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Introduction

This book was written by Carlo Mazza and Charles Weibel on the basis of
the lectures on the motivic cohomology which I gave at the Institute for
Advanced Study in Princeton in 1999/2000.

From the point of view taken in these lectures, motivic cohomology with
coefficients in an abelian group A is a family of contravariant functors

Hp,q(−, A) : Sm/k → Ab

from smooth schemes over a given field k to abelian groups, indexed by
integers p and q. The idea of motivic cohomology goes back to P. Deligne,
A. Beilinson and S. Lichtenbaum.

Most of the known and expected properties of motivic cohomology (pre-
dicted in [ABS87] and [Lic84]) can be divided into two families. The first
family concerns properties of motivic cohomology itself – there are theorems
concerning homotopy invariance, Mayer-Vietoris and Gysin long exact se-
quences, projective bundles, etc. This family also contains conjectures such
as the Beilinson-Soule vanishing conjecture (Hp,q = 0 for p < 0) and the
Beilinson-Lichtenbaum conjecture, which can be interpreted as a partial étale
descent property for motivic cohomology. The second family of properties
relate motivic cohomology to other known invariants of algebraic varieties
and rings. The power of motivic cohomology as a tool for proving results in
algebra and algebraic geometry lies in the interaction of the results in these
two families; specializing general theorems about motivic cohomology to the
cases when they may be compared to classical invariants, one gets new results
about these invariants.

The idea of these lectures was to define motivic cohomology and to give
careful proofs for the elementary results in the second family. In this sense
they are complimentary to the study of [VSF00], where the emphasis is on
the properties of motivic cohomology itself. In the process, the structure of
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the proofs forces us to deal with the main properties of motivic cohomology
as well (such as homotopy invariance). As a result, these lectures cover a
considerable portion of the material of [VSF00], but from a different point of
view.

One can distinguish the following “elementary” comparison results for
motivic cohomology. Unless otherwise specified, all schemes below are
assumed to be smooth or (in the case of local or semilocal schemes) limits of
smooth schemes.

1. Hp,q(X,A) = 0 for q < 0, and for a connected X one has

Hp,0(X,A) =

{
A for p = 0
0 for p 6= 0

2. one has

Hp,1(X,Z) =





O∗(X) for p = 1
Pic(X) for p = 2
0 for p 6= 1, 2

3. for a field k, one has Hp,p(Spec(k), A) = KM
p (k) ⊗ A where KM

p (k) is
the p-th Milnor K-group of k (see [Mil70]).

4. for a strictly henselian local scheme S over k and an integer n prime
to char(k), one has

Hp,q(S,Z/n) =

{
µ⊗q
n (S) for p = 0

0 for p 6= 0

where µn(S) is the groups of n-th roots of unity in S.

5. one has Hp,q(X,A) = CHq(X, 2q − p;A). Here CH i(X, j;A) denotes
the higher Chow groups ofX introduced by S. Bloch in [Blo86], [Blo94].
In particular,

H2q,q(X,A) = CHq(X) ⊗ A,

where CHq(X) is the classical Chow group of cycles of codimension q
modulo rational equivalence.

The isomorphism between motivic cohomology and higher Chow groups
leads to connections between motivic cohomology and algebraic K-theory,
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but we do not discuss these connections in the present lectures. See [Blo94],
[BL94], [FS00], [Lev98] and [SV00].

Deeper comparison results include the theorem of M. Levine comparing
CH i(X, j; Q) with the graded pieces of the gamma filtration in K∗(X) ⊗
Q [Lev94], and the construction of the spectral sequence relating motivic
cohomology and algebraic K-theory for arbitrary coefficients in [BL94] and
[FS00].

The lectures in this book may be divided into two parts, corresponding
to the fall and spring terms. The fall term lectures contain the definition of
motivic cohomology and the proofs for all of the comparison results listed
above except the last one. The spring term lectures contain more advanced
results in the theory of sheaves with transfers and the proof of the final
comparison result (5).

The definition of motivic cohomology which is used here goes back to the
work of Andrei Suslin in about 1985. As far as I understand, when he came
up with this definition he was able to prove the first three of the comparison
results stated above. In particular the proof of the comparison (3) between
motivic cohomology and Milnor’s K-groups given in these lectures is exactly
Suslin’s original proof. The proofs of the last two comparison results (4) and
(5) are also based on results of Suslin. Suslin’s formulation of the Rigidity
Theorem ([Sus83]; see Theorem 7.20) is a key result needed for the proof
of (4), and Suslin’s moving lemma (Theorem 18A.1 below) is a key result
needed for the proof of (5).

It took ten years and two main new ideas to finish the proofs of the
comparisons (4) and (5). The first one, which originated in the context of the
qfh-topology and was later transferred to sheaves with transfers (definition
2.1), is that the sheaf of finite cycles Ztr(X) is the free object generated by X.
This idea led to a group of results, the most important of which is lemma 6.23.
The second idea, which is the main result of [CohTh], is represented here by
theorem 13.7. Taken together they allow one to efficiently do homotopy
theory in the category of sheaves with transfers.

A considerable part of the first half of the lectures is occupied by the
proof of (4). Instead of stating it in the form used above, we prove a more
detailed theorem. For a given weight q, the motivic cohomology groups
Hp,q(X,A) are defined as the hypercohomology (in the Zariski topology) of
X with coefficients in a complex of sheaves A(q)|XZar

. This complex is the
restriction to the small Zariski site of X (i.e., the category of open subsets of
X) of a complex A(q) defined on the site of all smooth scheme over k with
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the Zariski and even the étale topology. Restricting A(q) to the small étale
site of X, we may consider the étale version of motivic cohomology,

Hp,q
L (X,A) := Hp

et(X,A(q)|Xet
).

The subscript L is in honor of Steve Lichtenbaum, who first envisioned this
construction in [Lic94].

Theorem 10.2 asserts that the étale motivic cohomology of any X with co-
efficients in Z/n(q) where n is prime to char(k) are isomorphic toHp

et(X, µ
⊗q
n ).

This implies the comparison result (4), since the Zariski and the étale motivic
cohomology of a strictly henselian local scheme X agree. There should also
be analog of (4) for the case of Z/`r coefficients where ` = char(k), involv-
ing the logarithmic de Rham-Witt sheaves νqr [−q], but I do not know much
about it. We refer the reader to [GL00] for more information.

Vladimir Voevodsky
Institute for Advanced Study

May 2001.



Introduction to the second part.

The main goals of the second part are to introduce the triangulated cate-
gory of motives, and to prove the final comparison theorem (5). Both require
an understanding of the cohomological properties of sheaves associated with
homotopy invariant presheaves with transfers for the Zariski and Nisnevich
topologies. This is addressed in lectures 11, 12 and 13.

A crucial role will be played by theorem 13.7: if F is a homotopy invariant
presheaf with transfers, and k is a perfect field, then the associated Nisnevich
sheaf FNis is homotopy invariant, and so is its cohomology. For reasons of
exposition, the proof of this result is postponed and occupies lectures 20 to
23.

In lectures 14 and 15 we introduce the triangulated category of motives
DMeff.−

Nis (k, R) and study its basic properties. In particular we give a projec-
tive bundle theorem (15.12) and show that the product on motivic cohomol-
ogy (defined in 3.11) is graded-commutative.

Lectures 16 to 19 deal with equidimensional algebraic cycles, leading up
to the proof of the final comparison theorem 19.1: for any smooth separated
scheme X over a perfect field k, we have

Hp,q(X,Z) ∼= CHq(X, 2q − p).

The proof relies on three intermediate results. First we show (in 16.7) that
the motivic complex Z(i) is quasi-isomorphic to the Suslin-Friedlander chain
complex ZSF (i), which is built using equidimensinal cycles; our proof of this
requires the field to be perfect. Then we show (in 17.20) that Bloch’s higher
Chow groups are presheaves with transfers over any field. The final ingredient
is a result of Suslin (18.3) comparing equidimensional cycles to higher Chow
groups over any affine scheme.

The final lectures (20 to 23) are dedicated to the proof of 13.7. Using
technical results from lecture 20, we first prove (in 21.3) that FNis is homo-
topy invariant. The proof that its cohomology is homotopy invariant occupies
most of lecture 23. We conclude with a proof that the sheaf FNis admits a
“Gersten” resolution.
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Lecture 1

The category of finite
correspondences

In this lecture we shall define the additive category Cork of finite correspon-
dences over a field k. The objects of Cork will be the smooth separated
schemes (of finite type) over k. The morphisms in Cork from X to Y will
be the finite correspondences, which are special kinds of cycles in X × Y .
Composition is defined so that Cork contains the category Sm/k of smooth
separated schemes over k.

By convention, all schemes will be separated, and defined over k. Al-
though smooth schemes always have finite type over k [EGA4, 17.3.1], we
will sometimes refer to local and even semi-local schemes as being smooth;
by this we mean that they are the local (resp., semi-local) schemes associated
to points on a smooth scheme.

Our point of view will be that a cycle in a scheme T is a formal Z-
linear combination of irreducible closed subsets of T . Each irreducible closed
subset W is the support of its associated integral subscheme W̃ so W and W̃
determine each other. Thus we can ascribe some algebraic properties to W .
We say that W is finite along a morphism T → S if the restriction W̃ → S
is a finite morphism. A cycle

∑
niWi is said to be finite along a morphism

if each Wi is finite.

Definition 1.1. If X is a smooth connected scheme over k, and Y is any
(separated) scheme over k, an elementary correspondence from X to Y is
an irreducible closed subset W of X×Y whose associated integral subscheme
is finite and surjective over X. By an elementary correspondence from a non-
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12 LECTURE 1. THE CATEGORY OF FINITE CORRESPONDENCES

connected scheme X to Y , we will mean an elementary correspondence from
a connected component of X to Y .

The group Cor(X, Y ) is the free abelian group generated by the elemen-
tary correspondences from X to Y . The elements of Cor(X, Y ) will be called
finite correspondences.

If X is not connected and X = ∪Xi is the decomposition into its con-
nected components, our definition implies that Cor(X, Y ) = ⊕iCor(Xi, Y ).

Example 1.2. Let f : X → Y be a morphism in Sm/k. If X is connected,
the graph Γf of f is an elementary correspondence from X to Y . If X is not
connected, the sum of the components of Γf is a finite correspondence from
X to Y . Indeed the projection Γf → X is an isomorphism, and Γf is closed
because Y is separated over k.

The graph Γ1 of the identity on X is the support of the diagonal ∆(X) ⊂
X ×X. We will write idX for the finite correspondence Γ1 from X to itself.
It will be the identity element of Cor(X,X) for the composition product.
Note that idX is an elementary correspondence when X is integral.

If X is connected, Y is smooth and f : X → Y is finite and surjective,
the transpose of Γf in Y ×X is a finite correspondence from Y to X. This
is a useful construction; see exercise 1.11 below for one application.

Construction 1.3. Every subscheme Z of X × Y which is finite and sur-
jective over X determines a finite correspondence [Z] from X to Y .

Proof. If Z is integral then its support [Z] is by definition an elementary cor-
respondence. In general we associate to Z the finite correspondence

∑
niWi,

where the Wi are the irreducible components of the support of Z which are
surjective over a component of X and ni is the geometric multiplicity of Wi

in Z, i.e., the length of the local ring of Z at Wi (See [Ser65] or [Ful84]).

We will now define an associative and bilinear composition for finite cor-
respondences between smooth schemes. For this, it suffices to define the
composition W ◦ V of elementary correspondences V ∈ Cor(X, Y ) and
W ∈ Cor(Y, Z). Our definition will use the push-forward of a finite cycle.

Let p : T → S be any morphism. If W is a irreducible closed subset of T
finite along p, the image V = f(W ) is a closed irreducible subset of S and
d = [k(W ) : k(V )] is finite. In this case we define the push-forward of the
cycle W along p to be the cycle p∗W = d · V ; see [Ful84]. By additivity we
may define the push-forward of any cycle which is finite along p.
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Lemma 1.4. Suppose that f : T → T ′ is a morphism of separated schemes
of finite type over a Noetherian base S. Let W be an irreducible closed subset
of T which is finite over S. Then f(W ) is closed and irreducible in T ′ and
finite over S. If W is finite and surjective over S, then so is f(W ).

Proof. By Ex.II.4.4 of [Har77], f(W ) is closed in T ′ and proper over S. Since
f(W ) has finite fibers over S, it is finite over S by [EGA3, 4.4.2]. If W → S
is surjective, so is f(W ) → S.

Given elementary correspondences V ∈ Cor(X, Y ) and W ∈ Cor(Y, Z),
form the intersection T = (V ×Z)∩(X×W ) in X×Y ×Z. The composition
W ◦V of V and W is defined to be the push-forward of the finite correspon-
dence [T ], along the projection p : X × Y × Z → X × Z; see [Ful84]. By
lemma 1.7 below, the cycle [T ] is finite over X × Z. Thus the push-forward
p∗[T ] is defined; it is a finite correspondence from X to Z by lemma 1.4.

We can easily check that idX is the identity of Cor(X,X), and that the
composition of finite correspondences is associative and bilinear (see [Man68]
and [Ful84, 16.1]).

Definition 1.5. Let Cork be the category whose objects are the smooth
separated schemes of finite type over k and whose morphisms from X to Y
are elements of Cor(X, Y ). It follows from the above remarks that Cork is
an additive category with ∅ as the zero object.

Lemma 1.6. Let Z be an integral scheme, finite and surjective over a nor-
mal scheme S. Then for every morphism T → S with T connected, every
component of T ×S Z is finite and surjective over T .

Proof. See [EGA4, 14.4.4].

Recall that two irreducible closed subsets Z1 and Z2 of a smooth scheme
are said to intersect properly if Z1∩Z2 = ∅ or codim(Z1∩Z2) = codimZ1 +
codimZ2.

Lemma 1.7. Let V ⊂ X × Y and W ⊂ Y × Z be irreducible closed subsets
which are finite and surjective over X and Y respectively. Then V × Z and
X × W intersect properly, and each component of the push-forward of the
cycle [T ] of T = (V × Z) ∩ (X ×W ) is finite and surjective over X.
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Proof. Let Ṽ and W̃ be the underlying integral subschemes associated to V
and W respectively. Without loss of generality we can suppose both X and
Y connected. We form the pullback of Ṽ and W̃ .

Ṽ ×Y W̃ - W̃ - Z

Ṽ

?
- Y

f.surj.

?

X

f.surj.

?

By 1.6, each component of Ṽ ×Y W̃ is finite and surjective over Ṽ and
therefore over X too. The image T of the evident map Ṽ ×Y W̃ → X×Y ×Z
is the intersection of Ṽ ×Z and X̃×W . Thus each irreducible component Ti
of T is the image of an irreducible component of Ṽ ×Y W̃ . By 1.4, we know
that each Ti is finite and surjective over X. Therefore dimTi = dimX for all
i, i.e., Ṽ × Z and X × W̃ intersect properly.

Let p(Ti) denote the image of Ti under the map p : X ×Y ×Z → X ×Z.
By lemma 1.4, each p(Ti) is an irreducible closed subscheme of X×Z which is
finite and surjective over X. Since the components of p∗[T ] are the supports
of the p(Ti), we are done.

Remark 1.8. It is possible to extend the definition of finite correspondences
to correspondences between singular schemes. This uses the category CorS,
where S is a Noetherian scheme; see [RelCy]. Since we will use only smooth
schemes in these lectures, we describe this more general definition in the
appendix of this lecture.

The additive category Cork is closely related to the category Sm/k of
smooth schemes over k. Indeed, these categories have the same objects, and
it is a routine computation (exercise!) to check that Γg◦Γf equals Γg◦f . That
is, there is a faithful functor Sm/k → Cork, defined by:

X 7→ X (f : X → Y ) 7→ Γf .

The tensor product is another important feature of the category Cork.



15

Definition 1.9. If X and Y are two objects in Cork, their tensor product
X ⊗ Y is defined to be the product of the underlying schemes over k:

X ⊗ Y = X × Y.

If V and W are elementary correspondences from X to X ′ and from Y to
Y ′, then the cycle associated to the subscheme V ×W by 1.3 gives a finite
correspondence from X ⊗ Y to X ′ ⊗ Y ′.

It is easy to verify that ⊗ makes Cork a symmetric monoidal category
(see [Mac71]).

Exercise 1.10. If S = Spec k then Cork(S,X) is the group of zero-cycles
in X. If W is a finite correspondence from A1 to X, and s, t : Spec k → A1

are k-points, show that the zero-cycles W ◦ Γs and W ◦ Γt are rationally
equivalent (Cf. [Ful84, 1.6]).

Exercise 1.11. Let x be a closed point on X, considered as a correspon-
dence from S = Spec(k) to X. Show that the composition S → X → S is
multiplication by the degree [k(x) : k], and that X → S → X is given by
X × x ⊂ X ×X.

Let L/k be a finite Galois extension with Galois group G and T =
Spec(L). Prove that Cork(T, T ) ∼= Z[G] and that T → S → T is∑

g∈G g ∈ Z[G]. Conclude that Cork(S, Y ) ∼= Cork(T, Y )G for every Y in
Sm/k.

Exercise 1.12. If k ⊂ F is a field extension, there is an additive functor
Cork → CorF sending X to XF . If F is finite and separable over k, there is
an additive functor CorF → Cork sending U to U . These are adjoint: if U
is smooth over F and X is smooth over k, there is a canonical identification:

CorF (U,XF ) = Cork(U,X).

Exercise 1.13. (a) Let F be a field extension of k and X and Y two smooth
schemes over k. Writing XF for X ×Spec k SpecF and so on, show that
CorF (XF , YF ) is the limit of the CorE(XE, YE) as E ranges over all finitely
generated field extensions of k contained in F .

(b) Let X → S → Spec(k) be smooth morphisms, with S connected, and
let F denote the function field of S. For every smooth scheme Y over k, show
that CorF (X×SSpecF, Y×kSpecF ) is the direct limit of the Cork(X×SU, Y )
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as U ranges over all non-empty open subschemes of S. In the special case
X = S, this shows that CorF (SpecF, Y ×k SpecF ) = lim−→Cork(U, Y ).

(c) Show that (a) and (b) remain valid if Y is any scheme over k, using
the definition 1.1 of Cork(X, Y ).



Appendix 1A - The category
CorS

It is possible to generalize the notion of finite correspondence to construct
a category CorS, associated to any Noetherian scheme S; see [RelCy]. The
objects of this category are the schemes of finite type over S and the mor-
phisms are the elements of an abelian group CorS(X, Y ) whose elements are
the “universally integral” cycles W ⊂ X ×S Y , each component of which is
finite and surjective over X. The pull-backs of universally integral cycles are
always defined.

In order to compose an elementary correspondence V in CorS(X, Y ) with
a correspondence W in CorS(Y, Z) we must form the pullback W along
V → Y to a cycle in WV in V ×S Z ⊂ X ×S Y ×S Z (See 1A.9). This is why
we need to restrict to universally integral cycles, because not every cycle has
such a pullback.

Relabeling, we are reduced to the following basic setup for pulling back
cycles. We are given a cycle W in X, a structure map X → S and a map
V → S. The problem is to define a pullback cycle WV in X ×S V in a
natural way. This is easy if V is flat over S (see [Ful84, 1.7]), but in general
the problem is quite difficult even for V = SpecK.

One way to attack the problem is to use discrete valuation rings (DVR’s),
introducing the notion of pullback along a fat point of S. This approach was
introduced in [RelCy]. Recall that if K is a field, a K-point of S (or point)
is a morphism SpecK → S.

Definition 1A.1. A fat point of S is a DVR D, a field K and morphisms

SpecK → SpecD → S,

so that the point of SpecK goes to the closed point of SpecD and the generic
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18 LECTURE 1. THE CATEGORY OF FINITE CORRESPONDENCES

point of SpecD goes to a generic point of S. We say that the fat point lies
over the underlying K-point SpecK → S.

Every point s in S has a fat point lying over it in the sense that there is
a field extension k(s) ⊂ K and a fat point over SpecK → S. If s is a generic
point of S, this is trivial (D = K). Otherwise, it is well known that for every
two points s < s′ in a Noetherian scheme S there exists a DVR D and a map
SpecD → S sending the two points of SpecD to s and s′; see [EGA1, 6.5.8].

Theorem 1A.2. Let D be a DVR with field of fractions F . If X is a scheme
of finite type over D and WF is closed in the generic fiber XF then there exists
a unique closed subscheme WD of WF in X which is flat over SpecD.

Proof. Locally X has coordinate ring A, XF has coordinate ring A ⊗D F ,
and WF has coordinate ring (A ⊗D F )/(f1, . . . , fn), where fi ∈ A for every
i = 1, . . . , n. Let R0 be A/(f1, . . . , fn) and let R be R0/I where I is the
torsion submodule of theD-moduleR0. Is is easy to see thatR is independent
of the choice of the fi’s. Locally WD is SpecR.

We are not yet able to define the pullback along a K-point, but using the
previous theorem we can define a pullback along a fat point.

Given a fat point of S over a K-point s, and a closed subscheme W in
X, we may form the flat pullback WF along SpecF → S and the closed
subscheme WD as in 1A.2. Then we define the pullback of W to be the cycle
associated to the fiber Ws of the scheme WD over the closed point SpecK of
D. The pullback [Ws] is a cycle in XK = X ×S SpecK. Thus for every fat
point over s we have a candidate for the pullback of W along s. However, two
fat points over the same K-point may give two possibly distinct candidates.

Example 1A.3. Let S be the node over a field k and X its normalization.
There are two fat points over the singular point s ∈ S, corresponding to the
two k-points of Xs = {p0, p1}. The pullbacks of W = X along these fat
points are [p0] and [p1], respectively.

If W is flat and equidimensional over S (or s is generic) the pullback just
defined coincides with the classic pullback of a cycle along the K-point (see
[RelCy, 3.2.4]), so it is independent of the choice of the fat point.

In order to have a useful object we need to get rid of the dependency of
the pullback from the choice of the fat point.
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Definition 1A.4. Let W =
∑
niWi be a cycle on X. We say that W is

dominant over S if each term Wi of W is dominant over a component of
S. We say that a dominant cycle W is a relative cycle on X over S if its
pullbacks coincide along all fat points over any common K-point; see [RelCy,
3.1.3].

As in [RelCy], we write Cycl(X/S, r) for the free abelian group of the
relative cycles W on X over S such that each component has dimension r
over S. It turns out that every effective relative cycle in Cycl(X/S, r) must
be equidimensional over S; see [RelCy, 3.1.7]. If S is normal, this is also a
sufficient condition; the following result is proven in [RelCy, 3.4.2].

Theorem 1A.5. If S is normal or geometrically unibranch and W is a cycle
on X which is dominant equidimensional over S, then W is a relative cycle.

We now have a good definition for the pullback of a relative cycle along
a map SpecK → S supporting a fat point. We want to generalize this to
pullbacks along any Zariski point s of S. However, there may be no fat
points over s. For example, it may be that every fat point SpecK → S has
K inseparable over k(s). To fix this, it turns out that we need to invert the
characteristic p.

Example 1A.6. Let k be a purely inseparable extension of k0 with [k :
k0] = p and set X = Spec(k[t]). Let S = SpecA where A ⊂ k[t] is the ring
of polynomials f(t) where f(0) ∈ k0. If T0 = Spec k0 is the origin of S then
the pullback of W = X to T = X ×S T0 = Spec k is 1/p times [T ], because
every fat point of S must lie over a field extension of k.

Given f : V → S, the pullback WV of a relative cycle W is a unique and
well-defined relative cycle of X×S V over V , except that the coefficients may
lie in Z[1/p] in characteristic p. It is characterized by the fact that for every
point v of V and every fat point of V over v, the pullbacks of (WV )v and
Wf(v) agree. See [RelCy, 3.3.1].

See Example 3.5.10 in [RelCy] for a relative cycle for which the coefficient
1/p occurs in its pullbacks, yet both X and S are normal.

Definition 1A.7. A relative cycle W is called universally integral when
its pullbacks WV always have integer coefficients; see [RelCy, 3.3.9].

We define c(X/S, 0) to be the free abelian group on the universally in-
tegral relative cycles of X which are finite and surjective over S. Finally
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we set CorS(X, Y ) = c(X ×S Y/X, 0). That is, CorS(X, Y ) is the group of
universally integral cycles on X ×S Y whose support is finite over X (i.e.,
proper over X of relative dimension 0).

In [RelCy] the notation z(X/S, 0) was used for the subgroup of
Cycl(X/S, 0) generated by universally integral cycles, and the notation
c(X/S, 0) was introduced for the subgroup generated by the proper cycles
in z(X/S, 0).

The following theorem was proved in [RelCy, 3.3.15] and [RelCy, 3.4.8].

Theorem 1A.8. Any relative cycle of X over S is universally integral pro-
vided that either

1. S is regular, or

2. X is a smooth curve over S.

Definition 1A.9. The composition of relative cycles V ∈ CorS(X, Y ) and
W ∈ CorS(Y, Z) is defined as follows. Form the pullback WV of W with
respect to the map V → Y . The composition W ◦ V is defined to be the
push-forward of WV along the projection p : X×Y ×Z → X×Z. By [RelCy,
3.7.5], the composition will be a universally integral cycle which is finite and
surjective over X.

Example 1A.10. By definition, c(X/S, 0) = CorS(S,X). If S and X are
smooth over a field k, then clearly CorS(S,X) ⊆ Cork(S,X) via the em-
bedding of X in S × X. Hence, for every map S ′ → S, there is a map
c(X/S, 0) → c(X ×S S

′/S ′, 0) induced by composition in Cork.

c(X/S, 0) ⊂ - Cork(S,X)

c(X ×S S
′/S ′, 0)

?

.......
⊂- Cork(S

′, X)
?

Example 1A.11. If S = Spec k for a field k and X and Y are smooth
over S, then the group CorS(X, Y ) = c(X × Y/X, 0) agrees with the group
Cork(X, Y ) of definition 1.1.

To see this, note that c(X × Y/X, 0) ⊆ Cork(X, Y ) by definition. By
1A.5 and 1A.8, every cycle in X × Y which is finite and surjective over X is
a universally integral relative cycle, so we have equality.
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Since composition in CorS (as defined in 1A.9) evidently agrees with
composition in Cork, we see that Cork is just the restriction of CorS to
Sm/k.

Example 1A.12. Suppose that V ⊂ S is a closed immersion of regular
schemes and let W be an equidimensional cycle on a scheme X of finite type
over S. It it shown in [RelCy, 3.5.8] that the pullback cycle WV coincides with
the image ofW under the pull-back homomorphism for the map V ×SX → X
as defined in [Ser65] and [Ful84], using an alternating sum of Tor terms.
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Lecture 2

Presheaves with transfers

In order to define motivic cohomology we need to introduce the notion of
a presheaf with transfers. In this lecture we develop the basic properties of
presheaves with transfers.

Definition 2.1. A presheaf with transfers is a contravariant additive
functor F : Cork → Ab. We will write PreSh(Cork), or PST(k) or PST
if the field is understood, for the functor category whose objects are the
presheaves with transfers and whose morphisms are natural transformations.

By additivity, there is a pairing Cork(X, Y ) ⊗ F (Y ) → F (X) for all F ,
X and Y .

Restricting to the subcategory Sm/k of Cork, we see that a presheaf with
transfers F may be regarded as a presheaf of abelian groups on Sm/k which
is equipped with extra “transfer” maps F (Y ) → F (X) indexed by the finite
correspondences from X to Y .

Example 2.2. Every constant presheaf A on Sm/k may be regarded as a
presheaf with transfers. If W is an elementary correspondence from X to Y
(both connected), the homomorphism A→ A defined by W is multiplication
by the degree of W over X.

The following theorem is a special case of a well known result on functor
categories, see [Wei94] 1.6.4 and Exercises 2.3.7 and 2.3.8.

Theorem 2.3. The category PST(k) is abelian and has enough injectives
and projectives.
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Example 2.4. The sheaf O∗ of global units and the sheaf O of global func-
tions are two examples of a presheaves with transfers.

Recall first that if X is normal and W → X is finite and surjective then
there is a norm map N : O∗(W ) → O∗(X) induced from the usual norm map
on the function fields, k(W )∗ → k(X)∗. Indeed if f ∈ O∗(W ) then Nf and
Nf−1 are both in the integrally closed subring O(X) of k(X).

Similarly, there is a trace map Tr : O(W ) → O(X) induced from the
usual trace map on the function fields, k(W ) → k(X). Indeed if f ∈ O(W )
then Trf belongs to the integrally closed subring O(X) of k(X).

If W ⊂ X × Y is an elementary correspondence from X to Y , we define
the transfer map O∗(Y ) → O∗(X) associated to W to be the composition:

O∗(Y ) - O∗(W )
N- O∗(X).

We define the transfer O(Y ) → O(X) associated to W to be the composition

O(Y ) - O(W )
Tr- O(X).

We omit the verification that these transfers are compatible with the com-
position in Cork. It is clear from the transfer formula that the subsheaf µn
of nth roots of unity in O∗ is also a presheaf with transfers, and that the
subsheaf k of O is just the constant sheaf with transfers described in 2.2.

Example 2.5. The classical Chow groups CH i(−) are presheaves with trans-
fers. To see this, we need to construct a map φW : CH i(Y ) → CH i(X)
for each elementary finite correspondence W from a smooth scheme X to a
smooth scheme Y , and check that this defines a functor from Cork to abelian
groups.

The correspondence homomorphism φW is given by the formula φW (α) =
q∗(W · p∗α), where α ∈ CH i(Y ). Here p∗ : CH i(Y ) → CH i(X × Y ) is the
flat pullback along the projection X × Y → Y , the ‘·’ is the intersection
product (see 17A.1), and q : X×Y → X is the projection. If Y were proper,
this would be exactly the formula given in Chapter 16 of [Ful84]. For general
Y , we need to observe that W · p∗α has finite support over X, so that the
push-forward q∗(W · p∗α) is defined in CH i(X).

The verification that the definition of φW is compatible with the compo-
sition of correspondences is now a routine calculation using the projection
formula; it is practically the same as the calculation in the proper case, which
is given in [Ful84, 16.1.2].
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Example 2.6. The functor K0, considered as a presheaf of abelian groups
on Sm/k, has no extension to a presheaf with transfers. To see this, it suffices
to find a finite étale cover f : Y → X of degree 2 and an element x ∈ K0(X)
such that f ∗(x) = 0 but 2x 6= 0. Indeed, if Φ ∈ Cor(X, Y ) is the canonical
“transfer” morphism defined by f , then f ◦Φ = 2 in Cor(X,X) (cf. 1.11), so
any presheaf with transfers F would have F (Φ)f ∗(x) = 2x for all x ∈ F (X).

Let L be a line bundle on a smooth variety X satisfying L2 ∼= OX but
[L ⊕ L] 6= [OX ⊕ OX ] in K0(X). It is well-known that such L exists; see
[Swa62]. It is also well-known that there is an étale cover f : Y → X of
degree 2 with Y = Spec(OX ⊕ L); see [Har77, IV Ex.2.7]. Since f ∗L ∼= OY ,
the element x = [L] − [OX ] of K0(X) satisfies f ∗(x) = 0 but 2x 6= 0, as
required.

Representable functors provide another important class of presheaves
with transfers. We will use the notation Ztr(X), which was introduced
in [SV00]; the alternate terminology L(X) was used in [TriCa], while
cequi(X/ Spec k, 0) was used in [RelCy] and [CohTh].

By the Yoneda lemma, representable functors provide embeddings of
Sm/k and Cork into an abelian category, namely PST(k):

Sm/k - Cork - PST(k).
X - X - Ztr(X)

Definition 2.7. If X is a smooth scheme over k we let Ztr(X) denote the
presheaf with transfers represented by X, so that Ztr(X)(U) = Cor(U,X).
By the Yoneda lemma,

HomPST(Ztr(X), F ) ∼= F (X).

It follows that Ztr(X) is a projective object in PST(k).
For every X and U , Ztr(X)(U) is the group of finite correspondences

from U to X and the map Ztr(X)(U) → Ztr(X)(V ) associated to a morphism
f : V → U is defined to be composition with the correspondence associated
to f .

We will write Z for the presheaf with transfers Ztr(Spec k); it is just the
constant Zariski sheaf Z on Sm/k, equipped with the transfer maps of 2.2.
Thus the structure map X → Spec k induces a natural map Ztr(X) → Z.

Here are three exercises. Carefully writing up their solutions requires
some knowledge about cycles, such as that found in [Ful84].
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Exercise 2.8. If F is a presheaf with transfers and T is a smooth scheme,
define F T (U) = F (U × T ). Show that F T is a presheaf with transfers and
that every morphism S → T induces a morphism F T → F S of presheaves
with transfers. If F is constant and T is geometrically connected, then
F T = F .

Exercise 2.9. If k ⊂ L is a separable field extension, every X in Sm/L is
an inverse limit of schemes Xα in Sm/k. For every presheaf with transfers F
over k, we set F (X) = lim−→F (Xα). Show that this makes F a presheaf with
transfers over L.

Exercise 2.10. Let X be a (non-smooth) scheme of finite type over k. For
each smooth U , define Ztr(X)(U) to be the group Cor(U,X) of 1.1. Show
that the composition ◦ defined after 1.4 makes Ztr(X) into a presheaf with
transfers.

Given a pointed scheme (X, x), we define Ztr(X, x) to be the cokernel
of the map x∗ : Z → Ztr(X) associated to the point x : Spec k → X.
Since x∗ splits the structure map Ztr(X) → Z, we have a natural splitting
Ztr(X) ∼= Z ⊕ Ztr(X, x).

Of particular interest to us are the pointed scheme Gm = (A1 − {0}, 1),
and the presheaf with transfers Ztr(Gm) = Ztr(A1 − {0}, 1).

Definition 2.11. If (Xi, xi) are pointed schemes for i = 1, . . . , n we define
Ztr((X1, x1) ∧ . . . ∧ (Xn, xn)), or Ztr(X1 ∧ . . . ∧Xn), to be:

coker

(
⊕

i

Ztr(X1 × · · · X̂i · · · ×Xn)
id×···×xi×···×id- Ztr(X1 × · · · ×Xn)

)
.

By definition Ztr((X, x)
∧1) = Ztr(X, x) and Ztr((X, x)

∧q) = Ztr((X, x) ∧
. . .∧(X, x)) for q > 0. By convention Ztr((X, x)

∧0) = Z and Ztr((X, x)
∧q) = 0

when q < 0.

Lemma 2.12. The presheaf Ztr((X1, x1)∧. . .∧(Xn, xn)) is a direct summand
of Ztr(X1 × · · · ×Xn). In particular, it is a projective object of PST.

Proof. This is a consequence of the stronger fact that the following sequence
of presheaves with transfers is split exact (see [Wei94, 1.4.1]):

0 → Z
{xi}→ ⊕iZtr(Xi) → ⊕i,jZtr(Xi ×Xj) → . . .

. . .→ ⊕i,jZtr(X1 × · · · X̂ i · · · X̂j · · · ×Xn) → ⊕iZtr(X × · · · X̂ i · · · ×Xn) →
→ Ztr(X1 × · · · ×Xn) → Ztr(X1 ∧ · · · ∧Xn) → 0.
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Since Ztr(X1∧· · ·∧Xn) is a summand of a projective object, it is projective.

To illustrate this lemma note Ztr(X) ∼= Z ⊕ Ztr(X, x) and that:

Ztr(X1 ×X2) ∼= Z ⊕ Ztr(X1, x1) ⊕ Ztr(X2, x2) ⊕ Ztr(X1 ∧X2).

