of speech, would require at
least two iterations. This is perhaps optimistic; I expect dozens of iterations to
get anything vaguely accurate.

12. There’s one more step. After the formation of the class b, we arrive at a situa-
tion where no (pseudo-)connectors connect to b directly. Instead, all disjuncts
connect to words inside of b. But this is a problem: we don’t know if any given
connector actually connects to some w ∈ b or if it connects to the same w, but
outside of b. (e.g. if b are nouns, then does “saw+” connect to “saw” the noun,

3

or “saw” the verb?) Thus, after some small number of iterations of step 11, there
needs to be a re-parse of the entire text, using these newly discovered classes of
words.

That’s it. I think this should work fairly well. Clearly, there are many nested loops, and
so this is potentially a very time-consuming computation. The number of iterations k
and m need to be kept small, and the classification in step 11 needs to be kept greedy,
because step 12 is expensive. An alternate strategy is to brutally precondition p(w,d)
to make it as small as possible; but this risks throwing out the baby with the bathwater:
early on, we want to cluster together the rare, obscure, unused words as best as pos-
sible into arge bins, and then devote large CPU resources to correctly classifying the
remaining much smaller set of verbs and prepositions, which we know, a priori, to be
complex and difficult, due to thier grammatical variability.

The End

References

4

