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Abstract

Noise is often used in the study of open systems, such as in classical Brownian motion

and in Quantum Dynamics, to model the influence of the environment. However generalising

results from Gödel and Chaitin in mathematics suggests that systems that are sufficiently rich

that self-referencing is possible contain intrinsic randomness. We argue that this is relevant

to modelling the universe, even though it is by definition a closed system. We show how a

three-dimensional process-space may arise, as a Prigogine dissipative structure, from a non-

geometric order-disorder model driven by, what is termed, self-referential noise.

Introduction

For over 300 years theoretical physics has very successfully modelled reality using geometrical
models of the phenomena of space and time, and with deterministic fields and objects attached
to the geometrical object which we call space. However there are indications from the quantum
theory that there are processes, as in the Aspect experimental study[1] of the Einstein-Podolsky-
Rosenfeld(EPR) effect (see Bell[2] for discussion), that a fundamental non-local random connect-
edness is needed to understand the quantum measurement process. For this and other reasons
there have been attempts to construct more fundamental models of reality that do not begin with
the assumption of an a priori geometry, and which are known as pregeometric models[3]. However,
even extant pregeometric modellings of reality have had no success in explaining the phenomenon
of space, and in particular why space is effectively three dimensional for most phenomena. As well
the strong belief in the universality of the deterministic time evolution of physical systems (with
the exception perhaps of the quantum measurement processes) does not take account of funda-
mental limitations that first began to appear with the discoveries of Gödel in mathematical logic.
∗Contribution to the 2nd International Conference on Unsolved Problems of Noise, Adelaide 1999.
†E-mail: Reg.Cahill@flinders.edu.au, Chris.Klinger@flinders.edu.au
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Subsequent developments of Gödel’s theorems by Chaitin[4] led to the discovery that mathemat-
ical systems sufficiently rich that self-referencing is possible contain intrinsic randomness. This
appears to indicate a fundamental dichotomy between the limitations indicated by mathematic
logic and the assumption of absolute determinism in theoretical physics. We argue that the resolu-
tion of this dichotomy is relevant to modelling the universe, and we show how a three-dimensional
process-space may arise from a non-geometric order-disorder model as a Prigogine[5] dissipative
structure driven by, what is termed, self-referential noise (SRN). We call this noise SRN to indicate
its relationship to Gödel’s theorems. However, note that this noise is not itself self-referential and
nor is the model considered herein. Hence while noise is often used in the study of open systems,
such as in classical Brownian motion and in Quantum Dynamics[6], to model the influence of the
environment, here we argue that in the case of the universe, which by definition is a closed system,
we must nevetheless use noise - not to take account of an environment, but to model the limitations
indicated by logic[7, 8]. Patton and Wheeler[9] conjectured some time ago that Gödel’s results in
mathematics might be relevant to understanding cosmogony. For reasons discussed elsewhere[7, 8]
we call this system a Heraclitean Process System (HPS).

Process Systems

Modelling reality at a fundamental level faces the problem of what to begin with? In [7, 8] we
proposed a resolution to this problem by appealing to the phenomenon of self-organising criticality
(SOC)[10]. In the proposed bootstrap model start-up components (called monads) acquire a self-
consistent meaning only as we reveal the fractal structures (i.e. criticality) that emerge. SOC
systems have the property of universality, i.e. the behaviour of the system at a self-organised
critical point is not uniquely characteristic of individual systems. Smolin[11] has discussed the
possible relevance of SOC to cosmology.

The construction of a viable HPS can only be achieved at present by inspired guessing based
in part upon the lessons of Quantum Field Theory (QFT)(see [12]) and the peculiarities of the
quantum measurement process which indicate manifestations of non-linear and non-local random
processes[6]. Our first HPS-SOC model is described by a non-linear noisy iterative map[7, 8], where
the parameters α, β and γ and the matrix Bc, see (2a), simplify the analysis:

Bij → Bij − α(β−2B +B−1 + γBc)ij +wij, i, j = 1, 2, ..., 2M ;M →∞, (1)

We introduce, for convenience only, some terminology: we think of Bij as indicating the connec-
tivity or relational strength between two monads i and j (these monads acquire a meaning later).
The monads concept was introduced by Leibniz, who espoused the relational mode of thinking in
response to and in contrast with Newton’s absolute space. It is important to note that the itera-
tions of the map do not constitute a priori the phenomenon of time, since they are to perform the
function of producing the needed fractal structure which characterises universality in SOC. It is
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significant that this HPS is non-quantum, with the quantum phenomenon being emergent, see[7].