We shall also need a functorial construction of a chain complex associated
to a presheaf with transfers. For this we use the cosimplicial scheme ∆• over
k which is defined by:

∆n = Spec k[x0, . . . , xn]/

(
n∑

i=0

xi = 1

)
.

The jth face map ∂j : ∆n → ∆n+1 is given by the equation xj = 0. Although
this construction is clearly taken from topology, the use of ∆• in an algebraic
setting originated with D. Rector in [Rec71].

Definition 2.13. If F is a presheaf of abelian groups on Sm/k, F (∆•) and
F (U×∆•) are simplicial abelian groups. We will write C•F for the simplicial
presheaf U 7→ F (U × ∆•), i.e., Cn(F )(U) = F (U × ∆n). If F is a presheaf
with transfers, C•F is a simplicial presheaf with transfers by 2.8.

As usual, we can take the alternating sum of the face maps to get a chain
complex of presheaves (resp., presheaves with transfers) which (using ∗ in
place of •), we will call C∗F . It sends U to the complex of abelian groups:

. . .→ F (U × ∆2) → F (U × ∆1) → F (U) → 0.

Both F 7→ C•F and F 7→ C∗F are exact functors. Moreover, the Dold-Kan
correspondence (see [Wei94, 8.4.1]), which describes an equivalence between
simplicial objects and positive chain complexes, associates to C•F a normal-
ized subcomplex CDK

∗ F of the complex C∗F , which is quasi-isomorphic to
the complex C∗F .

If A is the constant presheaf with transfers A(U) = A then C∗A is the

complex · · · → A
id- A

0- A → 0; it is quasi-isomorphic to CDK
∗ (A),

which is A regarded as a complex concentrated in degree zero.

Definition 2.14. A presheaf F is homotopy invariant if for every X the
map p∗ : F (X) → F (X × A1) is an isomorphism. As p : X × A1 → X
has a section, p∗ is always split injective. Thus homotopy invariance of F is
equivalent to p∗ being onto.
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The homotopy invariant presheaves of abelian groups form a Serre sub-
category of presheaves, meaning that if 0 → F0 → F1 → F2 → 0 is an exact
sequence of presheaves then F1 is homotopy invariant if and only if both
F0 and F2 are. In particular if F and G are homotopy invariant presheaves
with transfers then the kernel and the cokernel of every map f : F → G are
homotopy invariant presheaves with transfers.

Let iα : X ⊂ - X × A1 be the inclusion x 7→ (x, α). We shall write i∗α
for F (iα) : F (X × A1) → F (X).

Lemma 2.15. F is homotopy invariant if and only if

i∗0 = i∗1 : F (X × A1) → F (X) for all X.

Proof. ([Swa72, 4.1]) One direction is clear, so suppose that i∗0 = i∗1 for all
X. Applying F to the multiplication map m : A1 × A1 → A1, (x, y) 7→ xy,
yields the diagram

F (X × A1)
i∗0 - F (X)

+�
�

�
�

�
�

�
�

�

1X×A1

F (X × A1) �(i1 × 1A1)∗
F (X × A1 × A1)

(1X ×m)∗

? (i0 × 1A1)∗- F (X × A1).

p∗

?

Hence p∗i∗0 = (1 × i0)
∗m∗ = (1 × i1)

∗m∗ = id. Since i∗0p
∗ = id, p∗ is an

isomorphism.

Definition 2.16. For i = 0, . . . , n we define θi : ∆n+1 → ∆n × A1 to be the
map that sends the vertex vj to vj×{0} for j ≤ i and to vj−1×{1} otherwise.
(See Figure 2.1.) These are the algebraic analogues of the top dimensional
simplices in the standard simplicial decomposition of the polyhedron ∆n×∆1.

Lemma 2.17. Let F be a presheaf. Then the maps i∗0, i
∗
1 : C∗F (X × A1) →

C∗F (X) are chain homotopic.

Proof. The maps θi defined in 2.16 induce maps

hi = F (1X × θi) : CnF (X × A1) → Cn+1F (X).

The hi form a simplicial homotopy ([Wei94, 8.3.11]) from i∗1 = ∂0h0 to i∗0 =
∂n+1hn. By [Wei94, 8.3.13], the alternating sum sn =

∑
(−1)ihi is a chain

homotopy from i∗1 to i∗0.
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Figure 2.1: Simplicial decomposition of ∆n × A1

Combining 2.15 and 2.17, we obtain

Corollary 2.18. If F is a presheaf then the homology presheaves

HnC∗F : X 7→ HnC∗F (X)

are homotopy invariant for all n.

Example 2.19. ([Swa72, 4.2]) The surjection F → H0C∗F is the universal
morphism from F to a homotopy invariant presheaf.

Exercise 2.20. Set Hsing
0 (X/k) = H0C∗Ztr(X)(Spec k). Show that there is

a natural surjection from Hsing
0 (X/k) to CH0(X), the Chow group of zero

cycles modulo rational equivalence (see exercise 1.10). If X is projective,
Hsing

0 (X/k) ∼= CH0(X). If X = A1, show that Hsing
0 (A1/k) = Z. We will

return to this point in 7.1.

Lemma 2.21. Let F be a presheaf of abelian groups. Suppose that for every
smooth scheme X there is a natural homomorphism hX : F (X) → F (X×A1)
which fits into the diagram

F (X)

+���
��

0
QQ

QQQ

id

s
F (X) �

F (i0)
F (X × A1)

hX
?

F (i1)
- F (X)

Then the complex C∗F is chain contractible.

The assertion that hX is natural means that for every map f : X → Y
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we have a commutative diagram

F (X)
hX- F (X × A1)

F (Y )

6

hY- F (Y × A1)

6

Proof. By naturality, hX induces a map C∗h : C∗F (X) → C∗F (X ×A1). By
2.17, the identity map id = i∗1(C∗h) is chain homotopic to 0 = i∗0(C∗h).

Example 2.22. The prototype for lemma 2.21 is the sheaf of global func-
tions. The complex C∗O is chain contractible, because O(X×A1) ∼= O(X)[t]
and hX(f) = tf satisfies the conditions of 2.21.

Here is a second application of 2.21. Note that the projection p : X×A1 →
X induces a map Ztr(X × A1) → Ztr(X).

Corollary 2.23. C∗Ztr(X × A1) → C∗Ztr(X) is a chain homotopy equiva-
lence.

Proof. Let F denote the cokernel of Ztr(i0) : Ztr(X) → Ztr(X ×A1) induced
by i0 : X → X × A1. That is, each F (U) is the cokernel of Cor(U,X) →
Cor(U,X×A1). Let HU denote the composition of the product with A1 and
multiplication A1 × A1 → A1 :

Cor(U,X × A1) → Cor(U × A1, (X × A1) × A1) → Cor(U × A1, X × A1).

Since HU sends Cor(U,X×{0}) to Cor(U×A1, X×{0}), it induces a natural
map hU : F (U) → F (U × A1). For U = X × A1 it is easy to see that the
composition of HU with i0, i1 : U → U × A1 sends 1U ∈ Cor(U,X × A1)
to the projection i0p : U → X → X × A1 and 1U , respectively. Therefore
F (i0)hU(1U) = 0 and F (i1)hU(1U) = 1U for U = X × A1. For any other U ,
every element f̄ ∈ F (U) is the image of 1X×A1 under some correspondence
f : U → X × A1, so again F (i0)hU(f̄) = 0 and F (i1)hU(f̄) = f̄ . Therefore
2.21 applies to show that C∗F is chain contractible. Since C∗Ztr(X × A1) ∼=
C∗Ztr(X) ⊕ C∗F , we are done.

An elementary A1-homotopy between two morphisms f, g : X → Y is a
map h : X × A1 → Y so that f and g are the restrictions of h along X × 0
and X×1. This relation is not transitive (exercise!). To correct this, we pass
to correspondences.
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Definition 2.24. We say that two finite correspondences from X to Y are
A1-homotopic if they are the restrictions along X × 0 and X × 1 of an
element of Cor(X × A1, Y ). This is an equivalence relation on Cor(X, Y ).
The sum and composition of A1-homotopic maps are A1-homotopic, so the
A1-homotopy classes of finite correspondences form the morphisms of an
additive category.

We say that f : X → Y is an A1-homotopy equivalence if there exists
a g : Y → X so that fg and gf are A1-homotopic to the identity.

The projection p : X × A1 → X is the prototype of an A1-homotopy
equivalence; its A1-homotopy inverse is given by the zero-section.

Lemma 2.25. If f : X → Y is an A1-homotopy equivalence with A1-
homotopy inverse g, then f∗ : C∗Ztr(X) → C∗Ztr(Y ) is a chain homotopy
equivalence with chain homotopy inverse g∗.

Proof. Applying C∗Ztr to the data gives a diagram

C∗Ztr(X)

�����
g∗f∗

3 kQQQQQ

1X

C∗Ztr(X)
(i0)∗
∼=

- C∗Ztr(X × A1)

h∗
6

�(i1)∗∼= C∗Ztr(X)

and similarly for Y . The horizontal maps are chain homotopy equivalences
by 2.23, and are homotopy inverses to p∗. From the right triangle, h∗ ' p∗.
From the left triangle, we get g∗f∗ ' 1X . Similarly, the diagram for Y
gives f∗g∗ ' 1Y . Hence f∗ : C∗Ztr(X) → C∗Ztr(Y ) is a chain homotopy
equivalence with inverse g∗.

Exercise 2.26. Show that there is a natural identification for every X and
Y :

H0C∗Ztr(Y )(X) = Cor(X, Y )/A1-homotopy.

We will return to the subject of A1-homotopy in lectures 7, 9, 13, and 14;
see 7.2, 9.8 and 14.11.

The motive associated to X will be the class M(X) of C∗Ztr(X) in an
appropriate triangulated category DMeff,−

Nis (k, R) constructed in 14.1 from
the derived category of PST(k). By 2.23, we have M(X) ∼= M(X × A1)
for all X. More generally, any A1-homotopy equivalence X → Y induces an
isomorphism M(X) ∼= M(Y ) by 2.25.
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Exercise 2.27. If k ⊂ F is a finite separable field extension, exercise 1.12 im-
plies that there are adjoint functors i∗ : PST(k) → PST(F ), i∗ : PST(F ) →
PST(k). Show that there is a natural transformation π : i∗i∗M →M whose
composition πη with the adjunction map η : M → i∗i∗M is multiplication
by [F : k] on M .



Lecture 3

Motivic cohomology

Using the tools developed in the last lecture, we will define motivic coho-
mology. It will be hypercohomology with coefficients in the special cochain
complexes Z(q), called motivic complexes.

Definition 3.1. For every integer q ≥ 0 the motivic complex Z(q) is
defined as the following complex of presheaves with transfers:

Z(q) = C∗(Ztr(G
∧q
m ))[−q].

We consider Z(q) to be a bounded above cochain complex; the shifting con-
vention for [−q] implies that the terms Z(q)i = Cq−iZtr(G∧q

m ) vanish whenever
i > q, and the term with i = q is Ztr(G∧q

m ).

If A is any other abelian group then A(q) = Z(q)⊗A is another complex
of presheaves with transfers.

When q = 0, we have Z(0) = C∗(Z). As observed after 2.13 above, Z(0)
is quasi-isomorphic to Z, regarded as a complex concentrated in degree 0.

When q = 1, we have Z(1) = C∗Ztr(Gm)[−1]. We will give another
description of Z(1) in the next lecture.

By convention Z(q) = 0 if q < 0.

We now show that these complexes of presheaves are actually complexes
of sheaves with respect to the Zariski topology.

Lemma 3.2. For every scheme Y over k, Ztr(Y ) is a sheaf in the Zariski
topology, and C∗Ztr(Y ) is a chain complex of sheaves.

33
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Similarly, if A is any abelian group, the proof of 3.2 shows that A⊗Ztr(Y )
is a sheaf in the Zariski topology, and A⊗C∗Ztr(Y ) is a complex of sheaves.

Proof. We have to prove that whenever U is covered by U1 and U2 the se-
quence

0 → Cor(U, Y )
diag- Cor(U1, Y ) ⊕ Cor(U2, Y )

(+,−)- Cor(U1 ∩ U2, Y )

is exact. We may suppose that U is connected and therefore (being smooth)
irreducible. As every finite correspondence from U to Y is dominant over
U , it is completely determined by the fiber at the generic point of U . Hence
Cor(U, Y ) injects into each Cor(Ui, Y ).

To see that the sequence is exact at the other spot, take cycles Z1 =∑
i∈I miZ1i ⊂ U1 × Y and Z2 =

∑
j∈J njZ2j ⊂ U2 × Y that coincide on

(U1 ∩ U2) × Y . It is possible to pair up the Z1i and Z2j , since they are
determined by their fibers at the common generic point of U , U1 and U2.
Hence there is a bijection between I and J such that, if i ∈ I corresponds to
j ∈ J then mi = nj and the restrictions of Z1i and Z2j agree in (U1∩U2)×Y .
Thus we may assume that Z1 and Z2 are elementary correspondences. But
then their union Z = Z1 ∪ Z2 in U × Y is a finite correspondence from U to
Y , and its restriction to both Ui × Y is Zi, i.e., Z is a preimage of the pair.

Now whenever F is a sheaf andX is smooth, each presheaf U 7→ F (U×X)
is also a sheaf for the Zariski topology. In particular each CnF is a sheaf
and C∗F is a complex of sheaves. Thus C∗Ztr(Y ) is a complex of Zariski
sheaves.

We have already seen (in exercises 2.20 and 2.26 above) that the complex
C∗Ztr(Y ) is not exact. There we showed that the last map may not be
surjective, because its cokernel H0C∗Ztr(Y )(S) = Cor(S, Y )/A1-homotopy
can be non-zero. When S = Spec(k), it is the group Hsing

0 (Y/k) described in
exercise 2.20 above and 7.3 below.

Recall that the (small) Zariski site Xzar over a scheme X is the category
of open subschemes of X, equipped with the Zariski topology.

Lemma 3.3. The restriction Z(q)X of Z(q) to the Zariski site over X is a
complex of sheaves in the Zariski topology.

Similarly, if A is any abelian group, A(q) is a complex of Zariski sheaves.
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Proof. Set Y = (A1 − {0})q. By lemma 3.2 we know that C∗(Ztr(Y )) is a
complex of sheaves. The complex Z(q)[q] is a direct summand of C∗(Ztr(Y ))
by lemma 2.12, so it must be a complex of sheaves too.

Note that A(q) represents the derived sheaf tensor product Z(q) ⊗L A,
since Z(q) is a flat complex of sheaves.

Definition 3.4. The motivic cohomology groups Hp,q(X,Z) are defined
to be the hypercohomology of the motivic complexes Z(q) with respect to
the Zariski topology:

Hp,q(X,Z) = Hp
Zar(X,Z(q)).

If A is any abelian group, we define:

Hp,q(X,A) = Hp
Zar(X,A(q)).

Vanishing Theorem 3.5. For every smooth scheme X and any abelian
group A, we have Hp,q(X,A) = 0 when p > q + dimX.

Proof. By definition, the complex Z(q) is zero in degrees bigger then q. Since
H i
zar(X,F ) vanishes for every sheaf F when i > dimX, the result is now an

immediate consequence of the hypercohomology spectral sequence.

We will prove in 19.3 that, for every smooth variety X and any abelian
group A, we have Hp,q(X,A) = 0 for p > 2q as well.

Remark 3.6. The groups Hp,q(X,Z) are contravariant functorial in X. To
see this we need to check that for a morphism f : X → Y we can construct
a natural map Z(q)Y → f∗Z(q)X . But this is true for any complex C of
presheaves on Sm/k: for each open U ⊂ Y , the restriction f−1U → U
induces the desired map from CY (U) = C(U) to f∗CX(U) = C(f−1U).

The groups Hp,q(X,A) are also covariantly functorial in k. That is, if i :
k ⊂ F is a field extension, there is a natural map H∗,∗(X,A) → H∗,∗(XF , A).
It is induced by the sheaf map Z(q)X → i∗Z(q)XF

assembled from the natural
maps Ztr(Y )(U) → i∗Ztr(YF )(U) = Ztr(YF )(UF ) of exercise 1.12.

Proposition 3.7. If k ⊂ F is a finite and separable field extension and U
is smooth over F , then the motivic complexes Z(q)U are independent of the
choice of the ground field (k or F ). Hence the motivic cohomology groups
Hp,q(U,A) are independent of the choice of the ground field.
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Proof. Let T be any smooth scheme over k, and TF its base change over
F . By exercise 1.12 the groups CnZtr(TF )(U) = CorF (U ×F ∆n

F , TF ) and
C∗Ztr(T )(U) = Cork(U ×k ∆n

k , T ) are isomorphic. That is, C∗Ztr(TF )(U) ∼=
C∗Ztr(T )(U). Letting T be (A1

k − {0})q, the result follows from lemma 2.12,
which says that the complex Z(q)[q] is a direct summand of C∗(Ztr(T )) over
k, and of C∗(Ztr(TF )) over F .

The following colimit lemmas are elementary consequences of exercise
1.13. They will be useful later on.

Lemma 3.8. (Colimits) Let k ⊂ F be a field extension and X smooth over
k. Then:

H∗,∗(XF , A) = colim
k⊂E⊂F

E of finite type

H∗,∗(XE, A).

If f : X → S is a smooth morphism of smooth schemes over k such that
S is connected and F = k(S), then:

H∗,∗(X ×S SpecF,A) = colim
U⊂S

nonempty

H∗,∗(X ×S U,A).

And now we want to introduce a multiplicative structure on the sheaves
Z(n). We will need the following construction:

Construction 3.9. If (Xs, xs) are pointed schemes for s = 1, . . . , j, then for
every i < j we define a morphism of presheaves with transfers:

Ztr(X1 ∧ . . . ∧Xi) ⊗ Ztr(Xi+1 ∧ . . . ∧Xj) → Ztr(X1 ∧ . . . ∧Xj).

Indeed, definition 1.9 provides a map:

Ztr(X1 × . . .×Xi)(U) ⊗ Ztr(Xi+1 × . . .×Xj)(U)

= Cork(U,X1 × . . .×Xi) ⊗ Cork(U,Xi+1 × . . .×Xj) →
→ Cork(U × U,X1 × . . .×Xj) = Ztr(X1 × . . .×Xj)(U × U).

Composing with the diagonal U → U × U , we have:

Ztr(X1 × . . .×Xi)(U)⊗Ztr(Xi+1 × . . .×Xj)(U)
∆- Ztr(X1 × . . .×Xj)(U).

Now recall that by definition Ztr(X1 ∧ . . . ∧ Xn) is a quotient of Ztr(X1 ×
. . .×Xn). It is easy to check that the map ∆ factors through the quotient,
giving the required morphism.
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Construction 3.10. For each m and n we construct a map

Z(m) ⊗ Z(n) → Z(m+ n)

using the map Ztr(G
∧m
m ) ⊗ Ztr(G∧n

m ) → Ztr(G∧m+n
m ) of 3.9, as follows.

For any smooth U we need to build a map of complexes of abelian groups:

Z(m)[m](U) ⊗ Z(n)[n](U) → Z(m + n)[m + n](U),

or equivalently, Z(m)(U) ⊗ Z(n)(U) → Z(m+ n)(U). Recall that by defini-
tion 3.1, Z(n)[n](U) is the chain complex C∗Ztr(G∧n

m )(U). Let us write the
underlying simplicial object as An

• = Ztr(G∧n
m )(U × ∆•), and the associated

unnormalized chain complex Z(n)[n] as An
∗ . Similarly, we write (Am

• ⊗ An• )∗
for the chain complex associated to diag(Am

• ⊗An• ). The Eilenberg-Zilber the-
orem ([Wei94, 8.5.1]) yields a quasi-isomorphism ∇ : Am

∗ ⊗An∗ → (Am• ⊗An• )∗.
Therefore if we find a simplicial map m : diagAm

• ⊗ An• → Am+n
• we have

also a map (Am
• ⊗ An• )∗ → Am+n

∗ which, composed with the previous one,
gives the multiplicative structure. Unfolding the definitions again, we have:

Ani = Ztr(G
∧n
m )(U × ∆i).

We define the components of m to be the maps of 3.9:

Ztr(G
∧m
m )(U × ∆i) ⊗ Ztr(G

∧n
m )(U × ∆i) → Ztr(G

∧(m+n)
m )(U × ∆i).

The morphisms in 3.9 are associative and the map ∇ in the Eilenberg-
Zilber theorem is homotopy associative ([Wei94, 8.5.4]). It follows that the
pairing of construction 3.10 is homotopy associative.

Corollary 3.11. For each smooth X, there are pairings:

Hp,q(X,Z) ⊗Hp′,q′(X,Z) → Hp+p′,q+q′(X,Z).

In 15.9 we will show that this pairing is skew-commutative with respect
to the first grading, so that H∗,∗(X,Z) is an associative graded-commutative
ring.
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Lecture 4

Weight one motivic cohomology

Theorem 4.1. There is a quasi-isomorphism of complexes of presheaves with
transfers:

Z(1)
'- O∗[−1].

Corollary 4.2. Let X be a smooth scheme over k. Then we have:

Hp,q(X,Z) =





0 q ≤ 1 and (p, q) 6= (0, 0), (1, 1), (2, 1)

Z(X) (p, q) = (0, 0)

O∗(X) (p, q) = (1, 1)

Pic(X) (p, q) = (2, 1)

This theorem will follow from lemmas 4.3 − 4.6 below. An alternative
proof is given in [SV96].

Consider the functor M∗(P1; 0,∞) : Sm/k → Ab which sends a scheme
X to the group of rational functions on X ×P1 which are regular in a neigh-
borhood of X ×{0,∞} and equal 1 on X ×{0,∞}. Clearly M∗(P1; 0,∞) is
a sheaf for the Zariski topology. Given a rational function f on X × P1 let
D(f) denote its divisor.

Lemma 4.3. For all f in M∗(P1; 0,∞)(X), the divisor D(f) belongs to the
subgroup Cor(X,A1 \ {0}) of the group of cycles on X × P1.

From the lemma we get a morphism of sheaves:

M∗(P1; 0,∞) ⊂ - Ztr(A
1 \ {0}).

39
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6

-

q

p

H0,2 H1,2

0 0 0

Z(X)00

0 0

000

H2,2H−1,2H−2,2
H3,2

Pic(X)O∗(X)0

0 0 00

Figure 4.1: Weight q motivic cohomology

Lemma 4.4. For any connected X there is a short exact sequence in Ab:

0 - M∗(P1; 0,∞)(X) - Ztr(A
1 \ {0})(X)

λ- Z ⊕O∗(X) - 0.

Proof. We know that Pic(X×P1) ∼= Pic(X)×Z, so for any Z in Cor(X,A1) ⊂
Cor(X,P1) there is a unique rational function f on X ×P1 and an integer n
so that D(f) = Z and f/tn = 1 on X × {∞}. If Z lies in Cor(X,A1 \ {0}),
then f(0) ∈ O∗(X). We define λ : Ztr(A1 \ {0}) → Z ⊕ O∗ by λ(Z) =
(n, (−1)nf(0)). If u ∈ O∗(X) and Zu = D(t− u) then λ(Zu) = (1, u). Since
λ(Zu − Z1) = (0, u) λ is onto. The kernel of λ consists of all Z whose f lies
in M∗(P1; 0,∞)(X), so we are done.

Lemma 4.5. The map λ respects transfers. Hence M∗(P1; 0,∞) is a PST.

Proof. It is easy to see that the first component of λ is a morphism in PST
because it is the map Cork(X,A1 \ {0}) → Cork(X, Spec k), induced by the
structure map π : A1 \ {0} → Spec k. To check the second component of λ,
we see from exercise 1.13 that it suffices to check that the following diagram
commutes for every finite field extension F ⊂ E.

Ztr(A
1 \ {0})(SpecE) - E∗

Ztr(A
1 \ {0})(SpecF )

?
- F ∗

NE/F

?
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This is a straightforward verification using exercise 1.10.

Write M∗ for M∗(P1; 0,∞). By 2.13, (CiF )(U) = F (U × ∆i), so 4.4
gives us:

0 → C∗(M∗) → C∗Ztr(A
1 \ {0}) → C∗(Z ⊕O∗) → 0.

Splitting off 0 → C∗Z = C∗Z → 0 we get an exact sequence:

0 → C∗(M∗) → Z(1)[1] → C∗(O∗) → 0.

But C∗(O∗) ' O∗ because O∗(U×∆n) = O∗(U). We will prove in lemma 4.6
that the first term C∗(M∗) is acyclic. Therefore Z(1)[1] is quasi-isomorphic
to O∗. This is the statement of the theorem 4.1, shifted once.

Lemma 4.6. If X is a smooth scheme over k, then C∗(M∗)(X) is an acyclic
complex of abelian groups. Hence C∗(M∗) is an acyclic complex of sheaves.

Proof. Let f ∈ CDK
i (M∗)(X) be a cycle, i.e., an element vanishing in

CDK
i−1 (M∗)(X). Then f is a regular function on some neighborhood U of

Z = X×∆i×{0,∞} in X×∆i×P1, and f = 1 on each face X×∆i−1 ×P1,
as well as on Z. Consider the regular function hX(f) = 1 − t(1 − f) on the
neighborhood A1 × U of A1 × Z in A1 ×X × ∆i × P1, where t denotes the
coordinate function of A1. Then hX(f) is a cycle in CDK

i (M∗)(A1 × X),
because it equals 1 where f equals 1. The restrictions along t = 0, 1, from
CDK
i (M∗)(A1 × X) to CDK

i (M∗)(X), send hX(f) to 1 and f , respectively.
Since these restrictions are chain homotopy equivalent by 2.17, f is a bound-
ary.

This completes the proof of theorem 4.1.

Remark 4.7. We will revisit this in lecture 7 in 7.11.
Lemma 4.6 works more generally to show that C∗M∗(Y ;Z)(X) is acyclic

for every affine X, where M∗(Y ;Z)(X) is the group of rational functions
on X × Y which are regular in a neighborhood of X × Z and equal to 1 on
X × Z.

Now let us consider the complex Z/l(1). By theorem 4.1 Z(1) is quasi-
isomorphic to O∗[−1]. Tensoring with Z/l we have Z/l(1) ' O∗[−1]⊗L Z/l,

which is just the complex [O∗ l- O∗] in degrees 0 and 1. Then we have
the universal coefficients sequence:

0 - Hp,q(X,Z)/l - Hp,q(X,Z/l) -
lH

p+1,q(X,Z) - 0.
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Corollary 4.8. There is a quasi-isomorphism of complexes of étale sheaves

Z/l(1)ét ' µl.

Proof. Since sheafification is exact ([Mil80] p. 63), theorem 4.1 gives Z(1)ét '
O∗
ét[−1], and hence

Z/l(1)ét ' O∗
ét[−1] ⊗L Z/l ' µl.

Corollary 4.9. If 1/l ∈ k and X is smooth, then Hp,1(X,Z/l) = 0 for
p 6= 0, 1, 2 while:

H0,1(X,Z/l) = µl(X), H1,1(X,Z/l) = H1
ét(X, µl),

H2,1(X,Z/l) = Pic(X)/lPic(X).

Proof. The calculation of Hp,1 for p 6= 1 follows from the universal coeffi-
cients sequence, since the only nonzero Zariski cohomology groups of O∗ on
a smooth scheme are H0 and H1(X,O∗) = Pic(X). For p = 1 note that
corollary 4.8 gives a natural map

H∗
Zar(X,Z/l(1)) → H∗

ét(X,Z/l(1)ét) = H1
ét(X, µl)

fitting into the diagram:

H1
Zar(X,Z(1))/l ⊂- H1

Zar(X,Z/l(1)) --
lH

2
Zar(X,Z(1))

H1
ét(X,Z(1))/l

∼=
?

⊂ - H1
ét(X,Z/l(1))

?
--

lH
2
ét(X,Z(1)).

∼=
?

Since H1
ét(X,O∗) = H1

Zar(X,O∗) by Hilbert’s Theorem 90 (see [Mil80, III
4.9]), the 5-lemma concludes the proof.

Remark 4.10. (Deligne) If char k = l then H1,1(X,Z/l) ∼= H1
ffp(X, µl). In

fact, the proof of 4.9 is valid in this setting.



Lecture 5

Relation to Milnor K-Theory

The Milnor K-theory KM
∗ (F ) of a field F is defined to be the quotient of the

tensor algebra T (F ∗) over Z by the ideal generated by the elements of the
form x⊗(1−x) where x ∈ F ∗. In particular, KM

0 (F ) = Z and KM
1 (F ) = F ∗.

The goal of this lecture is to prove the following:

Theorem 5.1. For any field F and any n we have:

Hn,n(SpecF,Z) ∼= KM
n (F ).

We have already seen that this holds for n = 0, 1, because by definition
3.4 H0,0(SpecF,Z) = H0

Zar(SpecF,Z) = Z and by theorem 4.1:

H1,1(SpecF,Z) = H1
Zar(SpecF,O∗[−1]) = H0

Zar(SpecF,O∗) = F ∗.

The proof of theorem 5.1 will follow [SV00, 3.4] which is based on [NS89].
It will consist of three steps:

1. Construction of θ : Hn,n(SpecF,Z) → KM
n (F ). This will use lemma

5.5.

2. Construction of λF : KM
n (F ) → Hn,n(SpecF,Z). This will be done

using lemmas 5.9 and 5.6. The proof of lemma 5.9 will need lemma
5.8.

5.6 + (5.8 ⇒ 5.9) ⇒ ∃ λF

3. Proof that these two maps are inverse to each other. For this we will
need lemma 5.10 (proved using lemma 5.11).

43
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Before starting the proof of the theorem we need some additional prop-
erties of motivic cohomology and Milnor K-theory.

Recall that Ztr(G∧n
m )(SpecF ) is a quotient of Ztr((A1 − {0})n)(SpecF ),

which by 1.10 is the group of zero cycles of (A1 \ {0})n.

Lemma 5.2. We have Hp,q(SpecF,Z) = Hq−p

(
C∗(Ztr(G∧q

m ))(SpecF )
)

for
all p and q. In particular we have

Hn,n(SpecF,Z) =H0 (C∗(Ztr(G
∧n
m ))(SpecF ))

= coker
(

Ztr(G
∧n
m )(A1)

∂0−∂1- Ztr(G
∧n
m )(SpecF )

)
.

Proof. Write A∗ for C∗Ztr(G∧q
m )(SpecF ) so the right side is Hq−pA∗ =

Hp−qA∗. By definition 3.1, the restriction of Z(q) to SpecF is the chain
complex A∗[−q]. Since Zariski cohomology on SpecF is just ordinary coho-
mology, we have

Hp,q(SpecF,Z) = Hp(A∗[−q]) = Hp−q(A∗) = Hq−p(A∗).

Lemma 5.3. If F ⊂ E is a finite field extension, then the proper push-
forward of cycles induces a map NE/F : H∗,∗(SpecE,Z) → H∗,∗(SpecF,Z).
Moreover, if x ∈ H∗,∗(SpecE,Z) and y ∈ H∗,∗(SpecF,Z) then:

1. NE/F : H0,0(SpecE,Z) = Z → Z = H0,0(SpecF,Z) is multiplication
by the degree of E/F .

2. NE/F : H1,1(SpecE,Z) = E∗ → F ∗ = H1,1(SpecF,Z) is the classical
norm map E∗ → F ∗.

3. NE/F (yE · x) = y ·NE/F (x) and NE/F (x · yE) = NE/F (x) · y.

4. If F ⊂ E ⊂ K, and K is normal over F , we have:

NE/F (x)K = [E : F ]insep
∑

j:E ⊂ - K

j∗(x) in H∗,∗(SpecK,Z).

5. If F ⊂ E ′ ⊂ E then NE/F (x) = NE′/F (NE/E′(x)).

Proof. All but property 2 follow immediately from the corresponding prop-
erties of proper push-forward. Property 2 follows from property 4 since this
formula also holds for the classical norm map NE/F : E∗ → F ∗.
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If F ⊂ E is a finite field extension, there is a “norm map” NE/F :
KM
n (E) → KM

n (F ) satisfying the analogue of lemma 5.3. In addition, it
satisfies the following condition (see [Sus82]).

Theorem 5.4 (Weil Reciprocity). Suppose that L is an algebraic function
field over k. For each discrete valuation w on L there is a map

∂w : KM
n+1(L) → KM

n (k(w)),

and for all x ∈ KM
n+1(L):

∑

w

Nk(w)/k∂w(x) = 0.

Corollary 5.5. Let p : Z → A1
F be a finite surjective morphism and suppose

that Z is integral. Let f1, . . . , fn ∈ O∗(Z) and:

p−1({0}) =
∐

n0
i z

0
i p−1({1}) =

∐
n1
i z

1
i

where nεi are the multiplicities of the points zεi = SpecEε
i (ε = 0, 1). Define:

ϕ0 =
∑

n0
iNE0

i /F
({f1, . . . , fn}E0

i
) ϕ1 =

∑
n1
iNE1

i /F
({f1, . . . , fn}E1

i
)

then we have:
ϕ0 = ϕ1 ∈ KM

n (F ).

Proof. Let L be the function field of Z and consider x = {t/t−1, f1, . . . , fn}.
At every infinite place, t/t− 1 equals 1 and ∂w(x) = 0. Similarly, ∂w(x) = 0
at all finite places except those over 0 and 1. If wi lies over t = 0 then
∂wi

(x) = n0
i {f1, . . . , fn} in KM

n (E0
i ); if wi lies over t = 1 then ∂wi

(x) =
−n1

i {f1, . . . , fn} in KM
n (E1

i ). By Weil Reciprocity 5.4,
∑
N∂wi

(x) = ϕ0 −ϕ1

vanishes in KM
n (F ).

We are now ready to define the map θ. By 5.2 it is enough to find a map
f from Ztr(G∧n

m )(SpecF ) to KM
n (F ) which composed with the difference of

the face operators is zero. Such a map must induce a unique map θ on the
cokernel:

Ztr(G
∧n
m )(A1)

∂0 − ∂1- Ztr(G
∧n
m )(SpecF ) -- Hn,n(SpecF,Z)

@
@

@
@

@

f

R

KM
n (F ).

θ

?
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But now Ztr(G∧n
m )(SpecF ) is a quotient of the free abelian group gen-

erated by the closed points of (A1
F \ {0})n (by exercise 1.10), modulo the

subgroup generated by all points of the form (x1, . . . , 1, . . . , xn) where the 1’s
can be in any position. If x is a closed point of (A1

F \ {0})n with residue field
E then x is defined by a canonical sequence (x1, . . . , xn) of nonzero elements
of E. Now E is a finite field extension of F , and {x1, . . . , xn} ∈ KM

n (E).
Using the norm map for Milnor K-theory NE/F : KM

n (E) → KM
n (F ), we

define
f(x) = NE/F ({x1, . . . , xn}).

Since {x1, . . . , 1, . . . , xn} = 0 in KM
∗ (E), this induces a well-defined map

f : Ztr(G∧n
m )(SpecF ) → KM

n (F ). By 5.5 the composition of f with the face
operators is zero. We define θ to be the map induced on the cokernel.

If x is an F -point of (A1
F − {0})n then its coordinates x1, . . . , xn are

nonzero elements of F . We shall write [x1 : · · · : xn] for the class of x in
Hn,n(SpecF,Z). The map θ is obviously surjective since θ([x1 : · · · : xn]) =
{x1, . . . , xn} for x1, . . . , xn in F .

Now let us build the opposite map, λF . For this, we will use the multi-
plicative structure (3.11) on H∗,∗(X,Z). The following lemma is immediate
from the construction 3.10 and lemma 5.2.

Lemma 5.6. For a1, . . . , an ∈ F we have [a1 : · · · : an] = [a1] · · · [an].

By definition KM
∗ (F ) = T (F ∗)/(x⊗ (1−x)). Therefore we define a map:

T (F ∗) → ⊕nH
n,n(SpecF,Z), a1 ⊗ . . .⊗ an 7→ [a1] · · · [an].

We will prove that this maps factors through KM
n (F ). By 5.6, it is enough

to prove that [a : 1− a] is zero, which is the statement of the proposition 5.9
below.

Example 5.7. We can use a special cycle to show that [a : −a] = 0. Con-
sider the correspondence Z from A1 (parametrized by t) to X = A1 − {0}
(parametrized by x) defined by

x2 − t(a + b)x− (1 − t)(1 + ab)x + ab = 0.

Restricting along t = 0, 1 yields correspondences [ab] + [1] and [a] + [b] in
Cor(SpecF,X). Setting these equal recovers the identity [ab] = [a] + [b] in
H1,1(SpecF,Z) ∼= F ∗, because [1] = 0.
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Let Y denote the composition of Z with the diagonal embedding
X ⊂ - X2. Since [1 : 1] = [1][1] = 0, equating the restrictions along
t = 0, 1 yields the identity [ab : ab] = [ab : ab] + [1 : 1] = [a : a] + [b : b]
in H2,2(SpecF,Z). Bilinearity (5.6) yields skew-commutativity: [a : b] + [b :
a] = 0. In particular, 2[a : a] = 0.

Passing to E = F (
√
a), we see that 0 = 2[

√
a :

√
a] = [a :

√
a]

in H2,2(SpecE,Z). By 5.3, applying NE/F yields 0 = [a : −a] in
H2,2(SpecF,Z).

Lemma 5.8. Suppose ∃n > 0 so that n[x : 1−x] = 0 for all finite extensions
of F and x 6= 0, 1 in F . Then [x : 1 − x] = 0 in H2,2(SpecF,Z) for every
x 6= 0, 1.

Proof. Suppose n = m·p where p is a prime; we want to prove m[x : 1−x] = 0.
Let us consider y = p

√
x and E = F (y). Then 0 = mp[y : 1−y] = m[x : 1−y],

and 1 − x = NE/F (1 − y). Hence

0 = NE/F (m[x : 1 − x]) = m · [x : NE/F (1 − y)] = m[x : 1 − x].

The formula [x : 1 − x] = 0 follows by induction on n.

Proposition 5.9. The element [x : 1 − x] in H2,2(SpecF,Z) is the zero
element.

Proof. Let Z be the finite correspondence from A1 (parametrized by t) to
X = A1 − {0} (parametrized by x) defined by:

x3 − t(a3 + 1)x2 + t(a3 + 1)x− a3 = 0.

Let ω be a root of x2 + x + 1, so ω3 = 1, and E = F (ω). The fiber over
t = 0 consists of a, ωa, and ω2a and the fiber over t = 1 consists of a3 and
two sixth roots of 1. Using the embedding x 7→ (x, 1− x) of A1 − {0, 1} into
X2, Z yields a correspondence Z ′ from A1 to X2. Then in H2,2(SpecE,Z)

∂0(Z
′) = [a : 1 − a] + [ωa : 1 − ωa] + [ω2a : 1 − ω2a] =

[a : 1 − a3] + [ω : (1 − ωa)(1 − ω2a)2]

is equal to

∂1(Z
′) = [a3 : 1 − a3] + [−ω : 1 + ω] + [−ω2 : 1 + ω2].
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Multiplying by 3 eliminates terms [ω : b], noting that [−1 : 1 + ω] + [−1 :
1 + ω2] = 0 as (1 + ω)(1 + ω2) = 1. Therefore 0 = 2[a3 : 1 − a3] over E.
Applying the norm yields 0 = 4[a3 : 1− a3] over F . Passing to the extension
F ( 3

√
a) and norming yields 0 = 12[a : 1 − a] over F . Applying lemma 5.8

with n = 12, we see that 0 = [a : 1 − a] as well.

Proposition 5.9 shows that the algebra map of lemma 5.6 induces a map
on the quotient λF : KM

n (F ) → Hn,n(SpecF,Z). Now we need to check that
λF and θ are inverse to each other. Since θ◦λF is the identity by construction,
it is enough to prove that λF is surjective.

Lemma 5.10. The map λF is surjective.

Proof. By 5.2, it suffices to show that if x is a closed point of X = (A1
F \{0})n

then [x] ∈ Hn.n(SpecF,Z) belongs to the image of λF . Set E = k(x), and
choose a lift x̃ ∈ XE of x. Since x is the proper push-forward of x̃, the
definition of the norm map (see 5.3) implies that:

[x] = NE/F ([x̃]) x̃ = (a1, . . . , an) ∈ (A1 \ {0})n(E).

Since x̃ is a rational point of XE, [x̃] is the image under λE of its coordinates.
So [x] = NE/FλE{a1, . . . , an}. The lemma now follows from the assertion,
proven in 5.11 below, that the diagram (5.10.1) commutes.

KM
n (E)

λE- Hn,n(SpecE,Z)

KM
n (F )

NE/F

?

λF
- Hn,n(SpecF,Z).

NE/F

?

(5.10.1)

Lemma 5.11. If F ⊂ E is any finite field extension, then the diagram
(5.10.1) commutes.

Proof. By 5.3 (3) we may assume that [E : F ] = l for some prime number l.
Assume first that F has no extensions of degree prime to l and [E : F ] = l.
The Bass-Tate lemma (5.3) in [BT73] states that in this case KM

n (E) is
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generated by the symbols a = {a1, . . . , an−1, b} where ai ∈ F and b ∈ E. The
properties of the norm on KM

∗ and 5.6 yield:

λFN{a1, . . . , an−1, b} = λF{a1, . . . , an−1, N(b)} = [a1 : · · · : an−1] · [Nb].

But using the assertions of lemma 5.3 we have:

NλE(a) = N [a1 : · · · : an−1 : b]
(2)
= [a1 : · · · : an−1]·N [b]

(4)
= [a1 : · · · : an−1]·[Nb].

This concludes the proof in this case.
Now we use a standard reduction. For simplicity, we will write Hp,q(F )

for Hp,q(SpecF,Z). If F ′ is a maximal prime-to-l extension of F then the
kernel of Hn,n(F ) → Hn,n(F ′) is a torsion group of exponent prime to l by
(1) and (3) of 5.3. Fix a ∈ KM

n (E). By the above case, t = NλE(a)−λFN(a)
is a torsion element of Hn,n(F ), of exponent prime to l.

Since the kernel of Hn,n(F ) → Hn.n(E) has exponent l, tE 6= 0 if and
only if t = 0. If E is an inseparable extension of F then by 5.3(4) we have
tE = lλE(a) − λE(la) = 0. If E is separable over F then E ⊗F E is a finite
product of fields Ei with [Ei : E] < l. Moreover, Weil Reciprocity implies
that the diagrams

KM
n (E)

diag- ⊕KM
n (Ei) Hn,n(E)

diag- ⊕Hn,n(Ei)

KM
n (F )

NE/F

?
- KM

n (E)

⊕NEi/E

?
Hn,n(F )

NE/F

?
- Hn,n(E)

⊕NEi/E

?

commute (see p.387 of [BT73]). By induction on l, we have

tE = ⊕NEi/EλEi
(aEi

) −⊕λENEi/E(aEi
) = 0.

Since tE = 0 we also have t = 0.

This completes the proof of theorem 5.1.
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Lecture 6

Étale sheaves with transfers

The goal of this lecture will be to study the relations between presheaves with
transfers and étale sheaves. The main result (6.17) will be that sheafification
preserves transfers.

Definition 6.1. A presheaf F of abelian groups on Sm/k is an étale sheaf
if it restricts to an étale sheaf on each X in Sm/k. That is, if:

1. the sequence 0 → F (X)
diag- F (U)

(+,−)- F (U×X U) is exact for every
surjective étale morphism of smooth schemes U → X;

2. F (X
∐
Y ) = F (X) ⊕ F (Y ) for all X and Y .

We will write Shét(Sm/k) for the category of étale sheaves, which is a full
subcategory of the category of presheaves of abelian groups.

A presheaf with transfers F is an étale sheaf with transfers if its
underlying presheaf is an étale sheaf on Sm/k. We will write Shét(Cork)
for the full subcategory of PST(k) whose objects are the étale sheaves with
transfers.

For example, we saw in lecture 2 that the étale sheaves Z and O∗ have
transfers, so they are étale sheaves with transfers. Lemma 6.2 shows that
Ztr(T ) is an étale sheaf with transfers, even if T is singular (see 2.10).

Lemma 6.2. For any scheme T over k, Ztr(T ) is an étale sheaf.

Proof. Since PST(k) is an additive category, we have the required decom-
position of Ztr(T )(X

∐
Y ) = HomPST(X

∐
Y, T ). To check the sheaf axiom

for surjective étale maps U → X, we proceed as in the proof of 3.2.

51
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As U ×T → X ×T is flat, the pullback of cycles is well-defined and is an
injection. Hence the subgroup Ztr(T )(X) = Cork(X, T ) of cycles on X × T
injects into the subgroup Ztr(T )(U) = Cork(U, T ) of cycles on U × T .

To see that the sequence 6.1.1 is exact at Ztr(T )(U), take ZU in
Cork(U, T ) whose images in Cork(U ×X U, T ) coincide. We may assume
that X and U are integral, and that the étale map U → X is finite; let F
and L be their respective generic points. Then ZL ∈ CorF (L, TF ) comes from
a cycle ZF in CorF (F, TF ) by 1.11, because if L lies in a Galois extension L′

and G = Gal(L′/F ), then Z ′
L lies in CorF (L′, TF )G = CorF (L, TF ). Thus by

1.13 there is a Zariski open V ⊂ X and a cycle ZV in Cork(V, T ) agreeing
with ZU in Cor(U ×X V, T ). But U is finite and flat over X, so each term in
ZU is also finite over X. Hence each term in ZV extends to a cycle in X × T
finite over X, i.e., to a finite correspondence in Cork(X, T ).

Corollary 6.3. Let F be an étale sheaf with transfers. Then

HomShét(Cork)(Ztr(X), F ) = HomPST(Ztr(X), F ) = F (X).

Corollary 6.4. For any abelian group A, the A(n) are complexes of étale
sheaves. If 1/n ∈ k, the motivic complex of étale sheaves Z/n(1) is quasi-
isomorphic to the étale sheaf µn.

Proof. The Z(n) are étale sheaves with transfers by lemmas 2.12 and 6.2. We
know that the Ztr(T ) are sheaves of free abelian groups. Hence A ⊗ Ztr(T )
are étale sheaves. We conclude that the A(n) are étale sheaves by the same
argument we used for the Z(n). The last assertion is just a restatement of
corollary 4.8 using 6.2.

Exercise 6.5. Let π : X → S be a finite étale map, and πt the induced finite
correspondence from S to X. If F is any étale sheaf with transfers, show
that π∗

t : F (X) → F (S) is the étale trace map of [Mil80, V.1.12]. Hint: If
Y → S is Galois with group G, and factors through X, then Cor(S,X) =
Cor(Y,X)G by 6.2. Show that the image of π in Cor(Y,X) is the sum

∑
f

of all S-maps from f : Y → X, and hence determines πt ∈ Cor(S,X).

Locally constant étale sheaves form a second important class of étale
sheaves with transfers.

Definition 6.6. The full subcategory Et/k of Sm/k consists of all the
schemes of finite type over k which are smooth of dimension zero. Every
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S in Et/k is a finite disjoint union of spectra of separable field extensions of
k.

It is well known (see [Mil80] and [SGA4, VIII 2.2]) that the category of
étale sheaves on Et/k is equivalent to the category of discrete modules over
the profinite group Gal(ksep/k). If F corresponds to the Galois module M
and S = Spec(`) then F (S) = MH , where H = Gal(ksep/`).

We have the following functors:

Shét(Et/k)
�π∗

π∗
- Shét(Sm/k),

where the restriction π∗ is the right adjoint of π∗; they are both exact func-
tors.

Definition 6.7. An étale sheaf is locally constant if π∗π∗F → F is an
isomorphism. We will write Shlcét for the full subcategory of Shét(Sm/k)
consisting of all locally constant sheaves.

Exercise 6.8. Let F be the locally constant sheaf π∗M corresponding to
the G-module M . If X is connected, and l is the separable closure of k in
H0(X,OX), show that F (X) = MH where H = Gal(ksep/l). Conclude that
π∗F is the Galois module M . Note that F (X) = MH is also defined if X is
normal.

Lemma 6.9. The functors π∗ and π∗ induce an equivalence between the
category Shlcét and the category of discrete modules over the profinite group
Gal(ksep/k).

Proof. If M is in Shét(Et/k), then M → π∗π
∗M is an isomorphism by

Ex. 6.8. Thus π∗ is faithful. By category theory, π∗π∗π
∗ ∼= π∗, so for F

locally constant we have a natural isomorphism π∗π∗F ∼= F .

Exercise 6.10. Let L be a Galois extension of k, and let G = Gal(L/k).
Show that Ztr(L) is the locally constant étale sheaf corresponding to the
module Z[G].

Lemma 6.11. Any locally constant étale sheaf has a unique underlying étale
sheaf with transfers.
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Proof. Let Z ′ ⊂ X × Y be an elementary correspondence and let Z be the
normalization of Z ′ in a normal field extension L of F = k(X) containing
K = k(Z ′). If G = Gal(L/F ) then we also have G = AutX(Z), and it is well
known that the set HomX(Z,Z ′) of maps q : Z → Z ′ over X is in one-one
correspondence with the set of field maps HomF (K,L). The cardinality of
this set is the separable degree of K over F .

Let M be a Galois module, considered as a locally constant étale sheaf.
It is easy to check using exercise 6.8 that M(X) is isomorphic to M(Z ′)G.

Write i for the inseparable degree of K over F . Then the transfer
map M(Y ) → M(X) is defined to be the composite of M(Y ) → M(Z ′),
multiplication by i, and the sum over all maps q : Z → Z ′ over X of
q∗ : M(Z ′) →M(Z).

The verification that this gives M the structure of a presheaf with trans-
fers is now straightforward, and we refer the reader to 5.17 in [SV96] for
details.

It is clear that the locally constant étale sheaves form an abelian subcat-
egory of Shét(Cork), i.e., the inclusion is an exact functor.

In order to describe the relation between presheaves and étale sheaves
with transfers (see 6.18), we need two preliminary results.

If p : U → X is an étale cover, we define Ztr(Ǔ) to be the Čech complex

. . .
p0−p1+p2- Ztr(U ×X U)

p0−p1- Ztr(U) - 0.

Proposition 6.12. Let p : U → X be an étale covering of a scheme X.
Then Ztr(Ǔ) is an étale resolution of the sheaf Ztr(X), i.e., the following
complex is exact as a complex of étale sheaves.

. . .
p0−p1+p2- Ztr(U ×X U)

p0−p1- Ztr(U)
p- Ztr(X) → 0

Proof. As this is a complex of sheaves it suffices to verify the exactness of
the sequence at every étale point. Since points in the étale topology are
strictly Hensel local schemes, it is enough to prove that, for every Hensel
local scheme S over k, the following sequence of abelian groups is exact.

· · · → Ztr(U)(S) → Ztr(X)(S) → 0. (6.12.1)

Here S is an inverse limit of smooth schemes Si, and by abuse of notation
Ztr(T )(S) denotes lim Ztr(T )(Si).
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To prove that (6.12.1) is exact we need another reduction step. Let Z be
a closed subscheme of X × S which is quasi-finite over S. We write L(Z/S)
for the free abelian group generated by the irreducible connected components
of Z which are finite and surjective over S. L(Z/S) is covariantly functorial
on Z with respect to morphisms of quasi-finite schemes over S. Clearly, the
sequence (6.12.1) is the colimit of complexes of the form:

· · · → L(ZU ×Z ZU/S) → L(ZU/S) → L(Z/S) → 0 (6.12.2)

where ZU = Z ×X U and the limit is taken over all Z closed subschemes of
X × S which are finite and surjective over S. Therefore the proof of 6.12
will be completed once we show that the sequence (6.12.2) is exact for every
subscheme Z of X × S which is finite and surjective over S.

Since S is Hensel local and Z is finite over S, Z is also Hensel. Therefore
the covering ZU → Z splits. Let s1 : Z → ZU be a splitting. We set (ZU)kZ =
ZU ×Z . . . ×Z ZU . It is enough to check that the maps sk : L((ZU)kZ/S) →
L((ZU)k+1

Z /S) are contracting homotopies where sk = L
(
s1 ×Z id(ZU )k

Z

)
.

This is the end of the proof of 6.12.

The proof shows that Ztr(Ǔ) is also a Nisnevich resolution of Ztr(X), i.e.,
the sequence of 6.12 is also exact as a complex of Nisnevich sheaves. We
can pinpoint why this proof holds in the étale topology and in the Nisnevich
topology, but does not hold in the Zariski topology. This is because:

• If S is strictly Hensel local (i.e., a point in the étale topology) and Z
is finite over S then Z is strictly Hensel.

• If S is Hensel local (i.e., a point in the Nisnevich topology) and Z is
finite over S then Z is Hensel.

• If S is local (i.e., a point in the Zariski topology) and Z is finite over
S then Z need not be local but will be semilocal.

Example 6.13. Let X be a connected semilocal scheme finite over a local
scheme S. X is covered by its local subschemes Ui. If X → S does not
split, its graph Γ defines an element of Ztr(X)(S) that cannot come from
⊕Ztr(Ui)(S), because Γ does not lie in any S×Ui. Hence ⊕Ztr(Ui) → Ztr(X)
is not a surjection of Zariski sheaves.
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We will see in 13.13 that Tot(C∗Ztr(Ǔ)) is a Zariski resolution of
C∗Ztr(X).

If U = {Ui → X} is a Zariski covering, we can replace the infinite complex
Ztr(Ǔ) of 6.12 by the bounded complex

Ztr(Ǔ) : 0 → Ztr(U1 ∩ . . . ∩ Un) → . . .→ ⊕iZtr(Ui) → 0.

Proposition 6.14. Let U = {Ui → X} be a Zariski open covering of X.
Then Ztr(Ǔ) is an étale resolution of Ztr(X), i.e., the following sequence is
exact as a complex of étale sheaves:

0 → Ztr(U1 ∩ . . . ∩ Un) → . . .→ ⊕iZtr(Ui) → Ztr(X) → 0.

Proof. If n = 2, we apply 6.12 to U = U1

∐
U2. Since U ×X U = U1

∐
(U1 ∩

U2)
∐
U2, we see that the image of Ztr(U

×3) in Ztr(U ×X U) is Ztr(U1) ⊕
Ztr(U2) in the exact complex of 6.12. It follows that Ztr(Ǔ) → Ztr(X) is
exact for n = 2. For n > 2, the exactness follows by induction on n.

Example 6.15. If U is the cover of P1 by A1 = Spec k[t] and Spec k[t−1],
and we mod out by the basepoint t = 1, we obtain the exact sequence

0 → Ztr(Gm) → 2Ztr(A
1, 1) → Ztr(P

1, 1) → 0.

Applying C∗ yields and exact sequence of complexes (see 2.13). Recalling
that C∗Ztr(A1, 1) ' 0, we obtain quasi-isomorphisms of étale complexes (or
even Nisnevich complexes)

C∗Ztr(P
1, 1) ' C∗Ztr(Gm)[1] = Z(1).

Lemma 6.16. Let p : U → Y be an étale covering and f : X → Y a finite
correspondence. Then there is an étale covering p′ : V → X and a finite
correspondence f ′ : V → U so that the following diagram commutes in Cork.

V
f ′

- U

X

p′

?

f
- Y

p

?



57

Proof. We may suppose that f is defined by the elementary correspondence
Z ⊂ X × Y . Form the pullback ZU = Z ×Y U inside X × U . Since the
projection ZU → Z is étale and Z → X is finite, there is an étale cover V →
X so that V ×XZU → V ×XZ has a section s. But then s(V ×XZU) ⊂ V ×U
over V and defines the required finite correspondence V → U .

V ×X ZU - ZU ⊂ - X × U - U

V ×X Z
?

- Z
?

⊂ - X × Y - Y
?

@
@

@
@

@R 	�
�

�
�

�

V
?

- X
?

As in [Mil80] pp. 61-65, the inclusion i : Shét(Sm/k) → PreSh(Sm/k)
has a left adjoint aét, and i ◦ aét is left exact. Hence the category of étale
sheaves on Sm/k is abelian, and the functor aét is exact.

If F is a presheaf with transfers, the following theorem shows that its étale
sheafification admits transfers. The same holds in the Nisnevich topology but
not in the Zariski topology. However, we will prove later (in 21.15) that if
F is a homotopy invariant presheaf with transfers, its Zariski sheafification
admits transfers.

Recall that there is a forgetful functor ϕ : PST(k) → PreSh(Sm/k).

Proposition 6.17. Let F be a presheaf with transfers, and write Fét for
aétϕF . Then Fét has a unique structure of presheaf with transfers such that
F → Fét is a morphism of presheaves with transfers.

Corollary 6.18. The inclusion functor Shét(Cork) ⊂
i- PST(k) has a left

adjoint aét. The category Shét(Cork) is abelian, aét is exact and commutes
with the forgetful functor ϕ to (pre)sheaves on Sm/k.

The connections between these abelian categories, given by 6.17 and 6.18,
are described by the following diagram, where the ϕ are forgetful functors
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and both functors aét are exact.

PreSh(Sm/k) �ϕ PST(k)

Shét(Sm/k)

i

∪

6

aét

?
�ϕ

Shét(Cork)

i

∪

6

aét

?

Proof of 6.17. Uniqueness. Suppose that two étale sheaves with transfers F1

and F2 satisfy the conditions of the theorem. We already know that F1(X) =
F2(X) = Fét(X) for all X and we just need to check that F1(f) = F2(f) holds
when f : X → Y is a morphism in Cork. This is given if f comes from Sm/k.

Let y ∈ F1(Y ) = F2(Y ) = Fét(Y ). Choose an étale covering p : U → Y
so that y|U ∈ Fét(U) is the image of some u ∈ F (U). Lemma 6.16 yields the
following diagram.

V
f ′

- U

X

p′

? f - Y

p

?

Because y|U comes from F (U), we have F1(f
′)(y|U) = F2(f

′)(y|U).

F1(p
′)F1(f)(y) = F1(f

′)F1(p)(y) as the diagram commutes,

= F1(f
′)(y|U) as p comes from Sm/k,

= F2(f
′)(y|U) as y|U comes from F (U),

= F2(p
′)F2(f)(y) as the diagram commutes,

= F1(p
′)F2(f)(y) as p′ comes from Sm/k.

This implies that F1(f) = F2(f) as p′ is a covering and F1 is an étale sheaf.
Existence. We need to define a morphism Fét(Y ) → Fét(X) for each finite

correspondence from X to Y . We first produce a map

Fét(Y ) → HomSh(Ztr(Y ), Fét)

natural in Cork.
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For all y ∈ Fét(Y ) there is an étale covering p : U → Y and an element
u ∈ F (U) so that y and u agree in Fét(U). By representability (see 2.7),
u determines a morphism Ztr(U) → F of presheaves with transfers. By
shrinking U , we may arrange that the difference map sends u to zero in
F (U ×X U). A chase in the commutative diagram below (where U 2

X denotes
U ×X U) will produce the map of sheaves [y] : Ztr(Y ) → Fét. The top row is
exact by 6.12.

0 → HomSh(Ztr(Y ), Fét) - HomSh(Ztr(U), Fét) - HomSh(Ztr(U
2
X), Fét)

HomPST(Ztr(U), F )
6

- HomPST(Ztr(U
2
X), F )

6

We can now define a pairing Cor(X, Y ) ⊗ Fét(Y ) → Fét(X). Let f be a
correspondence from X to Y and y ∈ Fét(Y ). By the map just described, y
induces a morphisms of sheaves [y] : Ztr(Y ) → Fét. Consider the composition:

Ztr(X)
f- Ztr(Y )

[y]- Fét.

Hence there is a map Ztr(X)(X) → Fét(X). The image of the identity map
will be the pairing of f and y.

We conclude with an application of these ideas to homological algebra.

Proposition 6.19. The abelian category Shét(Cork) has enough injectives.

Proof. The category S = Shét(Cork) has products and filtered direct limits
are exact, because this is separately true for presheaves with transfers and
for étale sheaves. That is, S satisfies axioms AB5 and AB3∗. By 6.3, the
family of sheaves Ztr(X) is a family of generators of S. It is well known (see
[Gro57, 1.10.1]) that this implies that S has enough injectives.

Example 6.20. Let F be an étale sheaf with transfers. We claim that the
terms En(F ) in its canonical flasque resolution (as an étale sheaf, see [Mil80]
p. 90) are actually étale sheaves with transfers. For this it suffices to consider
E = E0(F ). Fix an algebraic closure k̄ of k. For every X we define:

E(X) =
∏

x̄∈X(k̄)

Fx̄,

where X(k̄) is the set of k̄-points of X, and Fx̄ denotes the fiber of F at x̄.
If U → X is étale, E(U) is the product

∏
Fx̄ over x̄ ∈ U(k̄). From this it
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follows that E is an étale sheaf, not only on X but on the big étale site of
Sm/k. It is also easy to see that F (X) → E(X) is an injection.

In addition, E is a presheaf with transfers and F → E is a morphism in
PST. For if Z ⊂ X × Y is an elementary correspondence from X to Y , we
define the transfer E(Y ) → E(X)

E(Y ) =
∏

ȳ∈Y (k̄)

Fȳ →
∏

x̄∈X(k̄)

Fx̄ = E(X)

by stating that the component for x̄ ∈ X(k̄) is the sum over all ȳ ∈ Y (k̄)
such that z = (x̄, ȳ) ∈ Z(k̄) of the localized transfers Fȳ → Fx̄. To see that
F → E is a morphism in PST, we may take X to be strictly Hensel local,
so F (X) = E(X). Since this forces Y to also be strictly Hensel semilocal, so
F (Y ) = E(Y ), this is a tautology.

The same construction works in the Nisnevich topology, letting E(X) be
the product over all closed points x ∈ X of F (SpecOh

X,x) (see 13.3). However,
example 6.13 shows that it does not work in the Zariski topology, because
the transfer E(X) → E(S) need not factor through the sum of the E(Ui).

Lemma 6.21. If F is any étale sheaf with transfers, then its cohomology
presheaves Hn

ét(−, F ) are presheaves with transfers.

Proof. The canonical flasque resolution F → E∗(F ) of 6.20 is a resolution of
sheaves with transfers. Since the forgetful functor from PST(k) to presheaves
is exact, and Hn(−, F ) is the cohomology E∗(F ) as a presheaf, we see that
Hn(−, F ) is also the cohomology of E∗(F ) in the abelian category PST(k).

Example 6.22. By 2.4, F = Gm is an étale sheaf with transfers. By 6.21,
both the Picard group Pic(X) = H1

ét(X,Gm) and the cohomological Brauer
group Br′(X) = H2

ét(X,Gm)tors are presheaves with transfers.

Lemma 6.23. For any F ∈ Shét(Cork) and any smooth X and i ∈ Z we
have:

ExtiShét(Cork)(Ztr(X), F ) = H i
ét(X,F ).

Proof. The case i = 0 is Hom(Ztr(X), F ) = F (X); this is 6.3. For i > 0
it suffices to show that if F is an injective étale sheaf with transfers then
H i(X,F ) is zero. Consider the canonical flasque resolution E∗(F ) of example
6.20. Since F is injective, the canonical inclusion F → E0 must split, i.e., F
is a direct factor of E0 in Shét(Cork). Since H i

ét(X,F ) is a direct summand
of H i(X,E0), it must vanish for i > 0.
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If we restrict to the category Shét(Cork, R) of étale sheaves of R-modules
with transfer, E0(F ) is a flasque sheaf of R-modules with transfer by 6.20.
The proof of 6.23 goes through word for word to prove the following variation.

Porism 6.24. For any F ∈ Shét(Cork, R) and any smooth X and i ∈ Z:

ExtiShét(Cork ,R)(Rtr(X), F ) = H i
ét(X,F ).

The same proof also shows that lemmas 6.23 and 6.24 hold for the Nis-
nevich topology (see 13.4). See [TriCa, 3.1.8] for an alternative proof.

Exercise 6.25. Still assuming that cdR(k) < ∞, let K be any complex
of étale sheaves of R-modules with transfer. Show that its hyperext and
hypercohomology agree in the sense that for any smooth X and i ∈ Z:

Exti(Rtr(X), K) ∼= Hn
ét(X,K).

If one is willing to extend the constructions of this paper to possibly sin-
gular schemes, the cdh topology would play a major role. The constructions
of this section can be carried out in the cdh topology as well.
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Lecture 7

Relative Picard group and
Suslin’s Rigidity Theorem

In this lecture we introduce the relative Picard group Pic(X̄,X∞). When
X̄ is a good compactification of X over S, its elements determine maps
F (X) → F (S) for every homotopy invariant F . This pairing will be used to
prove Suslin’s Rigidity Theorem 7.20.

Recall from 1A.7 and 1A.8 that if S is a smooth connected scheme and
p : X → S a smooth morphism then we write c(X/S, 0) for the free abelian
group generated by the irreducible closed subsets of X which are finite and
surjective over S. In this lecture we will write C0(X/S) for c(X/S, 0).

By 1A.10, given a map S ′ → S, there is a map C0(X/S) → C0(X ×S

S ′/S ′), induced from

C0(X/S) ⊂ - Ztr(X)(S) = Cork(S,X).

Definition 7.1. We define Hsing
0 (X/S) to be the cokernel of the map

C0(X × A1/S × A1)
∂0−∂1- C0(X/S)

where ∂i is induced by “t = i” : Spec k → A1
k.

Example 7.2. If X = Y ×k S then C0(X/S) = Cor(S, Y ) = Ztr(Y )(S). In
addition, X × A1 = Y ×k (S × A1) and the following diagram commutes:

C0(X × A1/S × A1) - C0(X/S)

Ztr(Y )(S × A1)

=
?

- Ztr(Y )(S).

=
?
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Taking cokernels, we conclude (using 2.26) that:

Hsing
0 (Y × S/S) = H0C∗Ztr(Y )(S) = Cor(S, Y )/A1-homotopy.

In particular, this implies that two elements of Cor(S, Y ) are A1-homotopic
exactly when they agree in Hsing

0 (Y × S/S).

If S = Spec k then Hsing
0 (X/S) is the cokernel Hsing

0 (X/k) of
Ztr(X)(A1) → Ztr(X)(S) discussed in exercise 2.20, because C0(X/S) =
Ztr(X)(Spec k). Also by 2.20, there is a natural surjection Hsing

0 (X/S) →
CH0(X). If X is projective, this surjection is an isomorphism.

Example 7.3. If S = Spec k, then 7.16 below shows that Hsing
0 (P1/S) =

Hsing
0 (A1/S) = Z but Hsing

0 (A1 − {0}/S) = Z ⊕ k∗.

Remark 7.4. In [SV96] the groups Hsing
∗ (X/S) are defined to be the homol-

ogy of the evident chain complex C∗(X/S) with

Cn(X/S) = C0(X × ∆n/S × ∆n).

We will consider the singular homology Hsing
∗ (X/S) in lecture 10 below when

S = Spec k, and C∗(X/S) = C∗Ztr(X)(S).

Let F be a PST. The map Tr : C0(X/S) ⊗ F (X) → F (S) is defined to
be the inclusion C0(X/S) ⊂ Cork(S,X) (see 1A.10) followed by evaluation
on F (X).

C0(X/S) ⊗ F (X)
Tr - F (S)

�
�

�
�

�

evaluate

�

Cork(S,X) ⊗ F (X)
?

∩

Lemma 7.5. If F is homotopy invariant presheaf with transfers then the
map Tr factors through Hsing

0 (X/S) ⊗ F (X) → F (S).

Proof. Since F (X) = F (X × A1), we have a diagram

C0(X × A1/S × A1) ⊗ F (X)
Tr- F (S × A1)

C0(X/S) ⊗ F (X)

∂0 − ∂1

? Tr - F (S).

i0 − i1 = 0

?
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Example 7.6. If σ : S → X is a section of p, regarded as an element of
Hsing

0 (X/S), then Tr(σ,−) is the usual map σ∗ : F (X) → F (S).

Remark 7.7. The pairing Hsing
0 (X/S) ⊗ F (X) → F (S) is fundamental. It

can be defined more generally for homotopy invariant presheaves equipped
only with transfer maps TrD : F (X) → F (S) for any relative smooth curve
X/S and any effective divisor D ⊂ X which is finite and surjective over S,
such that the transfer maps form a “pseudo pretheory”. This construction
applies to the K-theory presheaves Kn(X), equipped with the transfer maps
of exercise 2.6, even though these are not presheaves with transfers.

In order to compute Hsing
0 (X/S), it is useful to embed X in a slightly

larger scheme X̄.

Definition 7.8. A smooth curve p : X → S admits a good compactifica-
tion X̄ if it factors as:

X ⊂
j - X̄

@
@

@
@

@
p

R

S

p̄

?

where j is an open embedding, X̄ is a proper normal but not necessarily
smooth curve over S and Y = X̄−X has an affine open neighborhood in X̄.

If S is affine, for example, then X = A1 × S admits P1 × S as a good
compactification. Similarly, if C is any smooth affine curve over k then
C × S → S admits C̄ × S as a good compactification. The following result
implies that every point x of every X has an open neighborhood U which
has a good compactification over a generic projection X → Al−1.

Lemma 7.9. Let p : X → Al be an étale map. If k is infinite, there exists
a linear projection Al → Al−1 so that the composition X → Al−1 is a curve
with a good compactification.

Proof. There is an open U ⊂ Al so that X is quasi-finite and surjective
over U . Choose a linear projection Al → Al−1 so that the restriction to
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Al − U is finite; Al has good compactification Y = P1 × Al−1. By Zariski’s
Main Theorem (as formulated in [EGA4, 8.12.6]), the map X → Y may be
factored as an open immersion X ⊂ - X̄ followed by a finite map p̄ : X̄ → Y .
Replacing X̄ by its normalization, we may assume that X̄ is normal. Note
that p̄ is an affine map. Since Y is a good compactification of U , X̄ is a good
compactification of X.

Definition 7.10. If Y ⊂
i- X̄ is closed we set GX̄,Y = Ker(O∗

X̄
→ i∗O∗

Y ).
The relative Picard group is defined to be:

Pic(X̄, Y ) = H1
Zar(X̄,GX̄,Y ).

By [Mil80] p. 124, we also have Pic(X̄, Y ) = H1
ét(X̄,GX̄,Y ).

By [SV96, 2.1], the elements of Pic(X̄, Y ) are the isomorphism classes
(L, t) of line bundles L on X̄ with a trivialization t on Y . The group operation
is ⊗, i.e., (L, t) ⊗ (L′, t′) = (L ⊗ L′, t⊗ t′).

Remark 7.11. For X̄ = S×P1 and Y = S×{0,∞}, the “stalk” (i∗GX̄,Y )(Y )
of GX̄,Y at Y is the group M∗(P1; 0,∞)(S) of lecture 4.

The cohomology of O∗ → i∗O∗
Y yields the exact sequence

O∗(X̄) → O∗(Y ) → Pic(X̄, Y ) → Pic(X̄) → Pic(Y ).