Bc =



0 +1 0 0
−1 0 0 0

0 0 0 +1
0 0 −1 0

.

.


(a), B =



g1

©
g2

g3

c1

c2


(b). (2)

The monad i has a pattern of dominant (larger valued Bij) connections Bi1, Bi2, ..., where
Bij = −Bji avoids self-connection (Bii = 0), and real number valued. The self-referential noise
wij = −wji are independent random variables for each ij and for each iteration, and with variance
η. Parameters satisfying α > β � η � γ result in identifiable emergent and evolving patterns.
With the noise absent the iterator converges to the condensate βBc (but with γ = 0 to one
of βRBcR−1 where the matrix R depends on the initial B). This behaviour is similar to the
condensate of Cooper pairs in QFT[12], but here the condensate (indicating a non-zero dominant
configuration) does not have any space-like structure. However in the presence of the noise, after an
initial chaotic behaviour when starting the iterator fromB ≈ 0, the dominant mode is the formation
of a randomised condensate C ≈ µ⊗ Bc + Bb, indicating Bc but with the ±1′s replaced by ±µi’s
(where the µi are small and given by a computable iteration-dependent probability distribution
M(µ)) and with a noisy background Bb of very small Bij .

The key discovery is that there is an extremely small (relative to M) self-organising process
buried within this condensate and which has the form of a three-dimensional fractal process-space,
which we now briefly explain. This structure is an example of a Prigogine far-from-equilibrium
dissipative structure[5], emerging from the unstructured condensate and driven by the SRN. Under
the mapping the noise term will produce rare large value Bij , and these Bij will persist under
the mapping (through more iterations than smaller valued Bij) and form fluctuating patterns of
connections, whose structure we now identify.

Consider the connectivity from the point of view of one monad, call it monad i. Monad i

is connected via these large Bij to a number of other monads, and the whole set of connected
monads forms a tree-graph relationship. This is because the large links are very improbable, and
a tree-graph relationship is much more probable than a similar graph involving the same monads
but with additional links. The set of all large valued Bij then form tree-graphs disconnected from
one-another; see Fig.1a. In any one tree-graph the natural ‘distance’ measure for any two monads
within a graph is the smallest number of links connecting them. Let D1, D2, ..., DL be the number
of nodes of distance 1, 2, ...., L from monad i (define D0 = 1 for convenience), where L is the largest
distance from i in a particular tree-graph, and let N be the total number of nodes in the tree. See
Fig.1b for an example.

Now consider the number N (D,N) of different N -node trees, with the same distance distri-
bution {Dk}, to which i can belong. By counting[8] the different linkage patterns, together with
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permutations of the monads we obtain (3). We may compute the most likely tree-graph structure
by maximising N (D,N) with respect to {Dk}. Fig.2 shows a typical result.

N (D,N) =
(2M − 1)!DD2

1 DD3
2 ...DDL

L−1

(2M −N)!D1!D2!...DL!
, (3)

Also shown is the approximate analytic form[13] Dk = 2N
L sin2(πk/L). These results imply that

the most likely tree-graph structure to which a monad can belong has a distance distribution {Dk}
which indicates that the tree-graph is embeddable in a 3-dimensional hypersphere, S3.
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Figure 1: (a) Rare and large components of B form disconnected tree-graphs, (b) An N = 8 tree-graph

with L = 3 for monad i, with indicated distance distribution Dk.
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Figure 2: Points show the Dk set and L = 40 value found by numerically maximising (3) for fixed

N = 5000. Curve shows D(k) = 2N
L sind−1(πkL ) with d = 3 and L = 40, showing excellent agreement, and

indicating a weak embeddability in S3.

We call these tree-graph B-sets gebits (geometrical bits). However S3 embeddability of these
gebits is a weaker result than demonstrating the necessary emergence of S3-spaces, since extra
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cross-linking connections would be required for this to produce a strong embeddability; for evidence
of this see [8].