Comparing this exact sequence for X̄ and X̄ × A1 yields:

Corollary 7.12. If X̄ is a normal scheme and Y is reduced, we have:

Pic(X̄, Y ) = Pic(X̄ × A1, Y × A1).

Let us write j for the open embedding of X = X̄ − Y into X̄.

Lemma 7.13. If 1/n ∈ k, there is a natural injection

Pic(X̄, Y )/n ⊂ - H2
ét(X̄, j!µn).

Proof. By Kummer Theory we have an exact sequence of étale sheaves:

0 - j!µn - GX̄,Y
n- GX̄,Y

- 0. (7.13.1)

Applying étale cohomology yields:

H1(X̄, j!µn) - H1(X̄,GX̄,Y )
n- H1(X̄,GX̄,Y ) - H2

ét(X̄, j!µn).

But the middle groups are both Pic(X̄, Y ).
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Example 7.14. Suppose that S = Spec k and k is algebraically closed. If
X̄ is a smooth connected curve, then Pic(X̄, Y ) is an extension of Pic(X̄) by
a finite product of |Y | − 1 copies of k∗. Hence Pic(X̄, Y )/n ∼= H2

ét(X̄, µn)
∼=

Z/n.

Recall that C0(X/S) is generated by closed subsets Z of X which are
finite and surjective over S. Because X is smooth, each such subset is an
effective Cartier divisor on X̄, and has an associated line bundle L equipped
with a canonical map O → L. This map gives a trivialization of L on X̄−Z,
which is a neighborhood of Y . Thus a good compactification X̄ induces a
homomorphism

C0(X/S) → Pic(X̄, Y ).

When Y lies in an affine open neighborhood, this map is onto because every
trivialization on Y extends to a neighborhood of Y .

Exercise 7.15. In this exercise we make the lifting to C0(X/S) explicit.
Suppose that L is a line bundle on X̄ with a fixed trivialization t on an open
neighborhood U of Y . Show that t gives a canonical isomorphism of L with
a Cartier divisor L(D), i.e., an invertible subsheaf of the sheaf K of total
quotient rings of O. (See [Har77, II.6].) Show that L(D) comes from a Weil
divisor D =

∑
niZi on X̄ with the Zi supported on X̄ −U . Then show that

the map C0(X/S) → Pic(X̄, Y ) sends
∑
niZi to (L, t).

Because C1(X/S) → Pic(X̄, Y ) factors through Pic(X̄×A1, Y ×A1), 7.12
shows that C0(X/S) → Pic(X̄, Y ) induces a homomorphism

Hsing
0 (X/S) → Pic(X̄, Y ).

Theorem 7.16. Let S be a smooth scheme. If p : X → S is a smooth
quasi-affine curve with a good compactification (X̄, Y ), then:

Hsing
0 (X/S)

∼=- Pic(X̄, Y ).

Proof. The kernel of C0(X/S) → Pic(X̄, Y ) consists of f ∈ K(X̄) which are
defined and equal to 1 on Y . Since X is quasi-affine over S, Y contains at
least one point in every irreducible component of every fiber of X̄ over S.
Therefore the divisor D of tf+(1−t) defines an element of C0(X×A1/S×A1)
with ∂0D = 0 and ∂1D = (f). Hence (f) represents 0 in Hsing

0 (X/S). This
proves that the map Hsing

0 (X/S) → Pic(X̄, Y ) is an injection, hence an
isomorphism.
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Theorem 7.16 also holds when X is not quasi-affine over S, but the proof
is more involved.

Corollary 7.17. If F is a homotopy invariant presheaf with transfers, there
is a pairing

Pic(X̄, Y ) ⊗ F (X) → F (S).

Example 7.18. If X is a smooth curve over k and 1/n ∈ k, then any two ge-
ometric points x, x′ : Spec k̄ → X induce the same map F (X) → F (Spec k̄).
Here F is any homotopy invariant presheaf with transfers satisfying nF = 0.
Indeed, [x] = [x′] in Pic(X̄, Y )/n by example 7.14. This phenomenon is
known as “rigidity,” and is a simple case of Theorem 7.20 below.

Corollary 7.19. Let p : X → S be a smooth curve with a good compactifi-
cation. Assume that S is Hensel local and let X0 → S0 be the closed fiber of
p. Then for every n prime to char k the following map is injective:

Hsing
0 (X/S)/n→ Hsing

0 (X0/S0)/n.

Proof. Kummer Theory yields the exact sequence 7.13.1 of étale sheaves, and
similarly for (X̄0, Y0). Applying étale cohomology yields:

H1(X̄, j!µn) - H1(X̄,GX̄,Y )
n- H1(X̄,GX̄,Y ) - H2

ét(X̄, j!µn)

H1(X̄0, j!µn)
?

- H1(X̄0,GX̄,Y )
? n- H1(X̄0,GX̄,Y )

?
- H2

ét(X̄0, j!µn).

∼=
?

Since H2(X̄, j!µn) = H2
c (X, µn), the right vertical map is an isomorphism by

proper base change with compact supports (see [Mil80, VI.3.2]). We have a
diagram:

Pic(X̄, Y )/n ⊂ - H2
ét(X̄, j!µn)

Pic(X0, Y0)/n
?

⊂- H2
ét(X̄0, j!µn).

∼=
?

Corollary 7.19 now follows from theorem 7.16.
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It follows from 6.8 that every locally constant étale sheaf F is homotopy
invariant, because H0(X × A1,O) ∼= H0(X,O) ⊗k k[t]. The following result
shows that the converse is true for torsion sheaves. (Cf. [SV96, 4.5].)

Theorem 7.20. (Suslin’s “Rigidity Theorem”) Let F be a homotopy invari-
ant presheaf with transfers, such that the groups F (X) are torsion of exponent
prime to char k. Then Fét is locally constant.

Proof. Let F0 = π∗π
∗(F ) be the locally constant sheaf for the group M =

F (ksep). We want to show that the adjunction F0 → F is an isomorphism of
étale sheaves. It suffices to check on stalks. Since Osh

X,x contains a separable
closure of k, we may assume that k is separably closed. In this case 7.20
asserts that Fét is the constant sheaf for the group M = F (Spec k). Since X
is smooth at x, Osh

X,x is isomorphic to the Henselization of Al at {0}. Thus
the Rigidity Theorem is a consequence of proposition 7.21 below.

Proposition 7.21. Let Sl be the Henselization at {0} in Al over a separably
closed field k. Assume that F is as is 7.20. Then F (Sl) = F (Spec k).

Proof. The hypothesis on F is inherited by F (X)n = {x ∈ F (X) : nx = 0}.
Therefore we may assume that F has exponent n for some prime n.

We use the following sequence of inclusions:

Spec k = S0 ⊂ . . . ⊂ Sl−1

i⊂ Sl.

By induction on l, it is enough to prove that the map F (i) : F (Sl) → F (Sl−1)
is an isomorphism. For this it suffices to prove that F (i) is an injection,
because it is split by the projection π

Sl−1
�π

i
- Sl.

But F (Sl) = colim(X,x0)→(Al,0) F (X) where the colimit is taken over all
diagrams:

Sl
π- X

p- Al.

It suffices to show for every X that if ϕ ∈ F (X) has i∗l π
∗ϕ = 0 then π∗ϕ = 0.

By lemma 7.9 there is a curve X → Al−1 with a good compactification. Let
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X ′ be the pullback in the following diagram:

Sl−1

il - Sl

@
@

@
@

@

s1

R

PPPPPPPPPPPPPPPPPPP

π

q

A
A
A
A
A
A
A
A
A
A
A
A
A

Id

U

X ′ q - X

Sl
? πl - Sl−1

- Al−1
?

The maps π and πilπl : Sl → X induce two sections s1, s2 : Sl → X ′ of X ′ →
Sl which agree on the closed fiber X0 = X ×S S0. Given ϕ ∈ F (X) we need
to show that π∗

l i
∗
l π

∗ϕ = π∗ϕ. But π∗ϕ = s∗1q
∗(ϕ) and π∗

l i
∗
l π

∗ϕ = s∗2q
∗(ϕ).

The si coincide on the closed point of Sl by construction. So we are left to
prove that s∗(ψ) = (s′)∗(ψ) for all ψ ∈ F (X ′) and any s, s′ : Sl → X ′ with
s0 = s′0. Consider the following diagram:

(Γs − Γs′) ⊗ ψ - s∗(ψ) − s′
∗
(ψ)

C0(X
′/Sl) ⊗ F (X ′) -- H0(X

′/Sl) ⊗ F (X ′)
Tr - F (Sl)

H0(X
′
0/S0) ⊗ F (X ′)

?

∩

Tr - F (S0)
?

By assumption, the element (Γs − Γs′) ⊗ ψ in the top left group goes to
zero in H0(X

′
0/S0)⊗ F (X ′). Hence it vanishes in H0(X

′/Sl)⊗ F (X ′) by the
immersion of H0(X

′/S)/n in H0(X
′
0/S0)/n of 7.19. Therefore s∗(ψ)− s′∗(ψ)

vanishes in F (Sl).

We conclude this lecture with a description of the behavior of the relative
Picard group for finite morphisms. We will need this description in the proof
of 20.9.
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Definition 7.22. Let (Ȳ , Y∞) and (X̄,X∞) be two good compactifications,
say of Y and X, respectively. Any finite map f : Ȳ → X̄ which restricts
to a map f : Y → X, yields a map f∗ : O∗(Y∞) → O∗(X∞) constructed as
follows.

Consider α ∈ O∗(Y∞). We may extend α to α̃ ∈ O∗(U) where U is an
affine open neighborhood of Y∞. Since f is finite, we may assume that U =
f−1(V ), where V is an open neighborhood of X∞. Since V is normal, there
is a norm map N : O∗(U) → O∗(V ) (see 2.4). We define f∗(α) = N(α̃)|X∞

.
By 7.23 below, f∗(α) is independent of the choice of the extension α̃.

Exercise 7.23. Let f : U → V be a finite morphism of normal schemes and
let Z ⊂ V be a reduced closed subscheme. If α ∈ O∗(U) and α = 1 on the
reduced closed subscheme f−1(Z), show that N(α) = 1 on Z.

Lemma 7.24. Let (Ȳ , Y∞) and (X̄,X∞) be good compactifications of Y and
X, respectively. Let f be a finite map f : Ȳ → X̄ which restricts to a map
f : Y → X. Then the following diagram is commutative:

O∗(Y∞) - Pic(Ȳ , Y∞)
∼=- H0(Y/S)

O∗(X∞)

f∗
?

- Pic(X̄,X∞)
∼=- H0(X/S),

?

where f∗ was defined in 7.22 and the right vertical map is induced by the
push-forward of cycles.

Proof. Choose α ∈ O∗(Y∞) and extend it to a rational function t on Ȳ which
is regular in a neighborhood of the form f−1(V ). By definition, f∗(α) extends
to the regular function N(t) on V . The horizontal maps send α and f∗(α)
to (OȲ , α) and (OX̄ , f∗α). Let D and D′ be the Weil divisors on Ȳ and X̄
associated to t and N(t), respectively. We may regard D and D′ as classes in
C0(Y/S) and C0(X/S). By 7.15, D and D′ represent the images of (OȲ , α)
and (OX̄ , f∗α) in H0(Y/S) and H0(X/S), respectively. The right vertical
map send D to D′ because D′ = div(Nt) is the push-forward of D = div(t)
(see [Ful84, 1.4]).
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Lecture 8

Derived tensor products

The goal of this lecture is to define a tensor product on the derived category of
étale sheaves with transfer, starting with the tensor product X⊗Y = X×Y
on Cork defined in 1.9. For this we first need to build a total tensor product
on the category PST(k), and this construction makes sense in somewhat
greater generality.

Let A be a small additive category. We define Z(A) to be the category
of all additive presheaves on A, i.e., all contravariant additive functors F :
A → Ab. It is an abelian category. The Yoneda embedding h : A → Z(A)
allows us to define the additive category A⊕ as the closure of A under infinite
direct sums in Z(A). If Xi are in A, we will consider X = ⊕Xi to be the
object of A⊕ corresponding to the presheaf hX = ⊕hXi

in Z(A).
More generally, if R is a ring, we define R(A) to be the (abelian) category

of all additive functors F : A → R-mod. By abuse of notation, we will write
hX for the functor A 7→ R⊗Z HomA(A,X) and call it “representable”.

Lemma 8.1. Every representable presheaf hX is a projective object of R(A),
every F in R(A) has a projective resolution by representable functors, and
every projective object of R(A) is a direct summand of a representable func-
tor.

Proof. Since HomR(A)(hX , F ) ∼= F (X), each hX is a projective object in
R(A). Moreover every F in R(A) is a quotient of some hX , X ∈ A⊕, because
of the natural surjection

⊕

X inA

⊕

x∈F (X)
x6=0

hX
x- F

73
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Now suppose that A has an additive symmetric monoidal structure ⊗,
such as A = Cork. (By this, we mean that ⊗ commutes with finite direct
sums; see 8A.3.) We may extend ⊗ to a tensor product on A⊕ in the obvious
way, and this extends to tensor product of projectives. We now extend ⊗ to
a tensor product on all of R(A).

If F and G are in R(A), we can form the presheaf tensor product (F ⊗R

G)(X) = F (X)⊗RG(X). However, it does not belong to R(A), since F⊗RG
is not additive. In order to get a tensor product on R(A), we need a more
complicated construction.

Our construction of ⊗ is dictated by the requirement that if X and Y
are in A, then the tensor product hX ⊗ hY of their representable presheaves
should be represented by X ⊗ Y . As a first step, note that we can extend
⊗ to a tensor product ⊗ : A⊕ × A⊕ → A⊕ commuting with ⊕. Thus if L1

and L2 are in the category Ch−(A⊕) of bounded above cochain complexes
(· · · → F n → 0 → · · · ), the chain complex L1 ⊗ L2 is defined as the total
complex of the double complex L∗

1 ⊗ L∗
2.

Definition 8.2. If F andG are objects ofR(A), choose projective resolutions
P∗ → F and Q∗ → G and define F ⊗L G to be P ⊗Q, i.e., Tot(P∗⊗Q∗). We
define the tensor product and Hom presheaves to be:

F ⊗G = H0(F ⊗L G)

Hom(F,G) : X 7→ HomR(A)(F ⊗ hX , G)

Since any two projective resolutions of F are chain homotopy equivalent,
the chain complex F ⊗L G is well-defined up to chain homotopy equivalence,
and similarly for Hom(F,G). In particular, since hX and hY are projective,
we have hX ⊗L hY = hX ⊗ hY = hX⊗Y for all X and Y in A⊕.

The following result implies that R(A) is an additive symmetric monoidal
category (see 8A.3).

Lemma 8.3. The functor Hom(F,−) is right adjoint to F⊗−. In particular,
Hom(F,−) is left exact and F ⊗− is right exact.

Proof. Because R(A) has enough projectives, it suffices to observe that

HomR(A)(hX , Hom(hY , G)) = G(X ⊗ Y ) = HomR(A)(hX ⊗ hY , G).

Example 8.4. If A is the category of free R-modules over a commutative
ring R, R(A) is equivalent to the category of all R-modules; the presheaf
associated to M is M⊗R, and Hom and ⊗ are the familiar HomR and ⊗R.
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Exercise 8.5. If Fi and Gi are in R(A), show that there is a natural map

Hom(F1, G1) ⊗Hom(F2, G2) → Hom(F1 ⊗ F2, G1 ⊗G2),

compatible with the monoidal pairing HomA(U × A1, X1) ⊗ HomA(U ×
A2, X2) → HomA(U×U×A1×A2, X1×X2) → HomA(U×A1×A2, X1×X2).

Remark 8.6. If the (projective) objects hX are flat, i.e., hX ⊗− is an exact
functor, then ⊗ is called a balanced functor ([Wei94, 2.7.7]). In this case
F ⊗L G agrees (up to chain equivalence) with the usual left derived functor
L(F ⊗−)G. But we do not know when the hX are flat. It is true in example
8.4, but probably not true in PST = Z(Cork).

We can now extend ⊗L to a total tensor product on the category
Ch−R(A) of bounded above cochain complexes (· · · → F n → 0 → · · · ).
This would be the usual derived functor if ⊗ were balanced (see [Wei94,
10.6]), and our construction is parallel. If C is a complex in Ch−R(A), there

is a quasi-isomorphism P
'- C with P a complex of projective objects.

Any such complex P is called a projective resolution of C, and any other
projective resolution of C is chain homotopic to P ; see [Wei94, 5.7]. If D is

any other complex in Ch−R(A), and Q
'- D is a projective resolution, we

define
C ⊗L D = P ⊗Q.

Because P and Q are bounded above, each (P ⊗Q)n = ⊕i+j=nP
i⊗Qj is

a finite sum, and C ⊗L D is bounded above. Because P and Q are defined
up to chain homotopy, the complex C ⊗L D is independent (up to chain
homotopy equivalence) of the choice of P and Q. There is a natural map
C⊗LD → C⊗D, which extends the map F ⊗LG→ F ⊗G of definition 8.2.

Lemma 8.7. Let C,C ′ and D be bounded above complexes of presheaves.

1. If C and D are complexes over A⊕, or complexes of projectives, then

C ⊗L D
'- C ⊗D is a chain homotopy equivalence.

2. If f : C
'- C ′ is a quasi-isomorphism of complexes, then C ⊗L D →

C ′ ⊗L D is a chain homotopy equivalence.

Proof. If C is a complex over A⊕, it is a complex of projectives. We may
take P = C in the definition of ⊗L: C⊗L D = C⊗Q. If D is also a complex
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of projectives, we may take Q = D as well. Part 1 is now immediate. In part
2, we may take P to be a projective resolution of both C and C ′, so that
C ⊗L D = C ′ ⊗L D = P ⊗Q.

Proposition 8.8. The derived category D−R(A), equipped with ⊗L, is a
tensor triangulated category.

Proof. The category P of projective objects in R(A) is additive symmetric
monoidal, and D−R(A) is equivalent to the chain homotopy category K−(P)
by [Wei94, 10.4.8]. By 8A.4, this is a tensor triangulated category under ⊗.
The result now follows from the natural isomorphism ⊗ ∼= ⊗L in P of 8.7.

Definition 8.9. If C and D are bounded above complexes of presheaves,
there is a canonical map from the presheaf tensor product C ⊗R D to the
tensor product C⊗D. By right exactness of ⊗R and ⊗ (see 8.3), it suffices to
construct a natural map of presheaves hX ⊗R hY → hX⊗Y . For U in A, this
is just the monoidal product in A, followed by the diagonal ∆ : U → U ⊗U :

hX(U) ⊗R hY (U) = HomA(U,X) ⊗R HomA(U, Y )
⊗-

HomA(U ⊗ U,X ⊗ Y )
∆∗

- HomA(U,X ⊗ Y ) = hX⊗Y (U).

Having disposed with these generalities, we now specialize to the case
where A is Cork and ⊗ is the tensor product X ⊗ Y = X × Y of 1.9. We
have the Yoneda embedding

Cork ⊂ Cor⊕k ⊂ PST(k).

We will write ⊗tr for the tensor product on PST = Z(Cork), or on
PST(k, R) = R(Cork), and ⊗tr

L for ⊗L. Thus there are natural maps
C ⊗tr

L D → C ⊗tr D.

Example 8.10. By lemma 8.1, hX = Rtr(X) is projective and

Rtr(X) ⊗tr Rtr(Y ) = Rtr(X × Y ).

Similarly if (Xi, xi) are pointed schemes then the Rtr(Xi, xi) are projective
and from 2.12 we see that

Rtr(X1, x1) ⊗tr · · · ⊗tr Rtr(Xn, xn) = Rtr((X1, x1) ∧ . . . ∧ (Xn, xn)).

In particular, Rtr(Gm)⊗
trn = Rtr(G∧n

m ).
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The next example, in which R = Z, shows that ⊗tr does not behave well
on locally constant sheaves.

Example 8.11. The complex Z
n- Z is a projective resolution of Z/n, so

we have Z/n⊗tr Ztr(X) = Z/n⊗Z Ztr(X) = (Z/n)tr(X) by 8.7.
If
√
−1 6∈ k and l = k(

√
−1), let Zε = Ztr(l)/Z denote the locally constant

sheaf corresponding to the sign representation of G = Gal(l/k). We see from
8.7 that Z/n⊗tr

L Zε is quasi-isomorphic to the complex (Z/n)⊗L (Z → Ztr(l)),
i.e.,

0 → Z/n→ (Z/n)tr(l) → 0.

Hence the presheaf (Z/n) ⊗tr Zε sends Spec k to 0 and Spec l to Z/n. If
n = 4, this is not an étale sheaf because (Zε/4Zε)

G 6= 0. It is easy to see,
however, that its sheafification is the locally constant étale sheaf:

(
(Z/4) ⊗tr Zε

)
ét
∼= µ4.

The étale sheaf µ4 is the tensor product (Z/4) ⊗ét Zε of the two underlying
étale sheaves.

Definition 8.12. If F and G are presheaves of R-modules with transfer, we
write F ⊗tr

ét G for (F ⊗tr G)ét, the étale sheaf associated to F ⊗tr G. If C
and D are bounded above complexes of presheaves with transfer, we shall
write C ⊗tr

ét D for (C ⊗tr D)ét, and C ⊗tr
L,ét D for (C ⊗tr

L D)ét ' P ⊗tr
ét Q,

where P and Q are complexes of representable sheaves with transfers, and
P ' C and Q ' D. There is a natural map C ⊗tr

L,ét D → C ⊗tr
ét D, induced

by C⊗tr
L → C ⊗tr D.

Lemma 8.13. If F, F ′ are étale sheaves of R-modules with transfer, and F
is locally constant, then the map of 8.9 induces an isomorphism

F ⊗ét F
′

∼=- F ⊗tr
ét F

′.

Proof. Let F correspond to the discrete Galois module M . As M = ∪MH

and ⊗tr commutes with colimits, we may assume that M = MH for some
open normal H of Gal = Gal(ksep/k). Thus M is a G-module. Choose a
presentation over R[G]:

⊕R[G]α → ⊕R[G]β →M → 0.
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As ⊗ét and ⊗tr
ét are both right exact, we may assume M = R[G] and F ′ =

Rtr(X). If L = (ksep)
H and T = Spec(L) then F = Rtr(T ) by exercise 6.10.

But then F ⊗tr F ′ = Rtr(T × X), so it suffices to observe that Rtr(T ) ⊗ét

Rtr(X) → Rtr(T ×X) is an isomorphism. Since T ×Y → Y is an étale cover,
it suffices to observe that for Y over T

Rtr(T ) ⊗ét Rtr(X)(Y ) ∼= R[G] ⊗ Cor(Y,X) ∼=
∼= R⊗Z Cor(Y, T ×X) = Rtr(T ×X)(Y ).

We are now going to show (in 8.16) that the tensor product ⊗tr
L,ét induces

a tensor triangulated structure on the derived category of étale sheaves of R-
modules with transfer. Using proposition 8.8, we have C⊗tr

L,étD
∼= D⊗tr

L,étC,
and it suffices to show that ⊗tr

L,ét preserves quasi-isomorphisms.
As a first step, fix Y and consider the right exact functor Φ(F ) =

Rtr(Y )⊗tr
ét F , from the category PST(k, R) of presheaves of R-modules with

transfer to the category of étale sheaves of R-modules with transfer. Its left
derived functors Lp Φ(F ) are the homology sheaves of the total left derived
functor Rtr(Y ) ⊗tr

L,ét F . If C is a chain complex (bounded below in homo-
logical notation), the hyperhomology spectral sequence (see [Wei94, 5.7.6])
is

E2
p,q = Lp Φ(HqC) ⇒ Lp+q Φ(C).

Example 8.14. If U → X is an étale cover, consider the augmented Čech
complex

Č : . . .→ Rtr(U ×X U) → Rtr(U) → Rtr(X) → 0.

Since Čét is exact by 6.12, each homology presheaf Hq(U/X) = Hq(Č) sat-
isfies Hq(U/X)ét = 0. By definition, Rtr(Y ) ⊗tr Č is the augmented Čech
complex

. . .→ Rtr(U ×X U × Y ) → Rtr(U × Y ) → Rtr(X × Y ) → 0

for the étale cover U × Y → X × Y , so Rtr(Y ) ⊗tr
ét Č is again exact by

6.12. Thus Ln Φ(Č) = 0 for all n. In particular, the 0th homology presheaf
H0(U/X) satisfies

ΦH0(U/X) = Rtr(Y ) ⊗tr
ét H0(U/X) = H0

(
Rtr(Y ) ⊗tr

ét Č
)

= 0.
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The following lemma shows that in fact every derived functor Ln Φ van-
ishes on H0(U/X).

Lemma 8.15. Fix Y and set Φ = Rtr(Y )⊗tr
ét. If F is a presheaf of R-modules

with transfer such that Fét = 0, then Ln Φ(F ) = 0 for all n.

Proof. Suppose that Fét = 0. Each map Rtr(X) → F is defined by an
x ∈ F (X), and there is an étale cover Ux → X such that x vanishes in
F (Ux). Thus the composition Rtr(Ux) → Rtr(X) → F is zero, i.e., the given
map factors through the cokernel H0(Ux/X) of Rtr(Ux) → Rtr(X). It follows
that the canonical surjection ⊕X,xRtr(X) → F factors through a surjection
⊕X,xH0(Ux/X) → F . If K denotes the kernel of this surjection then Két = 0.

We now proceed by induction on n, noting that Ln Φ = 0 for n < 0. For
n = 0, we know that ΦH0(Ux/X) = 0 by example 8.14. Since Φ is right
exact, this yields Φ(F ) = 0. For n > 0, we may assume that the lemma
holds for Lp Φ when p < n. From the exact sequence

⊕X,x(Ln Φ)H0(Ux/X) → Ln Φ(F ) → Ln−1 Φ(K)

we see that it suffices to prove that (Ln Φ)H0(U/X) = 0. We saw in 8.14 that
Hq(U/X)ét = 0, so Lp ΦHq(U/X) = 0 by the inductive assumption. Hence
the hypercohomology sequence for the complex Č collapses to yield

Ln Φ(Č) ∼= (Ln Φ)H0(Č) = (Ln Φ)H0(U/X).

But we saw in example 8.14 that Ln Φ(Č) = 0, whence the result.

Now we prove that ⊗tr
L,ét preserves quasi-isomorphisms.

Proposition 8.16. Let f : C → C ′ be a morphism of bounded above
complexes of presheaves of R-modules with transfer. If f induces a quasi-
isomorphism Cét → C ′

ét between the associated complexes of étale sheaves,
then C ⊗tr

L,ét D → C ′ ⊗tr
L,ét D is a quasi-isomorphism for every D.

Proof. If P
'- C is a projective resolution of presheaves, then Pét → Cét

is a quasi-isomorphism of complexes of étale sheaves. Thus we may assume
that C, C ′ and D are complexes of representable presheaves. If A denotes
the mapping cone of C → C ′, it suffices to show that A⊗tr

L,étD = A⊗tr
étD is

acyclic. As each row of the double complex underlying A ⊗tr
ét D is a sum of

terms A⊗tr
étRtr(Y ), it suffices to show that A⊗tr

étRtr(Y ) is acyclic. As in the
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proof of 8.15, its homology sheaves are the hyper-derived functors Ln Φ(A),

Φ = ⊗tr
étRtr(Y ). In the hypercohomology spectral sequence

E2
p,q = Lp Φ(HqA) ⇒ Lp+q Φ(A)

the presheaves HqA have (HqA)ét = 0 because Aét is acyclic. By lemma 8.15
we have Lq Φ(HqA) = 0 for all p and q. Hence the spectral sequence collapses
to yield Ln Φ(A) = 0 for all n, i.e., L Φ(A) ' Rtr(Y ) ⊗tr

ét A is acyclic.

Corollary 8.17. The derived category of bounded above complexes of étale
sheaves of R-modules with transfer is a tensor triangulated category.

Proof. Combine 8.16 with 8.8 and 8A.7.

Lemma 8.18. Let F be a locally constant étale sheaf of flat R-modules. Then
the map E ⊗tr

L,ét F → E ⊗tr
ét F is a quasi-isomorphism for every étale sheaf

with transfers E.

Proof. Suppose first that E = Rtr(Y ). Choose a resolution C → F in the
category of locally constant sheaves in which each Cn is a sum of representa-
bles Rtr(Ln,α) for finite Galois field extensions Ln,α of k. (This is equivalent
to resolving the Galois module M corresponding to F by Galois modules
R[Gn,α], and the existence of such a resolution of M is well known.) By
proposition 8.16, E ⊗tr

ét C = E ⊗tr
L,ét C is quasi-isomorphic to E ⊗tr

L,ét F . By
lemma 8.13,

E ⊗tr
ét C = E ⊗ét C

'- E ⊗ét F �'
E ⊗tr

ét F.

Hence the result is true for E = Rtr(Y ).
In the general case, choose a projective resolution P → E in the category

of presheaves of R-modules with transfer. Then we have quasi-isomorphisms

E ⊗tr
L,ét F = P ⊗tr

L,ét F
'- P ⊗tr

ét F
'- P ⊗ét F.

Because sheafification is exact, P → E is also a resolution in the category of
étale sheaves of R-modules. Since F is flat in this category, we have the final
quasi-isomorphism:

P ⊗ét F
'- E ⊗ét F �'

E ⊗tr
ét F.
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It is clear that 8.18 also holds if E is a bounded above complex of étale
sheaves with transfers.

Corollary 8.19. In the derived category of étale sheaves of Z/m-modules
with transfer, the operation M 7→M(1) = M ⊗tr

L,ét Z/m(1) is invertible.

Proof. Indeed, if µ∗
m is the Pontrjagin dual of µm, then combining 8.18, 8.13,

and 4.8 yields:

µ∗
m⊗tr

L,ét Z/m(1)
8.18' µ∗

m⊗tr
ét Z/m(1)

8.13∼= µ∗
m⊗ét Z/m(1)

4.8∼= µ∗
m⊗ét µm ∼= Z/m.

Exercise 8.20. If E and F are bounded above complexes of locally constant
étale sheaves ofR-modules, show that E⊗tr

L,étF is quasi-isomorphic to E⊗L

RF ,
their total tensor product as complexes of étale sheaves of R-modules. (Hint:
Use 8.13, 8.16, and 8.18.)
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Appendix 8A - Tensor
Triangulated Categories

The notion of a tensor triangulated category is a generalization of the tensor
product structure on the derived category of modules over a scheme, which
played a central role in the development of the subject.

Definition 8A.1. A tensor triangulated category is an additive category
with two structures: that of a triangulated category and that of a symmetric
monoidal category. In addition, we are given natural isomorphisms r and l
of the form

C[1] ⊗D
∼=

lC,D

- (C ⊗D)[1] �
∼=

rC,D

C ⊗D[1],

which commute in the obvious sense with the associativity, commutativity
and unity isomorphisms. There are two additional axioms:

(TTC1) For any distinguished triangle C0
- C1

- C2
∂- C0[1] and any

D, the following triangles are distinguished:

C0 ⊗D - C1 ⊗D - C2 ⊗D
l(∂ ⊗D)- (C0 ⊗D)[1]

D ⊗ C0
- D ⊗ C1

- D ⊗ C2

r(D ⊗ ∂)- (D ⊗ C0)[1].

(TTC2) For any C and D, the following diagram commutes up to multiplication
by −1, i.e., rl = −lr:

C[1] ⊗D[1]
r- (C[1] ⊗D)[1]

−1

(C ⊗D[1])[1]

l

? r- (C ⊗D)[2].

l

?

83
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This description is not minimal. For example the commutativity iso-
morphism τ : C ⊗ D ∼= D ⊗ C allows us to recover r from l and vice
versa using the formula τ lτ = r. In addition, lC,D can be recovered from
l1,D : 1[1] ⊗D ∼= D[1]. Moreover, if either of the two triangles in (TTC1) is
distinguished, then both are distinguished.

The definition of tensor triangulated category that we have given is suffi-
cient for our purposes. However, it is possible to add extra axioms in order to
work with a richer structure. For example, many more axioms are postulated
by May in [May01].

Exercise 8A.2. Show that the canonical isomorphisms lirj, rjli : C[i] ⊗
D[j] ∼= (C ⊗ D)[i + j] differ by (−1)ij, and are interchanged by the twist
isomorphism τ on C ⊗D and C[i] ⊗D[j].

Definition 8A.3. Let A be an additive category with a symmetric monoidal
structure ⊗. We say that A is an additive symmetric monoidal category
if (
∐
Ai) ⊗ B ∼=

∐
(Ai ⊗ B) for every finite direct sum

∐
Ai in A.

If C and D are bounded above complexes in A, the tensor product C⊗D
has (C⊗D)n = ⊕p+q=nC

p⊗Dq and differential d⊗1+(−1)p⊗d on Cp⊗Dq.
It is associative.

We define the twist isomorphism τ : C ⊗ D → D ⊗ C componentwise,
as (−1)pq times the natural isomorphism Cp ⊗Dq → Dq ⊗ Cp in A. It is a
straightforward exercise to verify that the category Ch−(A) is an additive
symmetric monoidal category.

The degree n part of each of C ⊗D[1], (C ⊗D)[1], and C[1]⊗D are the
same, and we define lC,D to be the canonical isomorphism. The map rC,D
is multiplication by (−1)p on the summand Cp ⊗Dq. A routine calculation
verifies the following.

Proposition 8A.4. Let A be an additive symmetric monoidal category.
Then the chain homotopy category K−(A) of bounded above cochain com-
plexes is a tensor triangulated category.

Example 8A.5. (See [Ver96].) Let A be the category of modules over a
commutative ring, or more generally over a scheme. Then not only is K−(A)
a tensor triangulated category, but the total tensor product ⊗L makes the de-
rived category D−(A) into a tensor triangulated category. In effect, D−(A) is
equivalent to the tensor triangulated subcategory of flat complexes in K−(A).
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Example 8A.6. The smash product of based topological spaces leads to
another example. If A → X → X/A → SA is a cofibration sequence, there
is a natural homeomorphism (X/A) ∧ Y ∼= (X ∧ Y )/(A ∧ Y ); see [Whi78,
III.2.3]. The suspension SX = S1 ∧X has homeomorphisms

X ∧ (SY )
∼=

r
- S(X ∧ Y ) �

∼=

l
(SX) ∧ Y

satisfying (TTC1) and (TTC2) up to homotopy. It follows easily that the
stable homotopy category, which is triangulated by [Wei94, 10.9.18] and a
symmetric monoidal category by [Ada74, III.4], is a tensor triangulated cat-
egory.

If W is a saturated multiplicative system of morphisms in a triangulated
category D, closed under ⊕, translations, and cones, Verdier proved in [Ver96]
that the localization D[W−1] is also a triangulated category.

Proposition 8A.7. Let D be a tensor triangulated category. Suppose that
if C → C ′ is in W then C ⊗D → C ′ ⊗D is in W for every D in D. Then
the localization D[W−1] is also a tensor triangulated category.

Proof. Because each ⊗D : D → D preserves W , ⊗ induces a symmetric
monoidal pairing D[W−1] × D[W−1] → D[W−1] by the universal property
of localization (applied to W ×W ). Similarly, the natural isomorphisms r
and l descend to D[W−1]. Axiom (TTC2) is automatic, and axiom (TTC1)
may be routinely verified for Verdier’s description of distinguished triangles
in D[W−1].

Exercise 8A.8. Let T be an invertible object in a symmetric monoidal
category C, i.e., an object such that T ⊗U ∼= 1 for some U . It is well known
that endomorphisms of 1 commute; show that the same must be true for
endomorphisms of T . Then show that the cyclic permutation of T ⊗ (T ⊗T )
must equal the identity morphism.

Let T be an object in a symmetric monoidal category (C,⊗, 1). Let C[T−1]
denote the category whose objects are pairs (X,m) with X in C and m ∈ Z;
morphisms (X,m) → (Y, n) in C[T−1] are just elements of the direct limit
limi→∞ Hom(X ⊗ T⊗m+i, Y ⊗ T⊗n+i), where the bonding maps are given by
the functor ⊗T : C → C. Composition is defined in the obvious way, and
it’s easy to check that C[T−1] is a category. There is a universal functor
C → C[T−1] sending X to (X, 0). Note that (X,m) ∼= X⊗T⊗m in C[T−1] for
m ≥ 0.



86 LECTURE 8. DERIVED TENSOR PRODUCTS

Exercise 8A.9. Let T be an object in a tensor triangulated category C.
Show that C[T−1] is a triangulated category, and that C → C[T−1] is trian-
gulated.

In order for the formula (X,m) ⊗ (Y, n) = (X ⊗ Y,m + n) to extend to
a bifunctor on C[T−1], we need to define the tensor f ⊗ g of two C[T−1]-
morphisms in a natural way. In general, C need not be symmetric monoidal,
as exercise 8A.8 above shows.

Proposition 8A.10. Let T be an object in a symmetric monoidal category
(C,⊗, 1) such that the cyclic permutation on T⊗3 is the identity in C[T−1].
Then (C[T−1],⊗, 1) is also a symmetric monoidal category.

Proof. The hypothesis implies that permutations on T⊗n commute with each
other for n ≥ 3. The many ways to define f ⊗ g on X ⊗ Tm+i ⊗ Y ⊗ T n+j

are indexed by the (i, j)-shuffles, and differ only by a permutation, so f ⊗ g
is independent of this choice. Therefore the tensor product is a bifunctor
on C[T−1]. The symmetric monoidal axioms may now be routinely verified
as in [Ada74, III.4]. The hexagonal axiom, that the two isomorphisms from
X ⊗ (Y ⊗Z) to (Z ⊗X)⊗ Y ) agree, follows because the cyclic permutation
on T⊗3 is the identity.

Corollary 8A.11. Let T be an object in a tensor triangulated category C
such that the cyclic permutation on T⊗3 is the identity in C[T−1]. Then
C[T−1] is a tensor triangulated category.

Proof. By 8A.9 and 8A.10, C[T−1] is both triangulated and symmetric
monoidal. The verification of the remaining axioms is straightforward.

Exercise 8A.12. Let T be an object in a tensor triangulated category D
such that Hom(X, Y ) → Hom(X ⊗ T, Y ⊗ T ) is an isomorphism for every X
and Y in D. Show that D[T−1] is a tensor triangulated category.



Lecture 9

A1-weak equivalence

In this section we define the notion of A1-weak equivalence between bounded
above cochain complexes of étale sheaves with transfers, and A1-local com-
plexes. The category DMeff,−

ét is obtained by inverting A1-weak equivalences.
The main result in this lecture (9.32) is that when we restrict to sheaves of
Z/n-modules the category DMeff,−

ét is equivalent to the derived category of
discrete Galois modules for the group Gal(ksep/k). We will use these ideas
in the next lecture to identify étale motivic cohomology with ordinary étale
cohomology.

Since quasi-isomorphic complexes will be A1-weak equivalent, it is appro-
priate to define the notion in the derived category D− = D−(Shét(Cork, R))
of étale sheaves of R-modules with transfer. In D−, we have the usual shift,
and

A
f- B - cone(f) - A[1]

is a distinguished triangle for each map f . We refer the reader to [GM88]
or [Wei94] for basic facts about derived categories. We will also need the
notion of a thick subcategory, which was introduced by Verdier in [Ver96].
We will use Rickard’s definition (see [Ric89]); this is slightly different from,
but equivalent to, Verdier’s definition.

Definition 9.1. A full additive subcategory E of D− is thick if:

1. Let A → B → C → A[1] be a distinguished triangle. Then if two out
of A,B,C are in E then so is the third.

2. if A⊕B is in E then both A and B are in E .
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If E is a thick subcategory of D−, we can form a quotient triangulated
category D−/E as follows (see [Ver96]). Let WE be the set of maps whose
cone is in E ; WE is a saturated multiplicative system of morphisms. Then
D−/E is the localization D−[W−1

E ], which may be constructed using calculus
of fractions; see [Wei94, 10.3.7]. In particular, a morphism f : C → C ′

becomes an isomorphism in D−[W−1
E ] if and only if f is in WE .

Definition 9.2. A morphism f in D− is called an A1-weak equivalence if
f is in WA = WEA

, where EA is the smallest thick subcategory so that:

1. the cone of Rtr(X × A1) → Rtr(X) is in EA for every smooth scheme
X;

2. EA is closed under any direct sum that exists in D−.

We set DMeff ,−
ét (k, R) = D−[W−1

A
].

It is clear that the notion of A1-weak equivalence in D− =
D−(Sh(Cork, R)) makes sense for other topologies. For the Nisnevich topol-
ogy, the localization DMeff ,−

Nis (k, R) of D− is the triangulated category of
motivic complexes introduced and studied in [TriCa].

Lemma 9.3. The smallest class in D− which contains all the Rtr(X) and is
closed under quasi-isomorphisms, direct sums, shifts, and cones is all of D−.

Proof. First we show that for any complex D∗, if all Dn are in the class, then
so is D∗. If βnD is the brutal truncation 0 → Dn → Dn−1 → · · · of D∗, then
D∗ is the union of the βnD. Each βnD is a finite complex, belonging to the
class, as an inductive argument shows. Since there is an exact sequence

0 - ⊕ βnD - ⊕ βnD - D∗
- 0,

it follows that D∗ is in the class.
Thus it suffices to show that each sheaf F is in the class. Now there is

a resolution L∗ → F by sums of the representable sheaves Rtr(X), given by
lemma 8.1. Since each Ln is in this class, so is L∗ and hence F .

Lemma 9.4. If f : C → C ′ is an A1-weak equivalence, then for every D the
map f ⊗ Id : C ⊗tr

L,ét D → C ′ ⊗tr
L,ét D is an A1-weak equivalence.
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Proof. Since ⊗tr
L,ét commutes with cones and f is an A1-weak equivalence

if and only if its cone is in EA, it suffices to show that if C is in EA, then
C ⊗tr

L,ét D is in EA for any D.
If D = Rtr(X), consider the subcategory E of all C in D− such that

C⊗tr
L,étD is in EA. E is closed under direct sums and it is thick. Moreover, if

Y is a smooth scheme, then E contains the cone of Rtr(Y × A1) → Rtr(Y ).
Therefore EA ⊆ E .

Now fix C in EA and consider the full subcategory D of all D in D− such
that C⊗tr

L,étD is in EA. D is closed under direct sums, it is thick and we have
seen that it contains Rtr(X) for all X. By 9.3, we conclude that D = D−.

Corollary 9.5. The product ⊗tr
L,ét endows DMeff ,−

ét (k, R) with the structure
of a tensor triangulated category.

Proof. Given 8.17, this follows from 9.4 and proposition 8A.7.

Remark 9.6. The category DM−
ét(k, R) is obtained from DMeff ,−

ét (k, R) by
inverting the Tate twist operation M 7→M(1) = M ⊗tr

L,ét R(1). If R = Z/m,
then the Tate twist is already invertible by 8.19, so we have

DM−
ét(k,Z/m) = DMeff ,−

ét (k,Z/m).

For any coefficients R, it will follow from 8A.11 and 15.8 below that
DM−

ét(k, R) is always a tensor triangulated category.

Definition 9.7. Two morphisms F
f-
g
- G of sheaves of R-modules with

transfer are called A1-homotopic if there is a map h : F ⊗tr Rtr(A1) → G

so that the restrictions of h along R
1-
0
- Rtr(A1) coincide with f and g.

If G is an étale sheaf, h factors through (and is determined by) a map
Fét ⊗tr

L,ét Rtr(A1) → G.

Example 9.8. Suppose we are given two maps f, g : X → Y such that the
induced maps Ztr(X) → Ztr(Y ) are A1-homotopic in the sense of 9.7. By
the Yoneda lemma, this is equivalent to saying that f and g are restrictions
of some h ∈ Cor(X × A1, Y ), i.e., that f and g are A1-homotopic maps in
the sense of 2.24.

Lemma 9.9. Let f, g : F → G be two maps between étale sheaves with
transfers. If f and g are A1-homotopic, then f = g in DMeff ,−

ét (k, R).
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Proof. Any two sections of A1 → Spec k yield the same map R → Rtr(A1)
in the localized category DMeff ,−

ét (k, R), namely the inverse of the A1-weak
equivalence Rtr(A1) → R. Therefore the maps:

F
F×0-
F×1

- Rtr(A
1) ⊗tr

L,ét F
h- G

are the same in the localized category.

There is a mistake in the proof of the corresponding Lemma 3.2.5 in
[TriCa] as the proof there assumes that Ztr(A1) is flat in Cork. If we replace
⊗ by ⊗L in loc. cit., the proof goes through as written.

Corollary 9.10. Every A1-homotopy equivalence is an A1-weak equivalence.

Our next goal is to show that, F → C∗F is always an A1-weak equivalence
(see 9.14 below). Hence F ∼= C∗F in DMeff ,−

ét (k, R).

Lemma 9.11. Let B → B′ be a map of double complexes which are vertically
bounded above in the sense that there is a Q so that B∗,q = (B′)∗,q = 0 for
all q ≥ Q. Suppose that all rows are weak equivalences and that Tot(B) and
Tot(B′) are bounded above.

Then Tot(B) → Tot(B ′) is an A1-weak equivalence.

Proof. Let S(n) be the double subcomplex of B consisting of the Bpq for
q ≥ n. Then TotS(n + 1) is a subcomplex of TotS(n) whose cokernel is a
shift of the n-th row of B. If S ′(n) is defined similarly, then each TotS(n) →
TotS ′(n) is an A1-weak equivalence by induction on n. Now Shét(Cork, R)
satisfies (AB4), meaning that ⊕, and hence Tot, is exact. Hence there is a
short exact sequence of complexes

0 -
∞⊕

n=1

TotS(n)
id−shift-

∞⊕

n=1

TotS(n) - TotB - 0

and similarly for B′. Since ⊕TotS(n) → ⊕TotS ′(n) is an A1-weak equiva-
lence, so is TotB → TotB ′.

Corollary 9.12. If f : C → C ′ is a morphism of bounded above complexes,
and fn : Cn → C ′

n is in WA for every n, then f is in WA.

Proof. This is a special case of 9.11.
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Lemma 9.13. For every F and every n, the map F
s- Hom(Rtr(∆

n), F ) =
Cn(F ) is an A1-homotopy equivalence. A fortiori, it is an A1-weak equiva-
lence.

Proof. Since ∆n is isomorphic to An as a scheme, we have Cn(F ) ∼=
C1Cn−1(F ). Thus we may suppose that n = 1. We define a map m : C1F →
C2F as follows. For each X, the map

mX : C1(F )(X) = F (X × A1) → F (X × A2) = C2(F )

is induced by the multiplication map A2 → A1 by crossing it with X and
applying F . Since C2F = Hom(Rtr(A1), C1F ), the adjunction of 8.2 as-
sociates to m a map h : C1F ⊗tr Rtr(A1) → C1F . Similarly the inclu-
sions A1 × {i} ⊂ A2 induce maps ηi : C2F → C1F , and the compositions
ηim : C1F → C1F are adjoint to the restriction of h along i : R → Rtr(A1).
Hence h induces an A1-homotopy between the identity (η1m) and the com-
posite

C1F
∂0- F

s- C1F,

corresponding to η0m. Since ∂0s is the identity on F , s and ∂0 are inverse
A1-homotopy equivalences. They are A1-weak equivalences by 9.10.

Lemma 9.14. For every bounded above complex F of sheaves of R-modules
with transfer, the morphism F → C∗(F ) is an A1-weak equivalence. Hence
F ∼= C∗(F ) in DMeff ,−

ét (k, R).

Proof. By 9.11, we may assume that F is a sheaf. Consider the diagram
whose rows are chain complexes

· · · - 0 - 0 - F

· · · 0 - F
? 1 - F

? 0 - F

=
?

· · · - C2F

'A1

?
- C1F

'A1

?
- F.

'A1

?

The first two rows are quasi-isomorphic. Now F'A1Cn(F ) by 9.13. Using
9.12, we see that the second and third rows are A1-weak equivalent.
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Example 9.15. The identity map on O is A1-homotopic to zero by 2.22 and
9.14. Hence O is isomorphic to zero in DMeff ,−

ét (k). When char k = ` > 0
the Artin-Schrier sequence of étale sheaves [Mil80, II 2.18(c)]

0 - Z/` - O 1−φ- O - 0

shows that Z/` ∼= 0 in DMeff,−
ét (k). Here R may be either Z or Z/`.

Definition 9.16. An object L in D− is called A1-local if for all A1-weak
equivalences K → K ′ the induced map Hom(K ′, L) → Hom(K,L) is bijec-
tive.

Lemma 9.17. An object L in D− is A1-local if and only if
Hom(Rtr(X)[n], L) → Hom(Rtr(X × A1)[n], L) is an isomorphism for all
X and n.

Proof. Let K be the full subcategory of all K for which Hom(K[n], L) = 0
for all n. Clearly, K is a thick subcategory of D− and it is closed under direct
sums and shifts. Under the given hypothesis, K contains the cone of every
map Rtr(X × A1) → Rtr(X). By definition, EA is a subcategory of K, i.e., L
is A1-local.

Lemma 9.18. If f : K → K ′ is an A1-weak equivalence and K,K ′ are A1-
local then f is an isomorphism in D−, i.e., a quasi-isomorphism of complexes
of étale sheaves with transfers.

Proof. By definition, f induces bijections Hom(K ′, K) ∼= Hom(K,K) and
Hom(K ′, K ′) ∼= Hom(K,K ′). Hence there is a unique g : K ′ → K so that
fg = 1K, and f(gf) = (fg)f = f implies that gf = 1K′.

Corollary 9.19. If F is A1-local then F ∼= C∗F in D−.

Lemma 9.20. If Y is A1-local then for every X in D−

Hom
DM

eff,−
ét

(k,R)(X, Y ) = HomD−(X, Y ).

Proof. By the calculus of fractions [Wei94, 10.3.7], the left side consists of

equivalence classes of diagrams X �s
K - Y with s in WA. It suffices

to show that if K → K ′ is an A1-weak equivalence then Hom(K ′, Y ) =
Hom(K, Y ). But this holds since Y is A1-local.
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Definition 9.21. An étale sheaf with transfers F is strictly A1-homotopy
invariant if the map Hn

ét(X,F ) → Hn
ét(X×A1, F ) is bijective for all smooth

X and every n ∈ N. In particular for n = 0 we must have that F is homotopy
invariant (2.14).

Lemma 9.22. ([SGA4, XV 2.2]) If R is of torsion prime to char k then any
locally constant sheaf of R-modules is strictly A1-homotopy invariant.

Lemma 9.23. Let F be an étale sheaf of R-modules with transfers. Then F
is A1-local if and only if F is strictly A1-homotopy invariant.

Proof. By 6.23 or 6.24, we have

HomD−(Rtr(X), F [i]) = Ext iShét(Cork ,R)(Rtr(X), F ) = H i
ét(X,F )

for every smooth X. Since Rtr(X × A1)[n] → Rtr(X)[n] is an A1-weak
equivalence for all n, 9.17 shows that F is A1-local if and only if the induced
map

H−n
ét (X,F ) = Hom(Rtr(X)[n], F ) → Hom(Rtr(X×A1)[n], F ) = H−n

ét (X×A1, F )

is an isomorphism, that is, if and only if F is strictly A1-homotopy invariant.

Here is a special case of 9.23 which includes the sheaves µ⊗q
n . It follows

by combining 9.22 with 9.23.

Corollary 9.24. Let M be a locally constant étale sheaf of torsion prime to
char k. Then M is A1-local.

We now make the running assumption that R is a commutative ring and
that cdR(k) <∞, i.e., k is a field having finite étale cohomological dimension
for coefficients in R. This assumption allows us to invoke a classic result from
[SGA4].

Lemma 9.25. ([SGA4], [Mil80]) Let X be a scheme of finite type over k. If
k has finite R-cohomological dimension d then cdR(X) ≤ d+ 2 dimkX.

Corollary 9.26. Extn(Rtr(X), F ) = 0 when n� 0.

Proof. Extn(Rtr(X), F ) ∼= Hn
ét(X,F ) by 6.24.
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If C is a chain complex of sheaves, each cohomology Hn(C) is a presheaf.
We write aétH

n(C) for its associated sheaf.

Lemma 9.27. For every (bounded above) chain complex C there is a
bounded, convergent spectral sequence:

Ep,q
2 = Extp(Rtr(X), aétH

q(C)) =⇒ HomD−(Rtr(X), C[p+ q]).

Proof. This is well-known; see [Wei94, 5.7.9]. The spectral sequence is
bounded, and hence converges, by 9.26.

Proposition 9.28. Let C be a bounded above cochain complex of étale
sheaves of R-modules with transfer, where cdR(k) < ∞. If the sheaves
aétH

n(C) are all strictly A1-homotopy invariant, then C is A1-local.

Proof. Let C be a complex of étale sheaves with transfers. By 9.17, it suffices
to prove that cone(f) is in this class when f is the projection Rtr(X×A1) →
Rtr(X). The map f induces a morphism between the spectral sequences
of 9.27 for X and X × A1. Because the sheaves L = aétH

qC are strictly
A1-homotopy invariant, they are A1-local by 9.23. Thus

Extp(Rtr(X), L) = HomD−(Rtr(X)[−p], L)
∼= HomD−(Rtr(X × A1)[−p], L) = Extp(Rtr(X × A1), L).

Hence the morphism of spectral sequences is an isomorphism on all E2 terms.
By the Comparison Theorem [Wei94, 5.2.12], f induces an isomorphism from
HomD−(Rtr(X)[n], C) to HomD−(Rtr(X × A1)[n], C) for each n. Done.

Lemma 9.29. If K is a bounded above complex of étale sheaves of Z/n-
modules with transfer and 1/n ∈ k, then TotC∗(K) is A1-local.

Proof. Set C = TotC∗(K). By 2.18, each H iC is an A1-homotopy invariant
presheaf of Z/n-modules with transfers. By the Rigidity Theorem 7.20, the
sheaf aétH

iC is locally constant. By 9.22, aétH
iC is strictly A1-homotopy

invariant. Finally, 9.28 lets us conclude that C is A1-local.

Corollary 9.30. If 1/n ∈ k then Z/n(q) is A1-local for all q.

Proof. Take K to be (Z/n)trG∧q
m [−q]; Z/n(q) = C∗K by definition 3.1.
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Definition 9.31. If 1/n ∈ k, let L denote the full subcategory of D− con-
sisting of A1-local complexes of Z/n-modules with transfer. If E and F are
A1-local, we set E ⊗L F = TotC∗(E ⊗tr

L,ét F ). By 9.29, E ⊗L F is A1-local,
so ⊗L is a bifunctor from L × L → L.

Recall from 6.9 that the category of locally constant étale sheaves of
Z/n-modules is equivalent to the category Mod(G,Z/n) of discrete Z/n-
modules over the Galois group G = Gal(ksep/k). Let D−(G,Z/n) denote the
(bounded above) derived category of such modules. There is a triangulated
functor π∗ from D−(G,Z/n) to D− = D−(Shét(Cork,Z/n)).

Theorem 9.32. If 1/n ∈ k, (L,⊗L) is a tensor triangulated category and
the functors

D−(G,Z/n)
π∗

- L - D−[W−1
A

] = DMeff ,−
ét (k,Z/n)

are equivalences of tensor triangulated categories.

Proof. Clearly, L is a thick subcategory of D−. By 9.20, the functor L →
D−[W−1

A
] is fully faithful. By 9.29, every object of D−[W−1

A
] is isomorphic to

an object of L. Hence L is equivalent to D−[W−1
A

] as a triangulated category.

By 9.5, DMeff ,−
ét (k,Z/n) is a tensor triangulated category. Using the first

part of this proof, we conclude that L is a tensor triangulated category as well.
Moreover, if E and F are A1-local, then E ⊗L F is isomorphic to E ⊗tr

L,ét F

in D−[W−1
A

] by 9.14, so the induced tensor operation on L is isomorphic to
⊗L.

Next we consider π∗. It is easy to see from 6.9 and 6.11 that π∗ induces
an equivalence between D−(G,Z/n) and the full subcategory of complexes
of locally constant sheaves in D−. By exercise 8.20, π∗ sends ⊗L

Z/n to ⊗tr
L,ét.

It suffices to show that every A1-local complex F is isomorphic to such a
complex. By 9.14, 9.29, and 9.18 F → C∗F is a quasi-isomorphism. By
2.18, each aétH

iF is A1-homotopy invariant. By 7.20 the sheaves aétH
iF

are locally constant. Hence the canonical map F → π∗π∗F is a quasi-
isomorphism of complexes of étale sheaves. But π∗F is a complex of modules
in Mod(G,Z/n).
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Lecture 10

Étale motivic cohomology and
algebraic singular homology

There are two ways one might define an étale version of motivic cohomology.
One way, which is natural from the viewpoint of these notes, is to use the
morphisms in the triangulated category DM−

ét, namely to define the integral
cohomology group indexed by (p, q) as Hom

DM
−

ét
(Ztr(X),Z(q)[p]), and simi-

larly for cohomology with coefficients in an A. The second approach, due to
Lichtenbaum, is to take the étale hypercohomology of the complex Z(q).

Definition 10.1. For any abelian group A, we define the étale (or Licht-
enbaum) motivic cohomology of X as the hypercohomology of A(q):

Hp,q
L (X,A) = Hp

ét(X,A(q)|Xét
).

If q < 0 then Hp,q
L (X,A) = 0, because A(q) = 0. If q = 0 then

Hp,0
L (X,A) ∼= Hp

ét(X,A), because A(0) = A.
The two definitions agree in some cases of interest. We will see

in 10.7 below that Hp,q
L (X,Z/n) ∼= Hom

DM
−

ét
(Ztr(X),Z/n(q)[p]) when

1/n ∈ k. Even further on, in 14.21, we will see that Hp,q
L (X,Q) ∼=

Hom
DM

−

ét
(Ztr(X),Q(q)[p]). However, the two definitions do not agree

for `-torsion coefficients, for ` = char(k). Indeed, for q = 0 we have
Hom

DM
−

ét
(Ztr(X),Z/`[p]) = 0 in characteristic ` by 9.15, yet the groups

Hp,0
L (X,Z/`) ∼= Hp

ét(X,Z/`) can certainly be nonzero.
By proposition 6.4 we have Hp,1

L (X,Z/n) ∼= Hp
ét(X, µn) when 1/n ∈ k.

Here is the generalization to all q.

97
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Theorem 10.2. Let n be an integer prime to the characteristic of k then:

Hp,q
L (X,Z/n) = Hp

ét(X, µ
⊗q
n ) q ≥ 0, p ∈ Z

By 6.4 there is a quasi-isomorphism µn → Z/n(1) of complexes of étale
sheaves. Because µn and the terms of Z/n(1) are flat as sheaves of Z/n-
modules, there is a morphism µ⊗q

n → (Z/n)(1)⊗q in the category of complexes
of étale sheaves of Z/n-modules. Combining with the multiplication of 3.10
gives a map

µ⊗q
n

- (Z/n)(1)⊗q - (Z/n)(q).

We may now reformulate theorem 10.2 as follows.

Theorem 10.3. The map µ⊗q
n → Z/n(q) is a quasi-isomorphism of com-

plexes of étale sheaves.

Proof. The theorem is true for q = 1 by 6.4. By 9.24 and 9.29, both µ⊗q
n and

Z/n(q) are A1-local. We will show that the map µ⊗q
n → Z/n(q) is an A1-weak

equivalence in 10.6 below. By 9.18, it is also a quasi-isomorphism.

Let R be any commutative ring. Recall that R(n) = R⊗Z Z(n). Clearly,
the multiplication map Z(m) ⊗Z Z(n) → Z(m + n) of 3.10 induces a map
R(m) ⊗R R(n) → R(m+ n).

Proposition 10.4. The multiplication map R(m)⊗R(n) → R(m+n) factors
through a map µ : R(m) ⊗tr R(n) → R(m + n).

R(m) ⊗R R(n)
mult.- R(m + n)

�
�

�
�

�

µ

�

R(m) ⊗tr R(n)

8.9

?

Proof. We first reinterpret the left vertical map in simplicial language. Re-
call that by definition 3.1, R(n)[n] = C∗(Rtr(G∧n

m )). Let us write An
• for

the underlying simplicial presheaf, viz., An
• (U) = Ztr(G∧n

m )(U × ∆•), and
write the associated unnormalized chain complex as An

∗ . By 8.9, we have
a natural map of bisimplicial presheaves Am

• ⊗R A
n
• → Am• ⊗tr An• , and a

map of their diagonal chain complexes, (Am⊗R A
n)∗ → (Am⊗tr An)∗. As in
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3.10, the Eilenberg-Zilber theorem yields quasi-isomorphisms ∇ fitting into
a commutative diagram:

R(m) ⊗R R(n)[m + n]
=- Am∗ ⊗R A

n
∗

∇- (Am ⊗R A
n)∗

R(m) ⊗tr R(n)[m + n]

8.9

? =- Am∗ ⊗tr An∗

8.9

? ∇- (Am ⊗tr An)∗.

8.9

?

Comparing with 3.10, we see that if suffices to find a simplicial map for all
X and Y ,

diag(C•Rtr(X) ⊗tr C•Rtr(Y )) −→ C•Rtr(X × Y ) (10.4.1)

compatible with the corresponding construction 3.9 for ⊗R. The map µ will
be the composite of ∇ and the map induced by 10.4.1.

Let F be any presheaf with transfers. Definitions 8.2 and 2.13 im-
ply that Cn(F ) ∼= Hom(Rtr(∆

n), F ) as presheaves and that C•(F ) ∼=
Hom(Rtr(∆

•
k), F ) as simplicial presheaves. Using these identifications, we

define the map 10.4.1 in degree n as the composition:

Cn(Rtr(X)) ⊗tr Cn(Rtr(Y )) =

Hom(Rtr(∆
n), Rtr(X)) ⊗tr Hom(Rtr(∆

n), Rtr(Y ))
8.5-

Hom(Rtr(∆
n × ∆n), Rtr(X × Y ))

diagonal- Hom(Rtr(∆
n), Rtr(X × Y )) =

Cn(Rtr(X × Y )).

Since Hom(Rtr(∆
n×∆n), Rtr(X×Y ))(U) = Rtr(X×Y )(U ×∆n×∆n), the

above composition is the right vertical composition in the following commu-
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tative diagram (see 8.5):

Rtr(X)(U × ∆n) ⊗R Rtr(Y )(U × ∆n)
8.9 - (CnRtr(X) ⊗tr CnRtr(Y ))(U)

Rtr(X × Y )(U × U × ∆n × ∆n)

⊗
? diag(U)- Rtr(X × Y )(U × ∆n × ∆n)

8.5

?

@
@

@
@

@
diag(U × ∆n)

R

Rtr(X × Y )(U × ∆n).

diag(∆n)

?

Since the left composite is the degree n part of construction 3.9, this shows
that the triangle in 10.4 commutes.

Proposition 10.5. The map Z/n(1)⊗
tr
L
q → Z/n(q) is an A1-weak equiva-

lence in D−(Shét(Cork,Z/n)).

Proof. The assertion follows from the diagram in figure 10.1, remembering
that by definition Z/n(q) is C∗(Z/n)tr(G∧n

m )[−q].

Z/n(1)⊗
tr
L
q - Z/n(q)

(Z/n)tr(Gm)[−1]⊗
tr
L q

'A1 9.4+9.14

6

(Z/n)tr(G
∧q
m )[−q]

9.14 'A1

6

@
@

@
@

@

8.7
'

R �
�

�
�

�
8.10

=

�

((Z/n)tr(Gm))⊗
trq [−q]

Figure 10.1: The factorization in proposition 10.5
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Proposition 10.6. The map µ⊗q
n → Z/n(q) is an A1-weak equivalence in

D−(Shét(Cork,Z/n)).

Proof. Consider the following diagram, in which ⊗tr and ⊗tr
L are to be un-

derstood in Z/n-modules.

µ
⊗tr

L q
n

'- Z/n(1)⊗
tr
L q

@
@

@
@

@

µ1 ◦ µ

R

µ⊗q
n

' - µ⊗trq
n

'
?

- Z/n(1)⊗
trq

µ1

?

µ
- Z/n(q)

We already know that the top map is a quasi-isomorphism by 6.4 and 8.16.
Lemma 8.13 proves that the bottom left map µ⊗q

n → µ⊗trq
n is a quasi-

isomorphism. Lemma 8.18 proves that the left vertical map is a quasi-
isomorphism. Hence the assertion follows from proposition 10.5.

Recall that when 1/n ∈ k we have DM−
ét = DMeff ,−

ét (k,Z/n).

Proposition 10.7. If 1/n ∈ k thenHp,q
L (X,Z/n) ∼= Hom

DM
−

ét
(Ztr(X),Z/n(q)[p]).

Proof. Since A = Z/n(q) is A1-local by 9.30, the right side is

Hom
DM

−

ét
(Ztr(X),Z/n(q)[p]) =HomD−(Ztr(X),Z/n(q)[p])

=Extp(Ztr(X),Z/n(q)).

By 6.25, this Ext group is Hp
ét(X,Z/n(q)), which is the left side.

As a bonus for all our hard work, we are able to give a nice interpretation
of Suslin’s algebraic singular homology. Recall that Rtr(X) = Ztr(X) ⊗R.

Definition 10.8. We define the algebraic singular homology of X by:

Hsing
i (X,R) = Hi(C∗(Rtr(X))(Spec k).

By remark 7.4, Hsing
0 (X,Z) agrees with the group Hsing

0 (X/ Spec k) of
lecture 7. As an exercise the reader should check that:

Hp,q(Spec k, R) = Hsing
q−p (G∧q

m , R)
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Notice that Rtr(G∧q
m ) is well-defined even though G∧q

m is not a scheme.
The following theorem was first proven in [SV96, 7.8] under the assump-

tion of resolution of singularities on k. The proof we give here doesn’t need
resolution of singularities, so it extends the result to fields of positive char-
acteristic.

Theorem 10.9. Let k be a separably closed field and X a smooth scheme
over k, and let l be a prime number different from char k. Then there exist
natural isomorphisms for all i:

Hsing
i (X,Z/l)∗ ∼= H i

ét(X,Z/l)

where the ∗ denotes the dual vector space over Z/l.

It is amusing to note that this implies that H i
ét(X,Z/l) is finite, because

it is a countable-dimensional dual module.
To prove 10.9, we need one more lemma. To clarify the role of the coeffi-

cient ring R, we will write D−
R for D−(Shét(Cork, R)), so that D−

Z
is just the

usual derived category of Shét(Cork).

Lemma 10.10. Let k be a separably closed field and C a bounded above chain
complex of étale sheaves of R-modules with transfer. Assume that the coho-
mology sheaves of C are locally constant and projective (as R-modules).Then
for any n ∈ Z we have:

Hom
D

−

R
(C,R[n]) = HomR−mod(Hn(C)(Spec k), R)

Proof. For simplicity, let us write Ext∗ for Ext in the category Shét(Cork, R).
(There are enough injectives to define Ext by 6.19.)

If P is a summand of ⊕αR, then Extn(P,R) injects into

Ext n(⊕αR,R) =
∏

Ext n(R,R) =
∏

Ext n(Rtr(Spec k), R).

But Ext n(Rtr(Spec k), R) = Hn
ét(Spec k, R) by 6.24 and this vanishes if n 6= 0

as k is separably closed. If n = 0, this calculation yields Ext0(R,R) = R and
Ext0(P,R) = HomR−mod(P,R).

Now recall that Extn(F,R) = Hom
D

−

R
(F,R[n]) for every sheaf F ; see

[Wei94, 10.7.5]. More generally, if R → I∗ is an injective resolution then the
total Hom cochain complex R Hom(C,R) of Hom∗(C, I[n]) satisfies

HnR Hom(C,R) ∼= Hom
D

−

R
(C,R[n]).



103

(See [Wei94, 10.7.4].) Since Hom∗(C, I[n]) is a bounded double complex, it
gives rise to a convergent spectral sequence which, as in [Wei94, 5.7.9], may
be written

Epq
2 = Extp(HqC,R) =⇒ Hp+qR Hom(C,R) = Hom

D
−

R
(C,R[p+ q]).

The assumption on HqC makes the spectral sequence collapse to yield
Ext0(HnC,R) ∼= Hom

D
−

R
(C,R[n]), whence the result.

Proof of 10.9. Taking R = Z/l, this means that all R-modules are projective.
Consider the diagram:

Hom
D

−

R
(C∗(Rtr(X)), R[n])

∼=
10.10

- HomR−mod(Hsing
n (X,R), R)

Hom
D

−

R
(Rtr(X), R[n])

9.24 ∼=
? ∼=

6.24
- Hn

ét(X,R).

By 2.18, each Hn = HnC∗Rtr(X) is a homotopy invariant presheaf of Z/l-
modules with transfer. Hence the sheaves aétH

n are locally constant by the
Rigidity Theorem 7.20. Hence the top map is an isomorphism by 10.10.
Since R is A1-local by 9.24, the left map is an isomorphism by 9.14. The
bottom map is an isomorphism by 6.24.

Corollary 10.11. Let k be a separably closed field and X a smooth scheme
over k, and let n be an integer relatively prime to char k. Then there exist
natural isomorphisms for all i:

Hsing
i (X,Z/n)∗ ∼= H i

ét(X,Z/n)

where the ∗ denotes the Pontrjagin dual Z/n-module.

Proof. Using the sequences 0 → Z/l → Z/lm → Z/m → 0, the 5-lemma
shows that we may assume that n is prime.
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Lecture 11

Standard triples

For all of this lecture, F will be a homotopy invariant presheaf with transfers.
Our goal in this lecture is to prove the following result, which is one

of the main properties of homotopy invariant presheaves with transfers. It
(or rather its corollary 11.2) will be used in subsequent lectures to promote
results from the Nisnevich topology to the Zariski topology. It depends
primarily upon the relative Picard group introduced in lecture 7.

Recall that a subgroup A of an abelian group B is called pure if nA =
nB ∩ A for every integer n. A homomorphism f : A → B of abelian groups
is called pure injective if it is injective and f(A) is a pure subgroup of B.

Proposition 11.1. For any smooth semilocal S over k, any Zariski dense
open subset V ⊂ S, and any homotopy invariant presheaf with transfers F ,
the map F (S) → F (V ) is pure injective.

Proposition 11.1 is a consequence of a more precise result, proposition
11.3, whose proof will take up most of this lecture.

Proof. The semilocal scheme S is the intersection of a family Xα of smooth
varieties of finite type over k and V is the intersection of dense open sub-
schemes Vα ⊂ Xα. Hence F (S) → F (V ) is the filtered colimit of the maps
F (Xα) → F (Vα). Since all these maps are injections by 11.3, their colimit is
an injection. If a ∈ F (Xα) equals nb ∈ F (Vα) for some b ∈ F (Vα), then the
image of a in F (Uα), and hence in F (S), is n-divisible.