The monads for which the Bij are, from the SRN term, large thus form disconnected gebits,
and in (2b) we relabel the monads to bring these new gebits g1, g2, g3, .. to block diagonal form,
with the remainder indicating the small and growing thermalised condensate, C = c1⊕ c2⊕ c3⊕ ...
In 2b the gi indicate unconnected gebits, while the icon © represents older and connected gebits,
and suggests a compact 3-space (see below). The remaining very small Bmn, not shown in (2b),
are background noise only.

A key dynamical feature is that most gebit matrices g have det(g) = 0, since most tree-graph
connectivity matrices are degenerate[8]. These det(g) = 0 gebits form a reactive gebits subclass (i.e.
in the presence of background noise (g1⊕g2⊕g3⊕ ..)−1 is well-defined and some elements large) of
all those gebits generated by the SRN, and they are the building blocks of the dissipative structure.
The self-assembly process is as follows: before the formation of the thermalised condensate B−1

generates new connections (large Bij) almost exclusively between gebits and the remaining non-
gebit sub-block (having det≈ 0 but because here all the involved Bij ≈ 0), resulting in the decay,
without gebit interconnection, of each gebit. However once the condensate has formed (essentially
once the system has ‘cooled’ sufficiently) the condensate C = c1⊕c2⊕c3⊕ ... acts as a quasi-stable
(i.e. det(C) =

∏
i det(ci) 6= 0) sub-block of (2b) and the sub-block of gebits may be inverted

separately. The gebits are then interconnected (with many gebits present cross-links are more
probable than self-links) via new links formed by B−1, resulting in the larger structure indicated
by the © in (2b). Essentially, in the presence of the condensate, the gebits are sticky.

Continuing studies[7, 8] suggest that this network of self-assembling gebits forms a three-
dimensional fractal process-space (the © in (2b) - essentially a Prigogine dissipative structure):
fractal because sub-networks of gebits are themselves formed into larger networks. It is this rapidly
expanding process-space that we associate with the phenomenon of space, and from the endophysics
of this space the condensate is completely non-local. It is also clear, finally, that the original mon-
ads can be interpreted as themselves being networks of connected gebits. For this reason we thus
have a bootstrap HPS[8] (i.e. the start-up components are identical in form to emergent compo-
nents). After a transient regime of expansion, dominated by the interaction of topological defects
produced during the early formation phase of the process-space, one would expect the process-
space to undergo an exponential expansion because the growth in the number n of gebits within
the process-space would be described by a growth-decay equation

dn

dt
= an − bn. (4)

This suggest that the HPS model may provide an explanation for the cosmological constant which
now appears to be firmly established from observational evidence[14, 15].

A process-space is not equivalent to an inert geometrical space. In particular this implies
a finite speed of propagation of any disturbance through the process-space and other distortion
effects, caused by the need for the disturbance to be processed by the formation, interconnection
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and finally decay of the gebits. Toffoli[16] has speculated about such phenomena and its possible
explanation of General Relativity-like effects within the area of Cellular Automata.

Conclusions and Open Questions

We have briefly discussed the problem which arises when we attempt to model and comprehend
the universe as a closed system without assuming high level phenomena such as space and time.
Our analysis is based upon the notion that a closed self-referential system, and the universe is ipso
facto our only true instance, is necessarily noisy. This follows as a conjectured generalisation of the
work of Gödel and Chaitin on self-referencing in the abstract and artificial game of mathematics.
To explore the implications we have considered a non-quantum non-geometric non-linear noisy
iterative map. The analysis of this map shows that the first self-organised structure to arise is
a dynamical Prigogine-like dissipative process-3-space formed from interconnecting pieces of 3-
geometry - the gebits. We suggest that the concept of a non-local intrinsic noise has been a major
missing component of traditional modelling of reality. As discussed elsewhere[7, 8] this model also
generates the phenomenon of the present moment effect - an effect missing from the Newtonian
and Einsteinian geometrical models, and an objectification process related to the phenomenon of
(classical) objects and to the behaviour of quantum detectors.

Both analytical and numerical studies have indicated that the interconnecting gebits form a
complex dynamical network once the system has cooled sufficiently for the non-local condensate
to have formed. However a key open question is the proof, probably analytical, that this network
is indeed three-dimensional. If this conjecture is confirmed then we would have for the first time
a model which predicts the emergence of the complex phenomenon of space, and one that is richer
than that used in the present day geometric modelling in physics.

We thank Dr Derek Abbott and members of the UPoN99 Conference Secretariat for their efforts
in organising this conference.
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