Passing to the direct limit over all such V , we see that F (S) injects (as
a pure subgroup) into the direct sum of the F (SpecEi), as Ei runs over the
generic points of any semilocal S. In particular, we have:
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Corollary 11.2. Let F be a homotopy invariant presheaf with transfers. If
F (SpecE) = 0 for every field E over k, then FZar = 0.

Theorem 11.3. Let X be smooth of finite type over a field k and let V
be a dense open subset. Then for every finite set of points x1, . . . , xn ∈ X
there exists an open neighborhood U of these points such that F (X) → F (U)
factors through F (X) → F (V ). That is, there is a map F (V ) → F (U) such
that the following diagram commutes.

F (X)

@
@

@
@

@R

F (V )
? ∃ - F (U)

Example 11.4. If V & X is a dense open subset, then F = Ztr(X)/Ztr(V ) is
a presheaf with transfers, but F (X) → F (V ) is not injective. (1X is nonzero
in F (X) but vanishes in F (V ).) This shows that homotopy invariance is
necessary in 11.3.

To prepare for the proof of proposition 11.3, we need a technical digres-
sion.

Definition 11.5. A standard triple is a triple (X̄
p̄- S,X∞, Z) where

p̄ is a proper morphism of relative dimension 1 and Z and X∞ are closed
subschemes of X̄. The following conditions must be satisfied:

1. S is smooth and X̄ is normal,

2. X̄ −X∞ is quasi-affine and smooth over S,

3. Z ∩X∞ = ∅,

4. X∞ ∪ Z lies in an affine open neighborhood in X̄.

Given a standard triple as above, we usually write X for X̄−X∞. Note that
X̄ is a good compactification of both X and X − Z (see 7.8) by parts 2 and
4.

Conversely, if X̄ is a good compactification of a smooth quasi-affine curve
X → S (see 7.8), then (X̄, X̄ −X, ∅) is a standard triple.
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We will see in 11.17 below that any pair of smooth quasi-projective vari-
eties Z ⊂ X is locally part of a standard triple, at least when k is infinite.

Remark 11.6. (Gabber) Parts 4 and 2 imply that S is affine, and that Z
and X∞ are finite over S. Indeed, X∞ is finite and surjective over S by part
2, and affine by part 4, so Chevalley’s theorem ([Har77, III Ex.4.2]) implies
that S is affine.

We will make use of the following observation. Recall from 7.10 that
Pic(X̄,X∞) is the group of isomorphism classes of pairs (L, s) where L is a
line bundle on X̄ and s is a trivialization on X∞.

Given a standard triple (X̄,X∞, Z), any section x : S → X of p defines
an element [x] of Pic(X̄,X∞). Indeed, there is a homomorphism C0(X/S) →
Pic(X̄,X∞).

Remark 11.7. Let F be a homotopy invariant presheaf with transfers.
Given a standard triple (X̄,X∞, Z), by 7.5 there is a pairing:

( , ) : Pic(X̄,X∞) ⊗ F (X) → F (S).

Let x : S → X be a section of p. If [x] is the class of x in Pic(X̄,X∞), then
([x], f) = F (x)(f) for all f ∈ F (X).

Lemma 11.8. Let (X̄,X∞, Z) be a standard triple over S and X = X̄−X∞.
Then there is a commutative diagram for every homotopy invariant presheaf
with transfers F .

Pic(X̄,X∞

∐
Z) ⊗ F (X) - Pic(X̄,X∞

∐
Z) ⊗ F (X − Z)

Pic(X̄,X∞) ⊗ F (X)
?

- F (S)
?

Proof. Be definition, X̄ is a good compactification of both X and X − Z.
Thus the pairings exist by 7.5 (or 7.16) and are induced by the transfers
pairing Cork(S,X) ⊗ F (X) → F (S). Commutativity of the diagram is a
restatement of the fact that any presheaf with transfers is a functor on Cork.
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Corollary 11.9. If x : S → X is a section and [x] ∈ Pic(X̄,X∞) lifts to
λ ∈ Pic(X̄,X∞

∐
Z), there is a commutative diagram:

F (X) - F (X − Z)

	�
�

�
�

�

λ

F (S).

[x]

?

Moreover, if λ′ ∈ C0(X − Z/S) ⊂ Cor(S,X − Z) is any representative of λ
(see 7.16 and 1A.10), the composition of λ′ with the inclusion X − Z ⊂ X
is A1-homotopic to x in Cor(S,X).

Exercise 11.10. Use example 7.14 with F = O∗ to show that there can be
more than one lift λ : F (X − Z) → F (S).

More generally, observe that any unit s of O(Z) gives a trivialization of
O(X̄) on Z; combining this with the trivialization 1 on X∞ gives an element
σ(s) = (O, 1∐ s) of Pic(X̄,X∞

∐
Z). Show that λ+σ(s) is also a lift of [x] to

Pic(X̄,X∞

∐
Z), and that every other lift has this form for some s ∈ O∗(Z).

Definition 11.11. A standard triple is split over an open subset U ⊂ X if
L∆|U×SZ is trivial, where L∆ is the line bundle on U ×S X̄ corresponding to
the graph of the diagonal map.

Example 11.12. For any affine S, the standard triple (S×P1, S×∞, S×0)
is split over any U in X = S × A1. Indeed, the line bundle L∆ is trivial on
all of X ×X.

Exercise 11.13. Let X̄ be a smooth projective curve over k, with affine
open X = Spec(A) and set X∞ = X̄ − X. Then (X̄,X∞, Z) is a standard
triple for every finite Z in X. Let P1, ... be the prime ideals of A defining the
points of Z, and suppose for simplicity that A/Pi ∼= k for all i. Show that
the standard triple splits over D(f) if and only if each Pi becomes a principal
ideal in the ring A[1/f ].

In particular, if X̄ = P1, the triple splits over all X because in this case
A is a principal ideal domain.

Lemma 11.14. Any finite set of points in X has an open neighborhood U
such that the triple is split over U .
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Proof. The map f : X ×S Z → X is finite, as Z is finite over S. Given
points xi ∈ X, each f−1(xi) is finite. Now the line bundle L∆ is trivial in
some neighborhood V of ∪if−1(xi), because every line bundle on a semilocal
scheme is trivial. But every such V contains an open of the form U ×S Z,
and the triple is split over such a U .

Proposition 11.15. Consider a standard triple split over an affine U . Then
there is an A1-equivalence class of finite correspondences λ : U → (X − Z)
such that the composite of λ with (X − Z) ⊂ X is A1-homotopic to the
inclusion U ⊂ X.

In particular, F (X) → F (U) factors through λ : F (X − Z) → F (U):

F (X) - F (X − Z)

	�
�

�
�

�

∃λ

F (U).
?

Proof. Pulling back yields a standard triple (U×S X̄, U×SX∞, U×SZ) over
the affine U . The diagonal ∆ : U → U ×S X is a section and its class in
Pic(U ×S X̄, U ×S X∞) is represented by the line bundle L∆. If the triple
is split over an affine U , then L∆ has a trivialization on U ×S Z as well, so
[∆] lifts to a class λ in Pic(U ×S X̄, U ×S (X∞

∐
Z)). By 7.2 and 7.16, λ

is an A1-equivalence class of maps in Cor(U,X − Z). By 11.9 we have a
commutative diagram

U
λ - U ×S (X − Z)

[pr]- X − Z
QQQQQ[∆] s

U ×S X
? [pr] - X

?

and it suffices to observe that pr◦∆ : U → U×SX → X is the inclusion.

A different splitting (trivialization on U×SZ) may yield a different lifting
λ′. By exercise 11.10, λ′ = λ+ σ(s) for some unit s of O(U ×S Z).

Exercise 11.16. Suppose that λ is represented by an element D of
Cor(U,X − Z) = C0(U × (X − Z)/U), as in exercise 7.15. Show that the
element D− [∆(U)] of Cor(U,X) is represented by a principal divisor (f) on
U × X̄, with f equal to 1 on U ×X∞.
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Theorem 11.17. Let W be a connected quasi-projective smooth scheme over
an infinite field k, Y a proper closed subset of W and y1, . . . , yn ∈ Y . Then
there is an affine open neighborhood X of these points in W and a standard
triple (X̄ → S,X∞, Z) such that (X,X ∩ Y ) ∼= (X̄ −X∞, Z).

Proof. (Mark Walker) We may assume that W is affine, a closed (d + 1)-
dimensional subscheme of An. Embed An in AN by

(x1, . . . , xn) 7→ (x1, . . . , xn, x
2
1, x1x2, . . . , xixj, . . . , x

2
n).

Given a closed point x ∈ W , Bertini’s Theorem (see [SGA4, XI.2.1]) implies
that the general linear projection p : AN → Ad is smooth near each point of
W lying on p−1(p(x)). It is also finite when restricted to Y , because Y has
dimension ≤ d.

Let W̄ denote the closure of W in PN , H = PN −AN , and W∞ = W̄ ∩H.
The general projection defines a rational map p : W̄ ........- Pd whose center C
is finite, because C lies in the intersection of W∞ with a codimension d linear
subspace of H. Let X̄1 be the closure of the graph of p : (W̄ − C) → Pd in
W̄ × Pd. Then W is naturally an open subscheme of X̄1 and X̄1 −W has
finite fibers over Ad.

The singular points Σ of the projection X̄1 → Pd are closed, and finite
over each p(yi) because p is smooth near W ∩ p−1(p(yi)). Therefore there is
an affine open neighborhood S in Ad of {p(yi)} over which Σ is finite and
disjoint from Y . Define X to be p−1(S)∩W −Σ; by construction p : X → S
is smooth. Define X̄ ⊂ X̄1 to be the inverse image of S, and X∞ = X̄ −X.
Then X ∩ Y → S and X∞ → S are both finite.

It remains to show that X∞

∐
(X∩Y ) lies in an affine open neighborhood

of X̄. As X̄ is projective over S, there is a global section of some very ample
line bundle L whose divisor D misses all of the finitely many points of X∞

and X ∩ Y over any p(yi). Because L is very ample and S is affine, X̄ −D
is affine. Replacing S by a smaller affine neighborhood of the p(yi), we can
assume that D misses X∞ and X ∩Y , i.e., that X∞ and X ∩Y lie in X̄−D,
as desired.

Porism 11.18. If k is finite, the proof shows that there is a finite extension
k′ and an affine open X ′ of the points in W ×k Spec k′ so that (X ′, X ′ ∩ Y ′)
comes from a standard triple over k′, where Y ′ = Y ×k Spec k′. In fact, for
each prime l we can assume that [k′ : k] is a power of l.

Finally, we will use 11.15, 11.14 and 11.17 to prove 11.3.
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Proof of 11.3. We first assume that k is infinite. Since we may replace V by
V −{x1, . . . , xn}, we may assume that the closed points x1, . . . , xn of X lie in
Z = X−V . We can use 11.17 to shrink X about these points to assume that
there exists a standard triple with X = X̄ −X∞. By 11.14 the triple splits
over an open neighborhood U of the points. As X is quasi-projective, we
may shrink U to make it affine. By 11.15 we get the map F (X−Z) → F (U)
factoring F (X) → F (U).

If k is finite, we proceed as follows. We see by porism 11.18 that there
is an open X ′ of X ×k Spec(k′) fitting into a standard triple over k′. The
argument above shows that there is an open neighborhood U of x1, . . . , xn
(depending on k′) such that if U ′ = U ×k Spec(k′) and V ′ = V ×k Spec(k′),
then F (X ′) → F (U ′) factors through a map Φ′ : F (V ′) → F (U ′). Let
Φ(k′) : F (V ) → F (U) be the composite of Φ′ and the transfer F (U ′) → F (U).
By 1.11, [k′ : k] times F (X) → F (U) factors through Φ(k′). By 11.18, we
can choose two such extensions k′,k′′ with [k′ : k] and [k′′ : k] relatively
prime. Shrinking U , we may assume that F (U) is the target of both Φ(k′)
and Φ(k′′). But then F (X) → F (U) factors through a linear combination of
Φ(k′) and Φ(k′′).
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Lecture 12

Nisnevich sheaves

We have already mentioned the Nisnevich topology several times in previous
lectures, as an alternative to the étale and Zariski topologies. In this lecture
we develop some of its more elementary properties.

We begin by recalling the definition of the Nisnevich topology (see
[Nis89]). A family of étale morphisms {pi : Ui → X} is said to be a Nisnevich
covering of X if it has the Nisnevich lifting property:

• for all x ∈ X, there is an i and a u ∈ Ui so that pi(u) = x and the
induced map k(x) → k(u) is an isomorphism.

It is easy to check that this notion of cover satisfies the axioms for a
Grothendieck topology (in the sense of [Mil80, I.1.1], or pre-topology in the
sense of [SGA4]). The Nisnevich topology is the class of all Nisnevich cover-
ings.

Example 12.1. Here is an example to illustrate the arithmetic nature of a

Nisnevich cover. When char k 6= 2, the two morphisms U0 = A1−{a} ⊂
j- A1

and U1 = A1 − {0} z 7→z2- A1 form a Nisnevich covering of A1 if and only if
a ∈ (k∗)2. They form an étale covering of A1 for any nonzero a ∈ k.

Example 12.2. Let k be a field. The small Nisnevich site on Spec k consists
of the étale U over Spec k, together with their Nisnevich coverings. Every
étale U over Spec k is a finite disjoint union

∐
Spec li with the li finite and

separable over k; to be a Nisnevich cover, one of the li must equal k. Thus a
Nisnevich sheaf F on Spec k merely consists of a family of sets F (l), natural
in the finite separable extension fields l of k. In fact, each such l determines
a “point” of (Spec k)Nis in the sense of [SGA4, IV 6.1].
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From this description it follows that Spec k has Nisnevich cohomological
dimension zero. This implies that the Nisnevich cohomological dimension of
any Noetherian scheme X is at most dimX; see [KS86].

Lemma 12.3. If {Ui → X} is a Nisnevich covering then there is a nonempty
open V ⊂ X and an index i such that Ui|V → V has a section.

Proof. For each generic point x of X, there is a generic point u ∈ Ui so that
k(x) ∼= k(u). Hence Ui → X induces a rational isomorphism between the
corresponding components of Ui and X, i.e., Ui → X has a section over an
open subscheme V of X containing x.

Example 12.4. A Hensel local ring (R,m) is a local ring such that any
finite R-algebra S is a product of local rings. It is well-known (see [Mil80,
I.4.2]) that if S is finite and étale over R, and if R/m ∼= S/mi for some
maximal ideal mi of S, then R → S splits; one of the factors of S is isomorphic
to R. If {Ui → SpecR} is a Nisnevich covering then some Ui is finite étale, so
Ui → SpecR splits. Thus every Nisnevich covering of SpecR has the trivial
covering as a refinement. Consequently, the Hensel local schemes SpecR
determine “points” for the Nisnevich topology.

As with any Grothendieck topology, the category ShNis(Sm/k) of Nis-
nevich sheaves of abelian groups is abelian, and sheafification F 7→ FNis is
an exact functor. We know that exactness in ShNis(Sm/k) may be tested
at the Hensel local rings Oh

X,x of all smooth X at all points x (see [Nis89,
1.17]). That is, for every presheaf F :

• FNis = 0 if and only if F (SpecOh
X,x) = 0 for all (X, x);

• FNis(SpecOh
X,x) = F (SpecOh

X,x).

By abuse of notation, we shall write F (Oh
X,x) for F (SpecOh

X,x), and refer to
it as the stalk of FNis at x.

Definition 12.5. A commutative square Q = Q(X, Y,A) of the form

B
i - Y

A

f

? i - X

f

?
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is called upper distinguished if B = A ×X Y , f is étale, i : A → X is
an open embedding and (Y − B) → (X − A) is an isomorphism. Clearly,
any upper distinguished square determines a Nisnevich covering of X: {Y →
X,A→ X}.
Exercise 12.6. If dimX ≤ 1 show that any Nisnevich cover of X admits a
refinement {U, V } such that Q(X,U, V ) is upper distinguished. Show that
this fails if dimX ≥ 2.

By definition, F (Q) is a pullback square if and only if F (X) is the pullback
F (Y ) ×F (B) F (A), i.e., the kernel of f − i : F (Y ) × F (A) → F (B).

Lemma 12.7. A presheaf F is a Nisnevich sheaf if and only if F (Q) is a
pull-back square for every upper distinguished square Q.

Proof. For the “if” part, suppose that each F (Q) is a pullback square. To
prove that F is a Nisnevich sheaf, fix a Nisnevich covering {Ui → X}. Let
us say that an open subset V ⊂ X is good (for the covering) if

F (V ) -
∏

F (Ui ×X V )
--
∏

F (Ui ×X Uj ×X V )

is an equalizer diagram. We need to show that X itself is good.
By Noetherian induction, we may assume that there is a largest good

V ⊂ X. Suppose that V 6= X and let Z = X − V . By lemma 12.3, there is
a nonempty open W ⊂ Z and an index i such that Ui|W → W splits. Let
X ′ ⊂ X be the complement of the closed set Z−W . Then V and U ′

i = Ui|X′

form an upper distinguished square Q over X ′. Pulling back along each
U ′
j = Uj|X′ also yields an upper distinguished square. Thus we have pullback

squares

F (X ′) - F (U ′
i) F (U ′

j)
- F (U ′

i ×X U
′
j)

F (V )
?

- F (U ′
i |V )
?

F (U ′
j|V )
?

- F (U ′
i ×X U

′
j|V ).

?

A diagram chase shows that X ′ is also good, contradicting the assumption
that V 6= X. Hence X is good for each cover, i.e., F is a Nisnevich sheaf.

For “only if”, we assume that F is a Nisnevich sheaf and Q is upper
distinguished and need to prove that the map F (X) → F (Y ) ×F (B) F (A)
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is an isomorphism. We already know the map is monic because {A, Y } is a
Nisnevich cover of X. For the surjectivity, note that the sheaf axiom for this
covering yields the equalizer sequence

F (X) → F (Y ) × F (A)→→F (B) × F (A) × F (Y ×X Y ).

Since {∆(Y ), B×AB} is a cover of Y×XY , we have an injection F (Y×XY ) →
F (Y )×F (B×AB). Now (a, y) ∈ F (A)×F (Y ) lies in F (A)×F (B)F (Y ) if the
two restrictions to F (B) are the same. The two maps to F (A) and F (Y ) are
the same, so it suffices to consider the maps from F (Y ) to F (B×AB). These
both factor through F (B), so the images of y are the same as the images of
a. But by construction the two maps F (A)→→F (B ×A B) are the same.

Porism 12.8. Suppose more generally that F is a sheaf for some
Grothendieck topology, and that Q = Q(X, Y,A) is a pullback square
whose horizontal maps are monomorphisms. If {A, Y } is a cover of X and
{B ×A B, Y } is a cover of Y ×X Y , the proof of 12.7 shows that F (Q) is a
pullback square.

Exercise 12.9. Write O∗/O∗l for the presheaf U 7→ O∗(U)/O∗l(U), and
O∗/l for the Zariski sheaf associated to O∗/O∗l. Show that there is an exact
sequence

0 → O∗(U)/O∗l(U) → O∗/l(U) → Pic(U)
l- Pic(U)

for all smooth U . Then show that O∗/l is a Nisnevich sheaf on Sm/k. If
1/l ∈ k, this is an example of a Nisnevich sheaf which is not an étale sheaf.
In fact, (O∗/l)ét = 0.

Exercise 12.10. If F is a Nisnevich sheaf, consider the presheaf E0(F )
defined by:

E0(F )(X) =
∏

closed
x∈X

F (Oh
X,x).

Show that E0(F ) is a Nisnevich sheaf, and that the canonical map F →
E0(F ) is an injection. Using 12.2, show that E0(F ) is a flasque sheaf, i.e.,
that it has no higher cohomology (see [SGA4, V.4.1]). Iteration of this con-
struction yields the canonical flasque resolution 0 → F → E0(F ) → · · · of
a Nisnevich sheaf, which may be used to compute the cohomology groups
H∗
Nis(X,F ).
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Definition 12.11. Consider the presheaf sending U to Z[HomSm/k(U,X)].
We write Z(X) for Z[Hom(−, X)]Nis, its sheafification with respect to
the Nisnevich topology. It is easily checked that Z[Hom(−, X)]Zar(U) =
Z[Hom(−, X)](U) for every connected open U . We do not know if this is
true for Z(X).

By the Yoneda lemma, Hom(Z(X), G) = G(X) for every sheaf G. Since
Ztr(X) is a Nisnevich sheaf by 6.2, we see that Z(X) is a subsheaf of Ztr(X).

Let D−
Nis denote the derived category of cohomologically bounded above

complexes in ShNis(Sm/k). If F and G are Nisnevich sheaves, it is well
known that ExtnNis(F,G) = Hom

D
−

Nis
(F,G[n]) (see [Wei94, 10.7.5]).

Lemma 12.12. Let G be any Nisnevich sheaf. Then for all X:

ExtnNis(Z(X), G) = Hn
Nis(X,G).

Proof. If G→ I∗ is a resolution by injective Nisnevich sheaves, then the nth
cohomology of G is Hn of I∗(X). But by [Wei94, 10.7.4] we know that the
left side is Hn of HomShNis(Sm/k)(Z(X), I∗) = I∗(X).

Lemma 12.13. The smallest class in D−
Nis which contains all the Z(X) and

is closed under quasi-isomorphisms, direct sums, shifts, and cones is all of
D−
Nis.

Proof. The proof of 9.3 goes through using Z(X) in place of Rtr(X).

For the rest of this lecture, we shall write ⊗ for the presheaf tensor prod-
uct, (F ⊗ G)(U) = F (U) ⊗Z G(U), and ⊗Nis for the tensor product of Nis-
nevich sheaves, i.e., the sheafification of ⊗. Note that if a sheaf F is flat as a
presheaf then F is also flat as a sheaf. This is true for example of the sheaves
Z(X).

Lemma 12.14. Z(X × Y ) = Z(X) ⊗Nis Z(Y ).

Proof. Since Hom(U,X × Y ) = Hom(U,X) × Hom(U, Y ), we see that
Z[Hom(U,X × Y )] = Z[Hom(U,X)] ⊗ Z[Hom(U, Y )]. Thus Z[Hom(−, X ×
Y )] ∼= Z[Hom(−, X)] ⊗ Z[Hom(−, Y )] as presheaves. Now sheafify.

Lemma 12.15. Let G be a Nisnevich sheaf on Sm/k such that Hn
Nis(−, G)

is homotopy invariant for all n. Then for all n and all bounded above C:

Hom
D

−

Nis
(C,G[n]) ∼= Hom

D
−

Nis
(C ⊗Nis Z(A1), G[n]).
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Proof. By 12.12, our assumption yields Extn(Z(X), G) ∼= Extn(Z(X×A1), G)
for all X. Since Z(X×A1) = Z(X)⊗NisZ(A1) by 12.14, the conclusion holds
for C = Z(X). If C and C ′ are quasi-isomorphic, then so are C ⊗Nis Z(A1)
and C⊗NisZ(A1), because Z(A1) is a flat sheaf. But the class of all complexes
C for which the conclusion holds is closed under direct sums and cones, so
by 12.13 the conclusion holds for all C.

We borrow yet another topological definition: deformation retract. For
each F , note that the presheaf F ⊗ Z[Hom(−, Spec k)] is just F .

Definition 12.16. An injection of presheaves i : F → G is called a (strong)
deformation retract if there is a map r : G→ F such that r ◦ i = idF and
a homotopy h : G ⊗ Z[Hom(−,A1)] → G so that the restriction h|F is the
projection F ⊗ Z[Hom(−,A1)] - F , h(G⊗ 0) = i ◦ r and h(G⊗ 1) = id.

If F and G are sheaves, the condition in the definition is equivalent to
the condition that there is a sheaf map h : G ⊗Nis Z(A1) → G so that the
restriction h|F is the projection F ⊗Nis Z(A1) → F , h(G ⊗ 0) = i ◦ r and
h(G⊗ 1) = id.

For example, the zero-section Spec k
0- A1 induces a deformation re-

tract Z → Z(A1); the homotopy map h is induced by the multiplication
A1 × A1 → A1 using 12.14. If I1 is the quotient presheaf Z(A1)/Z, so that
Z(A1) ∼= Z ⊕ I1, then 0 ⊂ I1 is also a deformation retract.

Lemma 12.17. If F → G is a deformation retract, then the quotient presheaf
G/F is a direct summand of G/F ⊗ I1.

Proof. The inclusion 0 ⊂ G/F is a deformation retract, whose homotopy is
induced from h. Therefore we may assume that F = 0.

Let K denote the kernel of h. Since the evaluation “t = 1” : G = G⊗Z →
G⊗ Z(A1) is a section of both h and the projection G⊗ Z(A1) → G, we see
that K is isomorphic to G⊗ I1. But “t = 0”: G→ G⊗ Z(A1) embeds G as
a summand of K.

For every presheaf F we define C̃m(F ) to be the quotient presheaf
Cm(F )/F . That is, C̃m(F )(U) is F (U × Am)/F (U). Thus we have split
exact sequences 0 → F → Cm(F ) → C̃m(F ) → 0.

Corollary 12.18. C̃m(F ) is a direct summand of C̃m(F )⊗ I1 for all m ≥ 0.
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Proof. It is easy to see that F → CmF is a deformation retract, so 12.18 is
a special case of 12.17.

Proposition 12.19. Let G be a Nisnevich sheaf on Sm/k such that
Hn
Nis(−, G) is homotopy invariant for all n. Then for all n and for all

presheaves F , there is an isomorphism

Hom
D

−

Nis
((C∗F )Nis, G[n])

∼=- Hom
D

−

Nis
(FNis, G[n]).

Proof. Write Extn(C,G) for Hom
D

−

Nis
(C,G[n]). For each complex C, lemma

12.15 implies that Extq(C ⊗Nis I
1, G) = 0 for all q. For C = (C̃pF )Nis, 12.18

yields Extq((C̃pF )Nis, G) = 0.
Note that Extq(C,G) = HqR Hom(C,G) for any C; see [Wei94, 10.7.4].

As in the proof of 10.10, a resolution G → I∗ yields a first quadrant Hom
double complex Hom((C̃∗F )Nis, I

∗) and hence a first quadrant spectral se-
quence

Ep,q
1 = Extq((C̃pF )Nis, G) ⇒ Extp+q((C̃∗F )Nis, G)

(see [Wei94, 5.6.1]). Since every Ep,q
1 vanishes, this implies that

Extn((C̃∗F )Nis, G) = 0 for all n. In turn, this implies the conclusion of
12.19, viz., Extn((C∗F )Nis, G) ∼= Extn(F,G) for all n.
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Lecture 13

Nisnevich sheaves with
transfers

We now consider the category ShNis(Cork) of Nisnevich sheaves with trans-
fers. As with étale sheaves, we say that a presheaf with transfers F is a
Nisnevich sheaf with transfers if its underlying presheaf is a Nisnevich
sheaf on Sm/k. Clearly, every étale sheaf with transfers is a Nisnevich sheaf
with transfers.

Theorem 13.1. Let F be a presheaf with transfers, and write FNis for the
sheafification of the underlying presheaf. Then FNis has a unique structure
of presheaf with transfers such that F → FNis is a morphism of presheaves
with transfers.

Consequently, ShNis(Cork) is an abelian category, and the forgetful func-
tor ShNis(Cork) ⊂ - PST(k) has a left adjoint (F 7→ FNis) which is exact
and commutes with the forgetful functor to (pre)sheaves on Sm/k.

Finally, ShNis(Cork) has enough injectives.

Proof. The Nisnevich analogue of 6.16, is valid; just replace ‘étale cover’ by
‘Nisnevich cover’ in the proof. As explained after 6.12, the Čech complex
Ztr(Ǔ) is a Nisnevich resolution of Ztr(X). With these two observations, the
proofs of 6.17, 6.18, and 6.19 go through for the Nisnevich topology.

Exercise 13.2. By theorem 4.1, Z(1) ' O∗[−1] as complexes of Nis-
nevich sheaves with transfers. By 12.9, O∗/l = O∗ ⊗Nis Z/l. Since
Z/l(1) = Z(1) ⊗L

Nis Z/l, it follows that there is a distinguished triangle of
Nisnevich sheaves with transfers for each l:

µl → Z/l(1) → O∗/l[−1] → µl[1].
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Since (O∗/l)ét = 0, this recovers 4.8: µl ' Z/l(1)ét.

Exercise 13.3. If F is a Nisnevich sheaf with transfers, modify example
6.20 to show that the sheaf E0(F ) defined in 12.10 is a Nisnevich sheaf with
transfers, and that the canonical flasque resolution F → E∗(F ) is a complex
of Nisnevich sheaves with transfers.

Lemma 13.4. Let F be a Nisnevich sheaf with transfers. Then:

1. Its cohomology presheaves Hn
Nis(−, F ) are presheaves with transfers;

2. For any smooth X, we have F (X) ∼= HomShNis(Cork)(Ztr(X), F );

3. For any smooth X and any n ∈ Z,

Hn
Nis(X,F ) ∼= ExtnShNis(Cork)(Ztr(X), F ).

Proof. (Cf. 6.3, 6.21, and 6.23.) Assertion 2 is immediate from 13.1 and
the Yoneda isomorphism F (X) ∼= HomPST(Ztr(X), F ). Now consider the
canonical flasque resolution F → E∗(F ) in ShNis(Sm/k). By 13.3, this is a
resolution of sheaves with transfers. Since Hn

Nis(−, F ) is the cohomology of
E∗(F ) as a presheaf, and hence as a presheaf with transfers, we get part 1.

For part 3, it suffices by part 2 to show that if F is an injective sheaf with
transfers and n > 0, then Hn

Nis(−, F ) = 0. Since F → E0(F ) must split in
ShNis(Cork), H

n
Nis(X,F ) is a summand of Hn

Nis(X,E
0(F )) = 0, and must

vanish.

Exercise 13.5. (Cf. 6.25.) Let K be any complex of Nisnevich sheaves
of R-modules with transfer. Generalize 13.4 to show that its hyperext and
hypercohomology agree in the sense that for any smooth X and n ∈ Z:

Extn(Rtr(X), K) ∼= Hn
Nis(X,K).

The following result allows us to bootstrap quasi-isomorphism results
from the field level to the sheaf level.

Proposition 13.6. Let A → B be a morphism of complexes of presheaves
with transfers. Assume that their cohomology presheaves H ∗A and H∗B
are homotopy invariant, and that A(SpecE) → B(SpecE) is a quasi-
isomorphism for every field E over k. Then AZar → BZar is a quasi-
isomorphism in the Zariski topology.
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Proof. Let C be the mapping cone. By the 5-lemma, each H iC is a homotopy
invariant presheaf with transfers, which vanishes on SpecE for every field E
over k. Corollary 11.2 states that (H iC)Zar = 0. This implies that CZar is
acyclic as a complex of Zariski sheaves, i.e., that AZar and BZar are quasi-
isomorphic in the Zariski topology.

The main result of this lecture, 13.11, as well as the next few lectures,
depend upon the following result, whose proof will not be completed until
23.1. Theorem 13.7 allows us to bypass the notion of strictly A1-homotopy
invariance (see 9.21) used in lecture 9. The case n = 0 of 13.7, that FNis is
homotopy invariant, will be completed in 21.3.

Theorem 13.7. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then each presheaf Hn

Nis(−, FNis) is homotopy invariant.

The proofs of the following results are all based upon a combination of
theorem 13.7, lemma 13.4, and proposition 13.6.

Proposition 13.8. Let k be a perfect field. If F is a homotopy invariant
Nisnevich sheaf with transfers, then for all n and all smooth X:

Hn
Zar(X,F ) ∼= Hn

Nis(X,F ).

We will prove in 21.15 that FZar is a presheaf with transfer. This would
simplify the proof of 13.8.

Proof. For n = 0 we have H0
Nis(X,F ) = H0

Zar(X,F ) = F (X) for every sheaf.
By the Leray spectral sequence, it now suffices to prove that Hn

Nis(S, F ) = 0
for all n > 0 when S is a local scheme. By 13.4 and 13.7, each Hn

Nis(−, F )
is a homotopy invariant presheaf with transfers. By 11.2, it suffices to show
that Hn

Nis(SpecE, F ) = 0 for every field E over k. But fields are Hensel local
rings, and as such have no higher cohomology, i.e., Hn

Nis(SpecE,−) = 0 for
n > 0.

Proposition 13.9. Let C be a be bounded above complex of Nisnevich sheaves
with transfer, whose cohomology sheaves are homotopy invariant. Then its
Zariski and Nisnevich hypercohomology agree:

Hn
Zar(X,C) ∼= Hn

Nis(X,C) for all smooth X and for all n.
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Proof. We will proceed by descending induction on n− p, where C i = 0 for
i > p. If dimX = d, then Hn

Zar(X,C) = Hn
Nis(X,C) = 0 for all n > p + d,

because cdZar(X) and cdNis(X) are at most d. By 13.1, both the good
Nisnevich truncation τC and the pth-cohomology sheaf Hp = (C/τC)Nis are
Nisnevich sheaves with transfers. Setting m = n− p, we have a diagram

Hm−1
Zar (X,Hp) - Hn

Zar(X, τC) - Hn
Zar(X,C) - Hm

Zar(X,H
p) - Hn+1

Zar (X, τC)

Hm−1
Nis (X,Hp)

∼=
?

- Hn
Nis(X, τC)

∼=
?

- Hn
Nis(X,C)

?
- Hm

Nis(X,H
p)

∼=
?

- Hn+1
Nis (X, τC).

∼=
?

The four outer verticals are isomorphisms, by induction and 13.8. The state-
ment now follows from the 5-lemma.

Example 13.10. The motivic complex Z(i) is bounded above, and has ho-
motopy invariant cohomology by 2.18. If A is any abelian group, the same
is true for A(i) = A ⊗Z Z(i). By 13.9, the motivic cohomology of a smooth
X could be computed using Nisnevich hypercohomology:

Hn,i(X,A) = Hn
Zar(X,A(i)) = Hn

Nis(X,A(i)).

This is the definition of motivic cohomology used in [VSF00]. Note that the
motivic cohomology groups Hn,i(X,A) are presheaves with transfers by 13.5.

Theorem 13.11. Let k be a perfect field and F a presheaf with transfers
such that FNis = 0. Then (C∗F )Nis ' 0 in the Nisnevich topology, and
(C∗F )Zar ' 0 in the Zariski topology.

Proof. Let F be a presheaf with transfers such that FNis = 0. We will
first prove that (C∗F )Nis ' 0 or, equivalently, that the homology presheaves
Hi = HiC∗F satisfy (Hi)Nis = 0 for all i. For i < 0 this is trivial; CiF = 0
implies that HiC∗F = 0. Since (H0)Nis is a quotient of FNis = 0, it is also
true for i = 0.

We shall proceed by induction on i, so we assume that (Hj)Nis = 0 for
all j < i. That is, we assume that τ(C∗F )Nis ' (C∗F )Nis, where τ(C∗F )Nis
denotes the subcomplex of (C∗F )Nis obtained by good truncation at level i:

τ(C∗F )Nis is · · · → (Ci+1F )Nis → (CiF )Nis → d(CiF )Nis → 0.
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There is a canonical morphism τ(C∗F )Nis → (Hi)Nis[i] and hence a morphism
f : (C∗F )Nis → (Hi)Nis[i] in the derived category D−

Nis. Since f induces an
isomorphism on the ith homology sheaves, it suffices to prove that f = 0.

The presheaf with transfers Hi is homotopy invariant by 2.18, so by 13.1
and 13.7 the sheaf G = (Hi)Nis satisfies the hypothesis of 12.19. Since
FNis = 0, 12.19 yields

Hom
D

−

Nis
((C∗F )Nis, (Hi)Nis[i]) ∼= Hom

D
−

Nis
(FNis, (Hi)Nis[i]) = 0.

Hence f = 0 in D−
Nis, and this implies that (Hi)Nis = 0.

We can now prove that C∗FZar ' 0. Each cohomology presheaf H i =
H iC∗F is a homotopy invariant presheaf with transfers by 2.18. Since
(C∗F )Nis ' 0, we have C∗(F )(SpecE) ' 0 for every finitely generated field
extension E of k (and hence for every field over k). Indeed, E is Oh

X,x for the
generic point of some smooth X. Now apply 13.6 to C∗F → 0.

Here is a stalkwise restatement of theorem 13.11.

Corollary 13.12. Let k be a perfect field and F a presheaf with trans-
fers so that F (SpecOh

X,x) = 0 for all smooth X and all x ∈ X. Then
(C∗F )(SpecOX,x) ' 0 for all X and all x ∈ X.

Corollary 13.13. Let f : C1 → C2 be a map of bounded above cochain
complexes of presheaves with transfers. If f induces a quasi-isomorphism
over all Hensel local rings SpecOh

X,x, then Tot(C∗C1) → Tot(C∗C2) induces
a quasi-isomorphism over all local rings.

Proof. Let K = cone(f) denote the mapping cone of f . By assumption, each
HpK is a presheaf with transfers which vanishes on all Hensel local schemes,
i.e., KNis ' 0. By 13.11, C∗H

pK ' 0 in the Zariski topology.
Since K is a bounded above cochain complex, the double complex C∗(K)

is bounded. Hence the usual spectral sequence of a double complex (see
[Wei94, 5.6.2]) converges to H∗ TotC∗(K). Since CqK(X) = K(X × ∆q)
we have HpCqK = CqH

pK for all p and q, and we have seen that each
HqC∗H

pK vanishes on every local scheme X. The resulting collapse in the
spectral sequence shows that H∗ TotC∗(K) vanishes on every local scheme,
which yields the result.

If U = {U1, . . . , Un} is a Zariski covering of X, we saw in 6.12 that the
Čech complex

Ztr(Ǔ) : 0 → Ztr(U1 ∩ . . . ∩ Un) → . . .→ ⊕iZtr(Ui) → 0
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is a resolution of Ztr(X) in the étale topology (and the Nisnevich topology).
Surprisingly, this gets even better when we apply C∗.

Proposition 13.14. If U is a Zariski covering of X then the Čech resolution
TotC∗Ztr(Ǔ) → C∗Ztr(X) is a quasi-isomorphism in the Zariski topology.

Proof. Apply 13.13 to 6.14.

Example 13.15. Applying 13.14 to the usual cover of P1 (by P1 − {0}
and P1 − {∞}) allows us to deduce that C∗ (Ztr(P1)/Z) ' C∗Ztr(Gm)[1] =
Z(1)[2] for the Zariski topology, because C∗Ztr(A1)/Z ' 0 by 2.23. This was
already observed in example 6.15 for the étale topology. This example will
be generalized in theorem 15.2 below.



Lecture 14

The category of motives

In this lecture, we define the triangulated category of (effective) motives
over k, and the motive of a scheme in this category. The construction of
DMeff ,−

Nis (k, R) is parallel to the construction of DMeff ,−
ét (k, R) in 9.2, and we

will see that the categories are equivalent if Q ⊆ R.

Write D− for D−ShNis(Cork, R), and let EA denote the smallest thick
subcategory of D− containing every Rtr(X×A1) → Rtr(X) and closed under
direct sums. (See 9.1 and 9.2.) The quotient D−/EA is the localization
D−[W−1

A
], where WA = WEA

is the class of maps in D− whose cone is in EA.
A map in WA is called an A1-weak equivalence.

Definition 14.1. The triangulated category of motives over k is defined to
be the localization DMeff ,−

Nis (k, R) = D−[W−1
A

] of D− = D−ShNis(Cork, R).
(Cf. 9.2.) If X is a smooth scheme over k, we write M(X) for the class of
Ztr(X) in DMeff ,−

Nis (k,Z) and call it the motive of X.

In 8.17, we showed that the derived category D−(Shét(Cork, R)) is a
tensor triangulated category. The same argument works in the Nisnevich
topology for D−ShNis(Cork, R). Here are the details.

Definition 14.2. If C and D are bounded above complexes of presheaves
with transfers, we write C⊗tr

L,NisD for (C⊗tr
LD)Nis. Because 6.12 holds for the

Nisnevich topology, the Nisnevich analogues of 8.14, 8.15, 8.16, 8.17, and 8.18
hold. In particular, the derived category D− of bounded above complexes
of Nisnevich sheaves with transfer is a tensor triangulated category under
⊗tr
L,Nis.
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Given 14.2, the proofs of 9.4 and 9.5 go through to show that
the tensor ⊗tr

L,Nis on D− also endows the localization DMeff ,−
Nis (k, R) of

D−ShNis(Cork, R) with the structure of a tensor triangulated category.

Our definitions of DMeff ,−
Nis (k, R) and M(X) are equivalent to the defini-

tions in [TriCa, p. 205]. This follows by comparing the definition in loc. cit.,
to theorem 14.10 below, using the following lemma.

Lemma 14.3. For every bounded above complex K of sheaves of R-modules
with transfer, the morphism K → TotC∗(K) is an A1-weak equivalence.
Hence K ∼= TotC∗(K) in DMeff ,−

Nis (k, R).

Proof. The proof of lemmas 9.11 and 9.14 go through in this setting.

Remark 14.4. As is 9.16, we say that an object L of D− is called A1-local
(for the Nisnevich topology) if HomD−(−, L) sends A1-weak equivalences to
isomorphisms. The proof of 9.20 goes through in the Nisnevich setting to
show that if Y is A1-local then

Hom
DM

eff,−
Nis

(X, Y ) ∼= HomD−(X, Y ).

Let F be a Nisnevich sheaf with transfers. Then F is A1-local if and only
if F is homotopy invariant, because the proof of 9.23 goes through using 13.4
and 13.7. This is the easy case of the following proposition.

Proposition 14.5. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfer. Then K is A1-local
if and only if the sheaves aNis(H

nK) are all homotopy invariant.

Proof. Suppose first that the cohomology sheaves of K are homotopy invari-
ant. By 13.7 applied to F = aNis(H

qK), the presheaves Hn
Nis(−, F ) are ho-

motopy invariant. As in the proof of 9.23, this implies that each aNis(H
qK)

is A1-local. Because cdNis(X) < ∞, the hyperext spectral sequence (see
[Wei94, 5.7.9])

Epq
2 (X) = Extp(Rtr(X), aNisH

qK) =⇒ HomD−(Rtr(X), K[p+ q])

is bounded and converges. The map f induces a morphism from it to the
corresponding spectral sequence for X × A1. By the Comparison Theorem
([Wei94, 5.2.12]), f induces an isomorphism from HomD−(Rtr(X)[n], K) to
HomD−(Rtr(X × A1)[n], K) for each n. By 9.17, K is A1-local.



129

Now suppose that K is A1-local. The cohomology presheaves of K ′ =
TotC∗(K) are homotopy invariant by 2.18. Theorem 13.7 applied to the co-
homology presheaves HqK ′ shows that the sheaves aNis(H

qK ′) are homotopy
invariant. The first part of this proof shows that K ′ is A1-local. By lemma
14.3, the canonical map K → K ′ is an A1-weak equivalence. By 9.18, which
goes through for the Nisnevich topology, K → K ′ is an isomorphism in D−.
Hence the sheaves aNis(H

nK) ∼= aNis(H
nK ′) are homotopy invariant.

Corollary 14.6. Let k be a perfect field and K a bounded above cochain
complex of Nisnevich sheaves of R-modules with transfer. If the presheaves
Hn(K) are all homotopy invariant, then K is A1-local.

Proof. Combine 13.7 and 14.5.

Example 14.7. Here is an example to show that the converse does not hold
in 14.6. Consider the complex K of example 6.15:

0 → Ztr(Gm) → 2Ztr(A
1, 1) → Ztr(P

1, 1) → 0.

Evaluating at Spec(k) and at A1, it is easy to see that the cohomology
presheaf H2K is not homotopy invariant (consider an embedding of A1 in
P1 whose image contains both 0 and 1). On the other hand K is A1-local,
because its cohomology sheaves aNisH

∗(K) vanish by 6.14.

Exercise 14.8 (Mayer-Vietoris). For each open cover {U, V } of a smooth
scheme X, show that the “Mayer-Vietoris” triangle

Ztr(U ∩ V ) → Ztr(U) ⊕ Ztr(V ) → Ztr(X) → Ztr(U ∩ V )[1]

is distinguished in DMeff ,−
Nis (k, R). Hint: Use a Nisnevich analogue of

6.14 to show that the associated Čech complex is isomorphic to zero in
DMeff ,−

Nis (k, R). Cf. [TriCa, 3.2.6].

Definition 14.9. Let LNis denote the full subcategory of D− consisting of
complexes with homotopy invariant cohomology sheaves. By 14.5, it is also
the category of A1-local complexes. If E and F are in L, then we define
E ⊗L F = TotC∗(E ⊗tr

L,Nis F ). By 2.18 and 14.6, E ⊗L F is A1-local.

Theorem 14.10. The category (LNis,⊗L) is a tensor triangulated category,
and the canonical functor

LNis → D−[W−1
A

] = DMeff,−
Nis (k, R)

is an equivalence of tensor triangulated categories.
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Proof. The category L = LNis is a thick subcategory of D−. By 14.4 and
14.5, the functor L → D−[W−1

A
] is fully faithful. By 14.3, every object K of

D−[W−1
A

] is isomorphic to TotC∗(K). By 13.7, TotC∗(K) is in L. Hence L
is equivalent to D−[W−1

A
].

It follows that L is a tensor triangulated category, because D−[W−1
A

] is.
If E and F are A1-local, we have seen that the tensor product E ⊗tr

L,Nis F is

naturally isomorphic to E ⊗L F in D−[W−1
A

]. That is, ⊗L is isomorphic to
the induced tensor operation on L.

In [TriCa, p. 210], the tensor structure on LNis was defined using ⊗L.
Next, recall from 9.7 that two parallel morphisms f and g of sheaves

are said to be A1-homotopic if there is a map F ⊗tr
L Ztr(A1) → G whose

restrictions along 0 and 1 coincide with f and g, respectively. The proof of
9.9 shows that A1-homotopic morphisms between Nisnevich sheaves became
equal in DMeff ,−

Nis (k, R).

Proposition 14.11. Let C and D be bounded above complexes of Nisnevich
sheaves with transfer, whose cohomology sheaves are homotopy invariant. If
C and D are A1-local, then A1-homotopic maps f, g : C → D induce the
same maps on hypercohomology:

f = g : H∗
Zar(X,C) → H∗

Zar(X,D).

Proof. To prove the proposition, write DM for DMeff ,−
Nis (k). Combining 13.9

with 13.5, we see that

Hn
Zar(X,C) ∼= HomD−(Ztr(X), C[n]).

If C is A1-local, this equals HomDM(Ztr(X), C[n]) by 14.4. Since f
and g agree in DM, they induce the same map from Hn(X,C) ∼=
HomDM(Ztr(X), C[n]) to Hn(X,D) ∼= HomDM(Ztr(X), D[n]), as as-
serted.

We will need the following elementary result for R = Q in 14.22 below.
It is proven by replacing Z(X) by Rtr(X) in the proof of 12.13.

Lemma 14.12. The smallest class in D− which contains all the Rtr(X) and
is closed under quasi-isomorphisms, direct sums, shifts, and cones is all of
D−.
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We now consider the case when the coefficient ring R contains Q. Our
first goal is to identify étale and Nisnevich motivic cohomology (14.16).
We will then describe DMeff ,−

ét (k, R) (in 14.19), and finally show that

DMeff ,−
Nis (k, R) ∼= DMeff,−

ét (k, R) (14.22).

Lemma 14.13. Let F be a homotopy invariant Zariski sheaf of Q-modules
with transfers. Then F is also an étale sheaf with transfers.

Proof. It suffices to show that the presheaf kernel and cokernel of F → Fét
vanish. By 6.17, these are presheaves with transfers. Thus we may suppose
that Fét = 0. If F 6= 0 then there is a point x ∈ X and a nonzero element
c ∈ F (S), S = SpecOX,x. Since Fét = 0, there is a finite étale map S ′ → S
with c|S′ = 0. As in 1.11, the composition of the transfers and inclusion

F (S) → F (S ′) → F (S)

is multiplication by d, the degree of S ′ → S. Hence this composition is an
isomorphism. Since it sends c to zero, we have c = 0. This contradiction
shows that F = 0, as desired.

Corollary 14.14. If F is an homotopy invariant presheaf of Q-modules with
transfer, then FNis = Fét.

Proof. By 13.7, FNis is homotopy invariant, so 14.13 applies.

Proposition 14.15. If F is an étale sheaf of Q-modules, then

Hn
ét(−, F ) = Hn

Nis(−, F ).

Proof. We need to prove that Hn
ét(S, F ) = 0 for n > 0 when S is Hensel

local. Given this, the result will follow from the Leray spectral sequence.
Pick c ∈ Hn

ét(S, F ). Then there is a finite étale map S ′ → S with c|S′ = 0.
We may assume that S ′ is connected, of degree d. The composition of the
étale trace map and the inclusion

Hn
ét(S, F ) - Hn

ét(S
′, F ) - Hn

ét(S, F )

is multiplication by d (see [Mil80, V.1.12]) and so an isomorphism. Since it
sends c to zero, we have c = 0. Hence Hn(S, F ) = 0.

Recall from 10.1 that the étale (or Lichtenbaum) motivic cohomology
Hp,q
L (X,Q) is defined to be the étale hypercohomology of the complex Q(q).
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Theorem 14.16. Let k be a perfect field. If C is a complex of presheaves of
Q-modules with transfer with homotopy invariant cohomology, then

H∗
ét(X,Cét) = H∗

Nis(X,CNis)

for every X in Sm/k. In particular

Hp,q
L (X,Q) = Hp,q(X,Q).

Proof. Consider F = HqC. By 14.14, FNis = Fét. By 14.15, we have iso-
morphisms H i

ét(X,Fét) → H i
Nis(X,FNis). Comparing the hypercohomology

spectral sequences for the Nisnevich and the étale topology yields the result.
In particular, the result applies to C = Q(q) by 13.10.

Lemma 14.17. Let F be any homotopy invariant étale sheaf of Q-modules
with transfers. Then F is strictly A1-homotopy invariant in the sense of
9.21.

Proof. By 14.15 and 13.7, we have Hp
ét(X,F ) ∼= Hp

ét(X×A1, F ) for all smooth
X, i.e., F is strictly homotopy invariant.

For clarity, let us say that a complex K is étale A1-local if it is A1-local
for the étale topology (as in 9.16), and Nisnevich A1-local if it is A1-local for
the Nisnevich topology (as in 14.4).

We will write D−
ét for D−(Shét(Cork, R)).

Proposition 14.18. Let k be a perfect field and suppose that Q ⊆ R. If K is
a bounded above cochain complex of étale sheaves of R-modules with transfer,
then K is étale A1-local if and only if the sheaves aét(H

nK) are homotopy
invariant.

In particular, each Q(j) is an étale A1-local complex.

Proof. Suppose first that the sheaves aétH
n(K) are homotopy invariant. By

14.17 and 9.23, they are étale A1-local. Since Q ⊆ R, we have cdR(k) = 0,
so K is étale A1-local by 9.28.

Conversely, suppose that K is étale A1-local and set K ′ = TotC∗(K). By
2.18, each Hn(K ′) is A1-homotopy invariant. By theorem 13.7 and 14.13,
each étale sheaves aét(H

nK ′) is homotopy invariant. The first part of this
proof shows that K ′ is étale A1-local. By 9.14, K → K ′ is an (étale) A1-weak
equivalence, and an isomorphism in DMeff ,−

ét (k, R). By 9.18, K → K ′ is an
isomorphism in D−

ét. Hence each sheaf aét(H
nK) is isomorphic to aét(H

nK ′),
and is therefore also homotopy invariant.
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Let Lét denote the full subcategory of D−
ét consisting of complexes with

homotopy invariant cohomology sheaves. By 14.18, it is also the subcategory
of étale A1-local complexes.

Theorem 14.19. The natural functor Lét → DMeff ,−
ét (k, R) is an equivalence

of triangulated categories if Q ⊆ R.

Proof. The functor is full and faithful by 9.20 and 14.18. Since every K in
D−
ét becomes isomorphic to TotC∗(K) in DMeff ,−

ét by 9.14, and TotC∗(K) is
in Lét by 2.18, the functor is an equivalence.

Remark 14.20. Theorem 14.19 implies that Lét is a tensor triangulated
category. As in the proof of 9.32 and 14.10, 14.3 and 14.6 show that the
tensor operation of Lét is isomorphic to the operation ⊗L defined in 9.31.

Corollary 14.21. For every smooth X, the étale motivic cohomology groups
Hp,q
L (X,Q) may be computed in DM−

ét:

Hp,q
L (X,Q) ∼= Hom

DM
−

ét
(Qtr(X),Q(q)[p]).

Proof. Write D−
ét for D−(Shet(Cork,Q)) and write DM for DM−

et(k,Q). By
9.20, we have

HomDM(Qtr(X),Q(q)[p]) = Hom
D

−

ét
(Qtr(X),Q(q)[p]) = Extp(Qtr(X),Q(q)).

By 6.25, this Ext group is Hp,q
L (X,Q) = Hp

ét(X,Q(q)).

Theorem 14.22. If Q ⊆ R, then DMeff,−
Nis (k, R) → DMeff ,−

ét (k, R) is an
equivalence of tensor triangulated categories.

Proof. Because sheafification is exact, it induces a triangulated functor from
D−
Nis = D−(ShNis(Cork, R)) to D−

ét = D−(Shét(Cork, R)). By definitions
9.14 and 14.2, we have (K⊗tr

L,NisL)ét = K⊗tr
L,étL. Comparing definitions, we

see that D−
Nis → D−

ét sends Nisnevich A1-weak equivalences to étale A1-weak

equivalences, so it induces a tensor triangulated functor σ from DMeff ,−
Nis (k, R)

to DMeff ,−
ét (k, R). Clearly, D−

Nis → D−
ét and DMeff ,−

Nis → DMeff ,−
ét are onto on

objects.
It remains to show that the functor σ is full and faithful, i.e., that we have

Hom
DM

eff,−
Nis

(K,L) ∼= Hom
DM

eff,−
ét

(Két, Lét). By theorem 14.10, we may as-

sume that L is in LNis. The class of objects K so that Hom
DM

eff,−
Nis

(K,L[n]) ∼=
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Hom
DM

eff,−
ét

(Két, Lét[n]) for all n is closed under quasi-isomorphisms, direct

sums, shifts, and cones. By 14.12, it suffices to show that each Rtr(X) is in
this class. But then by 14.4, 13.5, 9.20, and 6.25, we have

Hom
DM

eff,−
Nis

(Rtr(X), L[n]) ∼= Hom
D

−

Nis
(Rtr(X), L[n]) ∼= Hn

Nis(X,L)

and

Hom
DM

eff,−
ét

(Rtr(X), Lét[n]) ∼= Hom
D

−

ét
(Rtr(X), Lét[n]) ∼= Hn

ét(X,Lét).

These groups are isomorphic by 14.16, as required.



Lecture 15

The complex Z(n) and Pn

The goal of this lecture is to interpret the motivic complex Z(n) in terms
of Ztr(Pn) and use this to show that the product on motivic cohomology is
graded-commutative. We begin by observing that M(Pn− {0}) ∼= M(Pn−1).

Lemma 15.1. There is a chain homotopy equivalence:

C∗Ztr(P
n − {0}) ' C∗Ztr(P

n−1).

Proof. Consider the projection (Pn − 0) → Pn−1 sending (x0 : · · · : xn) to
(x1 : · · · : xn), where 0 is (1 : 0 : · · · : 0). This map has affine fibers. The
self homotopy λ(x0 : · · · : xn) → (λx0 : x1 : · · · : xn) is well defined on
Pn − {0} × A1, even for λ = 0, because one of x1, . . . , xn is always non zero.
Hence the projection and the section (x1 : · · · : xn) 7→ (0 : x1 : · · · : xn) are
inverse A1-homotopy equivalences. The lemma now follows from 2.25.

Theorem 15.2. If k is a perfect field, there is a quasi-isomorphism of Zariski
sheaves for each n:

C∗

(
Ztr(P

n)/Ztr(P
n−1)

)
' C∗Ztr(G

∧n
m )[n] = Z(n)[2n].

In particular, C∗ (Ztr(Pn)/Ztr(Pn−1)) (X) ' Z(n)[2n](X) for any smooth lo-
cal X.

Our proof will use theorem 13.11, whose proof depended upon theorem
13.7, a result whose proof we have postponed until lecture 23. The require-
ment that k be perfect is only needed for 13.7 (and hence 13.11).

135
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Proof. Let U be the usual cover of Pn by (n+1) copies of An and note that n of
these form a cover V of Pn−{0}. The intersection of i+1 of these An is An−i×
(A1 − {0})i. By 6.14, we have quasi-isomorphisms Ztr(Ǔ) → Ztr(Pn) and
Ztr(V̌) → Ztr(Pn−0) of complexes of Nisnevich sheaves with transfers. Hence
the quotient complex Q∗ = Ztr(Ǔ)/Ztr(V̌) is a resolution of Ztr(Pn)/Ztr(Pn−
0) as a Nisnevich sheaf. By 13.13 and 15.1, or by 13.14, TotC∗Q∗ is quasi-
isomorphic to C∗ (Ztr(Pn)/Ztr(Pn − 0)) and hence to C∗(Ztr(Pn)/Ztr(Pn−1))
for the Zariski topology.

On the other hand, we know from 2.12 that for T = A1 − 0 the sequence

0 → Ztr(G
∧n
m ) → Ztr(T

n) → ⊕iZtr(T
n−1) → ⊕i,jZtr(T

n−2) →
· · · → ⊕i,jZtr(T

2) → ⊕iZtr(T ) → Z → 0

is split exact. Rewriting this as 0 → Ztr(G∧n
m ) → Rn → Rn−1 → · · · → R0 →

0, with Rn = Ztr(T
n), Rn−1 = ⊕iZtr(T

n−1), and R0 = Z, we may regard
it as a chain homotopy equivalence Ztr(G∧n

m )[n] → R∗. With this indexing
there is a natural map Q∗ → R∗ whose typical term is a direct sum of the
projections

Ztr(A
n−i × T i) → Ztr(T

i).

These are A1-homotopy equivalences (see 2.24). Applying C∗ turns them
into quasi-isomorphisms by 2.25. Hence we have quasi-isomorphisms of total
complexes of presheaves with transfers

TotC∗Q∗
'- TotC∗R∗

�'
C∗Ztr(G

∧n
m )[n].

Combining with TotC∗Q∗ ' C∗ (Ztr(Pn)/Ztr(Pn−1)) yields the result in the
Zariski topology.

If n = 1, it is easy to see that the isomorphisms of 13.15 and 15.2 agree.
Figure 15.1 illustrates the proof of theorem 15.2 when n = 2. We have written
‘X’ for C∗Ztr(X) in order to save space, and ‘A1−h.e.’ for A1-homotopy
equivalence.

Corollary 15.3. For each n there is a quasi-isomorphism for the Zariski
topology

C∗ (Ztr(A
n − 0)/Z) ' Z(n)[2n− 1].
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0 - 0 - A1 × (A1 − 0) - 2A2 - P2 − 0

0
?

- (A1 − 0)2
?

- 3
(
A1 × (A1 − 0)

)?
- 3A2

?
- P2

?

0
?

- (A1 − 0)2

=

?
- 2

(
A1 × (A1 − 0)

)?
- A2

?
- P2/(P2 − 0)

?

G∧2
m

?
- (A1 − 0)2

=

?
- 2(A1 − 0)

A1−h.e.

?
- pt

A1−h.e.

?
- 0

?

Figure 15.1: The case n = 2 of theorem 15.2

Proof. Applying 13.14 and 15.1 to the cover of Pn by An and Pn − 0, we see
that the sequence

0 → C∗Ztr(A
n − 0) → C∗Ztr(A

n) ⊕ C∗Ztr(P
n−1) → C∗Ztr(P

n) → 0

becomes exact for the Zariski topology. The result now follows from theorem
15.2, since C∗Ztr(An) ' C∗Ztr(Spec k) ' Z by 2.23 and 2.13.

Exercise 15.4. Show that the map C∗Ztr(Pi) → Z(i)[2i] of theorem 15.2
factors through the natural inclusion C∗Ztr(Pi) → C∗Ztr(Pn) for all n > i.
Hint : First construct Ztr(Ǔ) → Z(1)[2] vanishing on Ztr(U0), and form

Ztr(Ǔ)
∆- Ztr(Ǔ) ⊗ · · · ⊗ Ztr(Ǔ) → Z(1)[2]⊗i → Z(i)[2i].

Corollary 15.5. There is a quasi-isomorphism

M(Pn) = C∗Ztr(P
n)

'- Z ⊕ Z(1)[2] ⊕ · · · ⊕ Z(n)[2n].

Proof. We proceed by induction, the case n = 1 being 13.15. By exercise
15.4, the maps Ztr(Pn−1) → Ztr(Pn) is split injective in DM, because the
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quasi-isomorphism Ztr(Pn−1) → ⊕Z(i)[i] factors through it. Hence the dis-
tinguished triangle

C∗Ztr(P
n−1) - C∗Ztr(P

n) - Z(n)[n] - C∗Ztr(P
n−1)[1]

splits.

Our re-interpretation of the motivic complexes allows us to show that
the product in motivic cohomology is skew-commutative. This will be a
consequence of the following construction, and some linear algebra.

Example 15.6. Consider the reflection automorphism τ of Pn, n ≥ 1, send-
ing (x0 : x1 : · · · : xn) to (−x0 : x1 : · · · : xn). We claim that the induced
automorphism of C∗Ztr(Pn) is A1-homotopic to the identity map, so that it
is the identity map in DMeff ,−

Nis (see 14.1 and 9.9).
To see this, consider the elementary correspondence from Pn × A1

(parametrized by x0, ..., xn and t) to Pn (parametrized by y0, ..., yn) given
by the subvariety Z of Pn×A1 ×Pn defined by the homogeneous equation(s)

yi(x0yi + txiy0) = (t2 − 1)xiy
2
0, i = 1, . . . , n

together with xiyj = xjyi for 1 ≤ i, j ≤ n if n ≥ 2. (Exercise: check that
this is an elementary correspondence!) The restrictions along t = ±1 yield
two finite correspondences from Pn to itself, whose difference is idPn − τ .

Restricted to Pn−1 × A1, this correspondence is the projection onto
Pn−1. Thus it induces an A1-homotopy between τ and the identity of
Ztr(Pn)/Ztr(Pn−1). Applying C∗, we see from theorem 15.2 that it induces
an A1-homotopy between the reflection automorphism τ of Z(n)[2n] and the
identity, so that τ is the identity map in DMeff,−

Nis .

The symmetric group Σn acts canonically on An by permuting coordi-
nates. By inspection, this induces a Σn-action on the sheaf with transfers
Ztr(G∧n

m ) and hence on the motivic complexes Z(n).

Proposition 15.7. The action of the symmetric group Σn on C∗Ztr(An−0)
is A1-homotopic to the trivial action.

Proof. Because the action is induced from an embedding Σn ↪→ GLn(k), and
every transposition acts as the reflection τ times an element of SLn(k), we
see from example 15.6 that it suffices to show that the action of SLn(k) on
C∗Ztr(An − 0) is chain homotopic to the trivial action.
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Since every matrix in SLn(k) is a product of elementary matrices, it
suffices to consider one elementary matrix eij(a), a ∈ k. But multiplication
by this matrix is A1-homotopic to the identity of An − 0, by the homotopy
(x, t) 7→ eij(at)x (see 9.8). In particular it is an A1-homotopy equivalence
(see 2.24). By 2.25, the resulting endomorphism of C∗Ztr(An − 0) is chain
homotopic to the identity.

Corollary 15.8. The action of the symmetric group Σn on Z(n) is A1-
homotopic to the trivial action. Hence it is trivial in DMeff ,−

Nis , and on the
motivic cohomology groups Hp,q(X,Z(n)).

Tensoring with a coefficient ring R does not affect the action, so it follows
that Σn also acts trivially on R(n)[2n], and on Hp,q(X,R(n)).

Proof. The action of Σn on An extends to an action on Pn fixing Pn−1. In
fact, all the constructions in the proof of theorem 15.2 and corollary 15.3 are
equivariant. By 15.3, it suffices to show that the action of Σn on C∗Ztr(An−0)
is A1-homotopic to the trivial action. This follows from 15.7 and 14.11.

Recall from 3.10 that there is a pairing of presheaves Z(i) ⊗ Z(j) →
Z(i + j). By inspection of 3.9, this pairing is compatible with the action of
the subgroup Σi×Σj of Σi+j, as well as with the permutation τ interchanging
the first i and last j coordinates of Ztr(G∧i+j

m ).

Theorem 15.9. The pairing defined in 3.11 is skew-commutative:

Hp
Zar(X,Z(i)) ⊗Hq

Zar(X,Z(j)) → Hp+q
Zar (X,Z(i+ j)).

Proof. As in 8A.2, the permutation τ fits into the commutative diagram

Hp(X,Z(i)) ⊗Hq(X,Z(j)) - Hp+q(X,Z(i) ⊗ Z(j)) - Hp+q(X,Z(i + j))

Hq(X,Z(j)) ⊗Hp(X,Z(i))

(
?
− 1)pq

- Hp+q(X,Z(j) ⊗ Z(i))

τ
?

- Hp+q(X,Z(j + i))

τ
?

and the right vertical map is the identity by proposition 15.8.
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We conclude this lecture with a generalization of the decomposition 15.5
of M(Pn) to a projective bundle theorem.

Construction 15.10. Let P = P(E) → X be a projective bundle associated
to a vector bundle E of rank n + 1. From 4.2, 13.10, and 13.5 we have an
isomorphism

Pic(P) ∼= H2
Nis(P,Z(1)) ∼= HomD−(Ztr(P),Z(1)[2]).

Therefore the canonical line bundle yields a canonical map τ : Ztr(P) →
Z(1)[2] in D−. Recall from 10.4 that there are multiplication maps for all
i ≥ 1, from Z(1)⊗

tri = Z(1) ⊗tr · · · ⊗tr Z(1) to Z(i). For i > 1, we let τ i

denote the composite

Ztr(P)
∆- Ztr(P × · · · × P)

∼=- Ztr(P)⊗
tri τ⊗i

- Z(1)[2]⊗
tri - Z(i)[2i].

Finally, we extend the structure map σ0 : Ztr(P) → Ztr(X) to a canonical
family of maps in D−

σi : Ztr(P)
∆- Ztr(P) ⊗tr Ztr(P)

σ0⊗τ i

- Ztr(X) ⊗ Z(i)[2i].

Exercise 15.11. Show that the canonical map in 15.10 induces the isomor-
phism Ztr(Pnk) ∼= ⊕n

i=0Z(i)[2i] of 15.5. Hint : Use exercise 15.4.

Theorem 15.12 (Projective Bundle Theorem). Let P(E) → X be a
projective bundle associated to a vector bundle E of rank n + 1. Then the
canonical map

⊕n
i=0Ztr(X)(i)[2i] → Ztr(P(E))

is an isomorphism in DM.

Proof. Using induction on the number of open subsets in a trivialization of
E , together with the Mayer-Vietoris triangles 14.8, we are reduced to the case
when P(E) = X ×Pn. Since Ztr(X ×Pn) ∼= Ztr(X)⊗tr Ztr(Pn), we may even
assume X = Spec(k). This case is given by exercise 15.11.



Lecture 16

Equidimensional cycles

In this lecture we introduce the notion of an equidimensional cycle, and use
it to construct the Suslin-Friedlander chain complex ZSF (i). We then show
(in 16.7) that ZSF (i) is quasi-isomorphic to Z(i). In lecture 19 (19.4) we shall
compare ZSF (i) to the complex defining higher Chow groups.

Let Z be a scheme of finite type over S such that every irreducible compo-
nent of Z dominates a component of S. We say that Z is equidimensional
over S of relative dimension m if for every point s of S, either Zs is empty
or each of its components have dimension m. If S ′ → S is any map, the
pullback S ′ ×S Z is equidimensional over S ′ of relative dimension m.

Definition 16.1. Let T be any scheme of finite type over k and m ≥ 0 an
integer. The presheaf zequi(T,m) on Sm/k is defined as follows. For each
smooth S, zequi(T,m)(S) is the free abelian group generated by the closed and
irreducible subvarieties Z of S × T which are dominant and equidimensional
of relative dimension m over a component of S. If S ′ → S is any map, the
pullback of equidimensional cycles (see 1A.5) induces the required natural
map zequi(T,m)(S) → zequi(T,m)(S ′).

It is not hard to see that zequi(T,m) is a Zariski sheaf, and even an
étale sheaf, for each T and m. One can also check that each zequi(T,m) is
contravariant for flat maps in T , and covariant for proper maps in T , both
with the appropriate change in the dimension index m, (see [RelCy, 3.6.2
and 3.6.4]); see [Blo86, 1.3]. In particular, if T ′ ↪→ T is a closed immersion,
there are canonical inclusions zequi(T

′, m) ↪→ zequi(T,m) for all m.

Example 16.2. The case m = 0 is of particular interest, since zequi(T, 0)(U)
is free abelian on the irreducible Z ⊂ U × T which are quasi-finite and
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dominant over U . Hence Ztr(T )(U) ⊆ zequi(T, 0)(U), because Ztr(T )(U) is
the free abelian group of cycles in U × T which are finite and surjective
over U . In fact, Ztr(T ) is a sub-sheaf of zequi(T, 0) because the structure
morphisms associated to V → U are compatible: Ztr(T )(U) → Ztr(T )(V ) is
also the pullback of cycles (see 1A.9).

If T is projective, then Ztr(T ) = zequi(T, 0). Indeed, each closed subvari-
ety Z ⊂ U × T is proper over U , so Z is quasi-finite over U if and only if Z
is finite over U (see [Har77, Ex. III.11.2]).

We now define transfer maps for zequi(T,m) which are compatible with
the transfers in Ztr(T ) when m = 0. Given an elementary correspondence
V from X to Y and a cycle Z in zequi(T,m)(Y ), the pullback ZV is a well-
defined cycle of V ×T by 1A.5 and 1A.8. We define φV (Z) ∈ zequi(T,m)(X)
to be the push-forward of ZV along the finite map V × T → X × T . This
gives a homomorphism φV : zequi(T,m)(Y ) → zequi(T,m)(X).

If m = 0, the restriction of φV to Ztr(T ) is the transfer map constructed
in 1.1 and 1A.9, as we see from 1A.11.

We leave the verification of the following to the reader; cf. [BivCy, 5.7].

Exercise 16.3. If T is a smooth scheme, show that φ makes each zequi(T,m)
into a presheaf with transfers. If U → T is flat, show that the pull-back
zequi(T,m) → zequi(U,m) is a morphism of presheaves with transfer.

Example 16.4. For each X, there is a natural map zequi(Ai, 0)(X) →
CH i(Ai × X) ∼= CH i(X), sending a subvariety Z of Ai × X, quasi-finite
over X, to its cycle. Comparing the transfer map for zequi(Ai, 0) to the
transfer map for CH i(X) defined in 2.5, we see that zequi(Ai, 0) → CH i(−)
is a morphism of presheaves with transfers.

We define the Suslin-Friedlander motivic complexes ZSF (i) by:

ZSF (i) = C∗zequi(A
i, 0)[−2i].

We regard ZSF (i) as a bounded above cochain complex, whose top term is
zequi(Ai, 0) in cohomological degree 2i. As in 3.1, C∗(F ) stands for the chain
complex of presheaves associated to the simplicial presheaf U 7→ F (U ×∆•).

Example 16.5. It follows from 16.2 and 16.3 that there is a morphism of
presheaves with transfers from Ztr(Pi) = zequi(Pi, 0) to zequi(Ai, 0), with ker-
nel Ztr(Pi−1). Applying C∗ gives an exact sequence of complexes of presheaves
with transfers 0 → C∗Ztr(Pi−1) → C∗Ztr(Pi) → ZSF (i)[2i].
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Exercise 16.6. Let E be the function field of a smooth variety over
k. Show that the stalk at SpecE of the sheaf zequi(Ai

k, 0) on Sm/k is
equal to the global sections zequi(Ai

E, 0)(SpecE) of the sheaf zequi(Ai
E, 0) on

Sm/E. Similarly, show that the stalk of Cmzequi(Ai
k, 0) at SpecE equals

Cmzequi(Ai
E, 0)(SpecE).

Conclude that the stalk of ZSF (i) at SpecE equals ZSF (i)(SpecE), and
is independent of the choice of k.

Here are the two main results in this lecture. Figure 16.1 gives the scheme
of the proof of 16.7. It shows how this result ultimately depends on theorem
13.11, whose proof will be completed in lectures 20-23 below.

13.11

13.13

16.12

16.10

15.1 16.8

15.2

16.7

Figure 16.1: Scheme of the proof of 16.7

Theorem 16.7. There is a quasi-isomorphism in the Zariski topology:

Z(i) ' ZSF (i).

In particular, Hn,i(X,Z) ∼= Hn(X,ZSF (i)) for all n and i.

Proof. As Pi is proper, zequi(Pi, 0) = Ztr(Pi) by 16.2. Hence 16.7 follows from
combining 15.2 and 16.8.

Theorem 16.8. There is a quasi-isomorphism in the Zariski topology:

C∗

[
zequi(P

i, 0)/zequi(P
i−1, 0)

] '- C∗zequi(A
i, 0).

We now prepare for the proof of 16.8.
Let Fi(U) denote the (free abelian) subgroup of zequi(Ai, 0)(U) generated

by the cycles in U × Ai which do not touch U × 0. By inspection, the
transfers zequi(Ai, 0)(U) → zequi(Ai, 0)(V ) send Fi(U) to Fi(V ). Hence Fi is
a sub-presheaf with transfers of zequi(Ai, 0).
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Lemma 16.9. There is a commutative diagram with exact rows in PST(k)

0 - Ztr(P
i − 0)/Ztr(P

i−1) - Ztr(P
i)/Ztr(P

i−1) - coker 1
- 0

0 - Fi
?

∩

- zequi(A
i, 0)

ϕ

?

∩

- coker 2

?

∩

- 0.

All three vertical maps are injections.

Proof. By example 16.2, there is a natural map from Ztr(Pi) = zequi(Pi, 0)
to zequi(Ai, 0) with kernel Ztr(Pi−1). Thus ϕ is an injection; by exercise 16.3,
ϕ is a morphism of presheaves with transfers. Now the inclusion Ztr(Pi −
0) ⊂ Ztr(Pi) is a morphism in PST by the Yoneda lemma; see 2.7. Since
Ztr(Pi−0)(U) consists of cycles Z ⊂ U×(Pi−0) finite over U , their restriction
belongs to the subgroup Fi(U), i.e., ϕ sends Ztr(Pi − 0) to Fi. Hence the
diagram commutes.

By inspection, coker1(X) is free abelian on the elementary correspon-
dences Z ⊂ X × Pi which touch X × 0 and coker2(X) is free abelian on the
equidimensional W ⊂ X × Ai which touch X × 0. Since Z 7→ ϕ(Z) is a
monomorphism on these generators, it follows that coker1(X) → coker2(X)
is an injection for all X.

Lemma 16.10. C∗(Fi) is chain contractible as a complex of presheaves.

Proof. Recall that Fi(X) is a subgroup of the group of cycles on X×Ai. Let
hX : Fi(X) → Fi(X ×A1) be the pullback of cycles along µ : X ×Ai×A1 →
X × Ai defined by (x, r, t) → (x, r · t). This is a good pullback because the
map µ is flat over X × (Ai − {0}). By construction, the following diagram
commutes.

X × Ai t = 1- X × Ai × A1 �t = 0
X × Ai

@
@

@
@

@
id

R 	�
�

�
�

�

id× 0

X × Ai

µ

?

It follows that Fi(t = 1)hX is the identity and Fi(t = 0)hX = 0. Thus the
requirements of lemma 2.21 are satisfied for Fi.
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Lemma 16.11. For every Hensel local scheme S, the map coker1(S) →
coker2(S) in diagram 16.9 is an isomorphism.

Proof. Since coker1(S) → coker2(S) is injective by 16.9, it suffices to prove
that it is surjective. Let Z be a equidimensional correspondence from S to
Ai. As Z is quasi-finite over a Hensel scheme, the projection decomposes
Z into the disjoint union of Z0 (which doesn’t contain any point over the
closed point of the Hensel scheme) and Z1 (which is finite over the base). We
claim that the Z0 part comes from Fi. Take Z0 and consider its irreducible
components. The intersection Z0 ∩ {0} must be empty, otherwise it would
project to the closed point of the base. Hence Z0 is zero in the cokernel. But
now Z1 comes from Ztr(Pi)/Ztr(Pi−1).

Lemma 16.12. The map C∗(coker1) → C∗(coker2) is a quasi-isomorphism
of complexes of Zariski sheaves.

Proof. Let ϕ′ be the map between the cokernels in 16.9. By 16.11, ϕ′ is
an isomorphism on all Hensel local schemes. By 13.13, ϕ′ induces quasi-
isomorphisms C∗ coker1(X) ' C∗ coker2(X) for all local X.

Proof of 16.8. Applying C∗ to the diagram in 16.9 yields a commutative dia-
gram of chain complexes with exact rows. The left two complexes are acyclic
by 15.1 and 16.10. The right two complexes are quasi-isomorphic by 16.12.
Theorem 16.8 now follows from the 5-lemma.
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Lecture 17

Higher Chow groups

During the first part of this series of lectures we defined motivic cohomology
and we studied its basic properties. We also established relations with some
classic objects of algebraic geometry, such as Milnor K-Theory, 5.1, and étale
cohomology, 10.2.

The goal of the next few lectures is to find a relation between motivic co-
homology and the classical Chow groups CH i, generalizing the isomorphism
H2,1(X,Z) ∼= Pic(X) = CH1(X) of 4.2. That is, we will prove that:

H2i,i(X,Z) ∼= CH i(X)

for any smooth variety X. There are at least three ways to prove this. The
original approach, which needs resolution of singularities, was developed in
the book “Cycles, Transfers and Motivic Homology Theories” [VSF00]. A
second recent approach is to use the Cancellation Theorem of [Voe02] and
the Gersten resolution 23.11 for motivic cohomology sheaves.

A third approach, which is the one we shall develop here, uses Bloch’s
higher Chow groups CH i(X,m) to establish the more general isomorphism
Hn,i(X,Z) ∼= CH i(X, 2i− n). This approach uses the equidimensional cycle
groups of the previous lecture, but does not use resolution of singularities.

The main goal of this lecture is to prove that the higher Chow groups
are presheaves with transfers. (See theorem 17.20.) In particular, they are
functorial for maps between smooth schemes. (We will give a second proof
of this in 19.15.)

We begin with Bloch’s definition of higher Chow groups (see [Blo86]).

147
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Definition 17.1. Let X be an equidimensional scheme. We write zi(X,m)
for the free abelian group generated by all codimension i subvarieties on
X×∆m which intersect all faces X ×∆j properly for all j < m (in the sense
of 17A.1).

Each face X × ∆j is defined by a regular sequence, and intersection of
cycles defines a map zi(X,m) → zi(X, j) (see 17A.1, or [Ful84, Example
7.1.2]). We write zi(X, •) for the resulting simplicial abelian group m 7→
zi(X,m). We write zi(X, ∗) for the chain complex associated to zi(X, •).

The higher Chow groups of X are defined to be the groups:

CH i(X,m) = πm(zi(X, •)) = Hm(zi(X, ∗)).

IfX is any scheme, it is easy to check that CH i(X, 0) is the classical Chow
group CH i(X) (see 17.3). Indeed, zi(X, 0) is the group of all codimension i
cycles on X while zi(X, 1) is generated by those codimension i subvarieties
Z on X ×A1 which intersect both X ×{0} and X ×{1} properly. Moreover
the maps ∂j : zi(X, 1) -- zi(X, 0) send Z to Z ∩ (X × {j}).

Example 17.2. If i ≤ d = dimX, then zequi(X, d− i)(∆m) ⊆ zi(X,m) for
every m, because cycles in X×∆m which are equidimensional over ∆m must
meet every face properly. By 1A.12, the inclusion is compatible with the
face maps, which are defined in 16.1 and 17.1, so this yields an inclusion of
simplicial groups, zequi(X, d− i)(∆•) ⊆ zi(X, •).

Exercise 17.3. (a) If d = dimX, show that every irreducible cycle in
zd(X, 1) is either disjoint from X × {0, 1} or else is quasi-finite over A1. Use
this to describe zd(X, 1) → zd(X, 0) explicitly and show that CHd(X, 0) ∼=
CHd(X). (The group CHd(X) is defined in [Ful84, 1.6].)

(b) Show that C∗Ztr(X)(Spec k) is a subcomplex of zd(X, ∗). On homol-
ogy, this yields maps Hsing

m (X/k) → CHd(X,m). For m = 0, show that this
is the surjection Hsing

0 (X/k) → CH0(X) = CHd(X) of 2.20, which is an
isomorphism when X is projective. By 7.3, it is not an isomorphism when
X is A1 or A1 − 0.

The push-forward of cycles makes the higher Chow groups covariant for
finite morphisms (see 17A.9). It also makes them covariant for proper mor-
phisms (with the appropriate change in codimension index i; see [Blo86,
1.3]).
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At the chain level, it is easy to prove that the complexes zi(−, ∗), and
hence Bloch’s higher Chow groups, are functorial for flat morphisms. How-
ever, the complexes zi(−, ∗) are not functorial for all maps. We will see in
17.20 below that the higher Chow groups are functorial for maps between
smooth schemes.

We will need the following non-trivial properties of higher Chow groups:

1. Homotopy Invariance: The projection p : X × A1 → X induces an
isomorphism

CH i(X,m)
∼=- CH i(X × A1, m)

for any scheme X over k. The proof is given in [Blo86, 2.1].

2. Localization Theorem: For any U ⊂ X open, the cokernel of zi(X, •) →
zi(U, •) is acyclic. This is proven by Bloch in [Blo94]. (Cf. [Blo86, 3.3].)

If the complement Z = X −U has pure codimension c, it is easy to see
that we have an exact sequence of simplicial abelian groups (and also
of complexes of abelian groups):

0 → zi−c(Z, •) → zi(X, •) → zi(U, •) → coker → 0.

Thus the localization theorem yields long exact sequences of higher
Chow groups. The fact that we need to use Bloch’s Localization The-
orem is unfortunate, because its proof is very hard and complex.

Transfers maps associated to correspondences are not defined on all of
zi(Y, ∗). We need to restrict to a subcomplex on which W∗ may be defined.

Definition 17.4. Let W be a finite correspondence from X to Y . Write
zi(Y,m)W for the subgroup of zi(Y,m) generated by the irreducible subvari-
eties T ⊂ Y ×∆m such that the pullback X × T intersects W ×∆j properly
in X × Y × ∆m for every face ∆j ↪→ ∆m. By construction, zi(Y, ∗)W is a
subcomplex of zi(Y, ∗).

The proof of the following proposition, which is a refinement of the results
in [Lev98], is due to Marc Levine.

Proposition 17.5. Let W be a finite correspondence from X to Y , with Y
affine. Then the inclusion zi(Y, ∗)W ⊂ zi(Y, ∗) is a quasi-isomorphism.
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Proof. (Levine) Let w : W → Y be a morphism of schemes with Y smooth,
and W locally equidimensional but not necessarily smooth. Write zi(Y,m)w
for the subgroup of zi(Y,m) generated by the irreducible subvarieties T ⊂
Y × ∆m for which every component of w−1(T ) has codimension at least i in
W × ∆m and intersects every face properly. By construction, zi(Y, ∗)w is a
subcomplex of zi(Y, ∗).

For example, if W is the support of a finite correspondence W, let w :
W → Y be the natural map. Then W is locally equidimensional, and the
group zi(Y,m)w is the same as the group zi(Y,m)W of 17.4.

Levine proves that zi(Y,m)w ↪→ zi(Y,m) is a quasi-isomorphism on p.102
of [Lev98] (in I.II.3.5.14), except that W is required to also be smooth in
order to cite lemma I.II.3.5.2 of op. cit.. In loc. cit., a finite set {Cj} of
locally closed irreducible subsets of Y and a sequence of integers mj ≤ i is
constructed, with the property that T is in zi(Y,m)w if and only if T is in
zi(Y,m) and the intersections of T with Cj × ∆p have codimension at least
mj for all j and for every face ∆p of ∆m. A reading of the proof of lemma
I.II.3.5.2 shows that in fact W need only be locally equidimensional.

Definition 17.6. Let W be a finite correspondence between two smooth
schemes X and Y . For each cycle Y in zi(Y,m)W , we define the cycle W∗(Y)
on X × ∆m to be:

W∗(Y) = π∗((W × ∆m) · (X × Y)).

Here π : X × Y × ∆m → X × ∆m is the canonical projection.

For each W, it is clear that W∗ defines a homomorphism from the group
zi(Y,m)W to the group of all cycles on X × ∆n.

Example 17.7. Let f : X → Y be a morphism of smooth varieties, and let
Γf be its graph. For Y in zi(Y, 0)Γf

, Γ∗
f(Y) is just the classical pullback of

cycles f ∗(Y) defined in [Ser65, V-28] (see 17A.3).

Remark 17.8. The map W∗ of 17.6 is compatible with the map W∗ defined
in 17A.7 in the following sense. Given W in Cor(X, Y ), W × diag(∆m) is a
finite correspondence from X ×∆m to Y ×∆m. If Y is a cycle in zi(Y,m)W ,
we may regard it as a cycle in Y × ∆m. The projection formula 17A.10 says
that the following diagram commutes:

zi(Y,m)W ⊂ - zi(Y × ∆m)W

zi(X,m)

W∗
?

⊂ - zi(X × ∆m).

(W × diag(∆m))∗?
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Lemma 17.9. The maps W∗ define a chain map zi(Y, ∗)W → zi(X, ∗).

Proof. Let ∂j : ∆m ⊂ - ∆m+1 be a face, and consider the following diagram,
whose vertical compositions are W∗:

z(Y × ∆m+1)
∂∗j - z(Y × ∆m)

z(X × Y × ∆m+1)

f ∗

? ∂∗j- z(X × Y × ∆m)

f ∗

?

z(X × Y × ∆m+1)

W × ∆m+1 · − ? ∂∗j- z(X × Y × ∆m)

W × ∆m · −
?

z(X × ∆m+1)

π∗ ? ∂∗j - z(X × ∆m).

π∗?

The horizontal maps ∂∗j are only defined for cycles meeting the face properly
(see 17A.4) and the intersection products in the middle are only defined
on cycles in good position for W. The top square commutes because of
the functoriality of Bloch’s complex for flat maps, and the bottom square
commutes by 17A.9.

Suppose that Z is a cycle in X × Y × ∆m+1 which intersects the face
X × Y × ∆m as well as W × ∆m+1 and W × ∆m properly. By 17A.2:

W × ∆m · ((X × Y × ∆m) · Z) = X × Y × ∆m · ((W × ∆m+1) · Z).

That is, the middle square commutes for Z. Finally, if Y ∈ zi(Y,m+1)w, the
cycle (W ×∆m+1) · f ∗Y is finite over X ×∆m+1, so π∗ may be applied to it.
A diagram chase now shows that W∗ is a morphism of chain complexes.

Corollary 17.10. If Y is affine, any finite correspondence W from X to Y
induces maps W∗ : CH i(Y,m) → CH i(X,m) for all m.

Proof. On homology, 17.5 and W∗ give: CH i(Y,m) ∼= Hm(zi(Y, ∗)W) →
Hm(zi(X, ∗)) = CH i(X,m).

Example 17.11. If f : X → Y is a morphism of smooth varieties, and Y is
affine, we will write f ∗ for the map Γ∗

f from zi(Y,m)Γf
to zi(X,m), and also

for the induced map from CH i(Y,m) to CH i(X,m). It agrees with Levine’s
map f ∗ (see pp. 67 and 102 of [Lev98]). This is not surprising, since we are
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using lemma 17.5, which is taken from p. 102 of [Lev98]. The map f ∗ may
also be obtained from [Blo86, 4.1] using [Blo94].

If f is flat, then f ∗ is just the flat pullback of cycles. That is, if Y = [V ]
then f ∗(Y) is the cycle associated to the scheme f−1(V ). This fact is a special
case of 17A.4.

We can now show that the higher Chow groups are functors on the sub-
category of affine schemes in Cork.

Lemma 17.12. Let X, Y and Z be smooth affine schemes. Given finite
correspondences W1 in Cor(X, Y ) and W2 in Cor(Y, Z), then

(W2 ◦W1)
∗ = W∗

1W∗
2 : CH i(Z,m) → CH i(X,m).

In particular, if f1 : X → Y and f2 : Y → Z are morphisms, then
(f2 ◦ f1)

∗ = f ∗
1 f

∗
2 .

Proof. By 17.5 and 17.11, it suffices to show that (W2 ◦ W1)
∗ = W∗

1W∗
2

as maps from zi(Z,m)W → zi(X,m), where W ∈ Cor(Y
∐
X,Z) is the

coproduct of W2 and W2◦W1. An element of zi(Z,m)W is a cycle in zi(Z,m)
which is in good position with respect to both W2 and W2 ◦ W1. Hence the
result follows from theorem 17A.13, given the reinterpretation in 17.8.

We now extend the definition of the transfer map W∗ from affine varieties
to all smooth varieties using Jouanolou’s device [Jou73, 1.5] and [Wei89, 4.4]:
over every smooth variety X there is a vector bundle torsor X ′ → X with
X ′ affine.

Lemma 17.13. Let X be a variety and p : X ′ → X a vector bundle torsor.
Then p∗ : CH∗(X, ∗) → CH∗(X ′, ∗) is an isomorphism.

Proof. By definition, there is a dense open U in X so that p−1(U) ∼= U ×An.
There is a commutative diagram

0 - z∗(X ′ − p−1(U)) - z∗(X ′, ∗) - z∗(p−1(U))

0 - z∗(X − U)

6

- z∗(X, ∗)

6

- z∗(U).

6

By homotopy invariance of the higher Chow groups (see p. 149), the right
vertical arrow is a quasi-isomorphism. By Noetherian induction, the result
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is true for X −U , i.e., the left vertical arrow is a quasi-isomorphism. By the
Localization Theorem and and the five lemma, p∗ : CH∗(X, ∗) → CH∗(X ′, ∗)
is an isomorphism.

Lemma 17.14. Let p : Y ′ → Y be a vector bundle torsor and let X be affine.

• Every morphism f : X → Y has a lift f ′ : X → Y ′ such that pf ′ = f .

• Every finite correspondence has a lift, i.e., p∗ : Cor(X, Y ′) →
Cor(X, Y ) is surjective.

Proof. Clearly, X ×Y Y
′ → X is a vector bundle torsor. But X is affine and

therefore every vector bundle torsor over X is a vector bundle (see [Wei89,
4.2]). Define f ′ : X → Y ′ to be the composition of the zero-section ofX×Y Y

′

followed by the projection. Clearly, pf ′ = f .
Now suppose that W ⊂ X × Y is an elementary correspondence. Since

W is finite over X, it is affine. By the first part of this proof, the projection
p : W → Y lifts to a map p′ : W → Y ′. Together with the projection
W → X, p′ induces a lift i : W → X × Y ′ of W ⊂ X × Y . Then i(W ) is an
elementary correspondence from X to Y ′ whose image under p∗ is W .

Lemma 17.15. Let X and Y be two smooth varieties over k and let p : X ′ →
X and q : Y ′ → Y be vector bundle torsors with X ′ and Y ′ affine. Then for
every finite correspondence W from X to Y , there exists a correspondence
W ′ from X ′ to Y ′ so that q ◦W ′ = W ◦ p in Cork(X

′, Y ).

X ′ W ′
- Y ′

X

p
? W - Y

q
?

Proof. Since Cor(X ′, Y ′) → Cor(X ′, Y ) is onto by 17.14, W ◦ p has a lift
W ′.

Definition 17.16. Let X and Y be two smooth varieties over k and let
W be a finite correspondence from X to Y . We define W∗ : CH i(Y,m) →
CH i(X,m) as follows.

By Jouanolou’s device [Jou73, 1.5], there exist vector bundle torsors p :
X ′ → X and q : Y ′ → Y where X ′ and Y ′ are affine. Both X ′ and Y ′ are
smooth, because X and Y are. By lemma 17.13, p∗ and q∗ are isomorphisms.
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By 17.15 there is a finite correspondence W ′ from X ′ to Y ′ so that q ◦W ′ =
W ◦ p in Cork(X

′, Y ). Since Y ′ is affine, the map W ′∗ : CH∗(Y ′, m) →
CH∗(X ′, m) was defined in 17.10. We set W∗ = (p∗)−1W ′∗q∗ : CH∗(Y,m) →
CH∗(X,m).

CH∗(X ′, ∗) �W
′∗

CH∗(Y ′, ∗)

CH∗(X, ∗)
p∗ ∼=6

�W
∗

CH∗(Y, ∗)
q∗ ∼=6

If f : X → Y is a morphism, we define f ∗ : CH i(Y,m) → CH i(X,m) to
be Γ∗

f , that is, f ∗ = (p∗)−1(f ′)∗q∗, where f ′ : X ′ → Y ′ lies over f .

Lemma 17.17. If X and Y are affine, the map defined in 17.16 agrees with
the map W∗ defined in 17.10.

Proof. By 17.12, the map defined in 17.16 equals:

(p∗)−1W ′∗q∗ = (p∗)−1(q ◦W ′)∗ = (p∗)−1(W ◦ p)∗ = (p∗)−1p∗W∗ = W∗.

Lemma 17.18. The definition of W∗ in 17.16 is independent of the choices.

Proof. Suppose given affine torsors X ′′ → X and Y ′′ → Y and a lift W ′′ ∈
Cor(X ′′, Y ′′) of W. We have to show that W ′ and W ′′ induce the same map.

We begin by making two reductions. First, we may assume that X ′ = X ′′

and Y ′ = Y ′′, by passing to X ′ ×X X ′′ and Y ′ ×Y Y
′′ and choosing lifts of

W ′ and W ′′. (This reduction uses 17.17.)
We may also assume that X is affine and that X ′ = X, by replacing

X by X ′. Thus we need to show that for any two lifts W0 and W1 of W,
W0

∗q∗ = W1
∗q∗.

By lemma 17.19, there is a finite correspondence W̃ so that the following
diagram commutes:

X × A1 W̃ - Y ′

�
�

�
�

�
�

�
�

�

W0

3

�
�

�
�

�
�

�
�

�

W1

3

X

s0

6

s1

6

W - Y.

q

?
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Since s0 and s1 are both inverses to the projection p : X ×A1 → X, we have
s∗0p

∗ = s∗1p
∗ by 17.12. Since higher Chow groups are homotopy invariant,

p∗ is an isomorphism and we get s∗0 = s∗1. Since X and Y ′ are affine, and

Wi = W̃ ◦ si, we may apply 17.12 again to get

W∗
0 = s∗0W̃∗ = s∗1W̃∗ = W∗

1 .

Recall from 2.24 that two correspondences W0 and W1 from X to Y are
said to be A1-homotopic, written W0 ' W1, if they are the restrictions of an
element of Cor(X × A1, Y ) along X × 0 and X × 1.

Lemma 17.19. Let W be a finite correspondence between a smooth affine
scheme X and a smooth Y . If q : Y ′ → Y is a vector bundle torsor, then
any two lifts W0 and W1 are A1-homotopic.

Proof. Let V be the image of the union of the supports of W0 and W1 in
X × Y , and let V ′ denote the fiber product of V and Y ′ over Y ; p : V ′ → V
is a vector bundle torsor. Since X is affine and the induced map V → X is
finite, V is affine too. Hence p : V ′ → V is a vector bundle. Fix a section
s : V → V ′.

V ′ - X × Y ′ - Y ′

V

s
6
p
?
⊂ - X × Y

?
- Y

q
?

Clearly, p is an A1-homotopy equivalence (in the sense of 2.24) with inverse
s, that is, sp is A1-homotopic to the identity.

Both W0 and W1 induce correspondences W̃0 and W̃1 from X to V ′. Now
the composition g ◦ (W̃i × A1) ∈ Cor(X × A1, V ′) is an A1-homotopy from

spW̃i to W̃i, for i = 0, 1. Since pW̃0 = pW̃1, we have

W̃0 ' spW̃0 = spW̃1 ' W̃1.

Since Wi is the composition of W̃i with the map V ′ → Y , W0 is A1-homotopic
to W1.

At last, we have the tools to show that the higher Chow groups are
presheaves with transfers, i.e., functors on the category Cork of smooth sep-
arated schemes over k.



156 LECTURE 17. HIGHER CHOW GROUPS

Theorem 17.20. The maps W∗ defined in 17.16 give the higher Chow groups
CH i(−, m) the structure of presheaves with transfers.

That is, for any two finite correspondences W1 and W2 from X to Y and
from Y to Z, respectively, and for all α ∈ CH i(Z,m):

W1
∗(W2

∗(α)) = (W2 ◦W1)
∗(α).

In particular, if f1 : X → Y and f2 : Y → Z are morphisms, then (f2◦f1)
∗ =

f ∗
1 f

∗
2 .

Proof. By 17.15, there is a commutative diagram in Cork of the form

X ′ W ′
1 - Y ′ W ′

2 - Z ′

X

p
? W1 - Y

q
? W2 - Z

r
?

where the vertical maps are affine vector bundle torsors. By 17.12, we have
W ′

1
∗W ′

2
∗ = (W ′

2 ◦ W ′
1)

∗. Since the definitions of W∗
i and (W2 ◦ W1)

∗ are
independent of the choices by 17.18, the statement now follows from an
unwinding of 17.16:

W∗
1W∗

2 = (p∗)−1W ′
1
∗
q∗(q∗)−1W ′

2
∗
r∗ = (p∗)−1(W ′

2 ◦W ′
1)

∗r∗ = (W2 ◦W1)
∗.



Appendix 17A- Cycle maps

If W is a finite correspondence from X to Y , we can define a map W∗ from
“good” cycles on Y to cycles on X. The formula is to pull the cycle back to
X × Y , intersect it with W, and push forward to X. In this appendix, we
will make this precise, in 17A.7. First we must explain what makes a cycle
“good”.

Definition 17A.1. Two subvarieties Z1 and Z2 of X are said to intersect
properly if every component of Z1∩Z2 has codimension codimZ1+codimZ2

in X. This is vacuously true if Z1 ∩ Z2 = ∅.
If the ambient variety X is regular, the intersection cycle Z1 ·Z2 is defined

to be the sum
∑
nj[Wj], where the indexing is over the irreducible compo-

nents Wj of Z1 ∩ Z2, and the nj are their (local) intersection multiplicities.
Following Serre [Ser65], the multiplicity nj is defined as follows. If A is the
local ring of X at the generic point of Wj, and Il are the ideals of A defining
Zl, then

nj =
∑

i

(−1)ilength Tor Ai (A/I1, A/I2).

If X is not regular, the multiplicity will only make sense when only finitely
many Tor-terms are non-zero.

We say that two equidimensional cycles V =
∑
miVi and W =

∑
njWj

intersect properly if each Vi and Wj intersect properly. In this case, the
intersection cycle V · W is defined to be

∑
mjnj(Vi ·Wj).

Exercise 17A.2. Let V1,V2 and V3 be three cycles on a smooth scheme X.
Show that (V1 · V2) · V3 = V1 · (V2 · V3) whenever both sides are defined. (This
is proven in [Ser65, V-24].)

Definition 17A.3. Suppose that f : X → Y is a morphism with X and
Y regular, and that Y is a codimension i cycle on Y . We say that f ∗(Y) is
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defined if each component of f−1(Supp(Y)) has codimension ≥ i in X. As
in [Ser65, V-28], we define the cycle f ∗(Y) to be Γf · (X × Y) (see 17A.1),
identifying the graph Γf with X.

As noted in [Ser65, V-29], the intersection cycle makes sense even if X
is not regular, since the multiplicities may be computed over Y by flat base
change for Tor (see [Wei94, 3.2.9]).

Example 17A.4. If f is flat and Y = [V ], then f ∗(Y) is the cycle associated
to the scheme f−1(V ). If X is a subvariety of Y , then the cycle f ∗(Y) on
X is the same as the cycle X · Y considered as a cycle on X. If X ⊂ - Y
is a regular embedding, the coefficients of f ∗(Y) agree with the intersection
multiplicities defined in [Ful84, 7.1.2].

Definition 17A.5. Let f : Y ′ → Y be a morphism of smooth varieties and
W a cycle on Y ′. We say that a cycle Y on Y is in good position for W
(relative to f) if the cycle f ∗(Y) is defined, and intersects W properly on Y ′.
If Y is in good position for W, the intersection product W · f ∗Y is defined
(see 17A.1). If the map f is flat, the cycle f ∗(Y) is always defined.

Let W be an irreducible subvariety of Y ′ and let w be the composition
W → Y ′ → Y . By 17A.1 and 17A.3, a codimension i cycle Y is in good
position for W if and only if codimW w−1(Supp(Y)) ≥ i, that is, if w∗(Y) is
defined.

As a special case, we will say that a cycle Y is in good position for a
finite correspondence W from X to Y if Y is in good position for the cycle
underlying W, relative to the projection X × Y → Y .

Remark 17A.6. Let f : X → Y be a morphism of smooth varieties and
let Z be a cycle on X, supported on a closed subscheme Z so that the
composition Z → X → Y is a proper map. It is clear that f∗(Z) is well-
defined even though f is not proper.

Definition 17A.7. Let W be a finite correspondence between two smooth
schemes X and Y . For every cycle Y on Y in good position for W, we define

W∗(Y) = π∗(W · f ∗Y),

where f : X × Y → Y and π : X × Y → X are the canonical projections.
The intersection and the push-forward are well-defined by 17A.5 and 17A.6.
The map W∗ induces the transfer map for Chow groups, see 17.10 and 17.16.

For any smooth T , W×T is a finite correspondence from X×T to Y ×T
over T . By abuse of notation, we shall also write W∗ for (W × T )∗.
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Example 17A.8. We can now reinterpret the composition of correspon-
dences. If W1 and W2 are finite correspondences from X to Y and from Y
to Z, respectively, we have:

W2 ◦W1 = (W1 × Z)∗(W2) = (X ×W2)
∗(W1).

Here are two formulas which are useful in the study of W∗.

Lemma 17A.9. Consider the following diagram of varieties

X ′ g′ - X

Y ′

f ′

?

g
- Y

f
?

where the square is fiber and both X and Y are smooth. Let X be a cycle
on X whose support is finite over Y and for which (g ′)∗X is defined. Then
g∗f∗X is defined and g∗f∗X = f ′

∗(g
′)∗X .

Proof. If V is a component of X , then the map f : V → f(V ) is finite.
Hence f ′ : (g′)−1(V ) → g−1(f(V )) is finite too, so that codim(g′)−1(V ) =
codim g−1(f(V )). By hypothesis, codim(g′)−1(V ) ≥ i, which proves that
g∗f∗X is defined. The equality now follows from [Ful75, 2.2(4)].

Lemma 17A.10 (Projection Formula). Let f : X → Y be a morphism
of smooth schemes. Suppose given a cycle X on X, whose support is finite
over Y , and a cycle Y on Y which is in good position for X (see 17A.5).
Then f∗X and Y intersect properly, and the projection formula holds:

f∗(X · f ∗Y) = f∗X · Y.

Proof. Since the restriction of f to the support of X is finite, it is clear that
f∗(X ) and Y intersect properly too. The result is now a consequence of the
basic identity 2.2(2) of [Ful75], or [Ser65, V-30].

Exercise 17A.11. Let i be the inclusion of a closed subvariety W in a
smooth scheme X and let f : X → Y be a map of smooth schemes. Prove
that if Y is a cycle on Y so that both f ∗Y and (fi)∗(Y) are defined, then
i∗(fi)

∗(Y) = W · f ∗Y. Hint : Use [Ser65, V-30] or [Ful75, 2.2(2)].
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Recall from 1A.8 that if V → Y is a morphism with Y regular, then the
pull-back ZV of a relative cycle Z in T × Y is a well defined cycle on T × V
with integer coefficients.

Lemma 17A.12. Let T and Y be regular and let Z be a cycle in T × Y
which is dominant equidimensional over Y . If f : V → Y is a morphism,
then the pull-back ZV agrees with the pull-back cycle (f × T )∗(Z).

Proof. Note that Z is a relative cycle by 1A.5, so that ZV is defined. Its
coefficients are characterized by the equalities (ZV )v = Zf(v) for every v ∈
V . By [RelCy, 3.5.8 and 3.5.9], the coefficients of ZV are the same as the
multiplicities in 17A.1, i.e., the coefficients of (f×T )∗(Z) given by 17A.3.

Theorem 17A.13. Let W1 and W2 be two finite correspondences from X
to Y and from Y to Z, respectively. Suppose that Z is a cycle on Z which is
in good position with respect to both W2 and W2 ◦W1. Then

(W2 ◦W1)
∗(Z) = W∗

1 (W∗
2 (Z)).

The term W∗
1 (W∗

2 (Z)) makes sense by the following lemma.

Lemma 17A.14. Let Z be in good position for W2 and W2 ◦ W1. Then
W∗

2 (Z) is in good position with respect to W1.

Proof. We may assume that the correspondences are elementary, i.e., W1

and W2 are subvarieties W1 and W2 of X × Y , and Y × Z, respectively.
In this spirit, we will write W2 ◦W1 for the subvariety of X × Z which is
the support of the composition of correspondences, W2 ◦ W1. Consider the
following diagram:

W2 ◦W1
HHHHHHHHHHHH

c

j
W1 ×Y W2

u

6

e - W2
d

- Z

W1

q

? b - Y

p

?
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By hypothesis, codim d−1(Z) ≥ codimZ and codim c−1(Z) ≥ codimZ.
We claim that codim b−1pd−1Z ≥ codimZ. Since the central square is

cartesian, b−1p = qe−1. Since q is finite, this yields

codim b−1pd−1Z = codim qe−1d−1Z = codim e−1d−1Z.

But e−1d−1 = u−1c−1, and u is finite, so:

codim e−1d−1Z = codim u−1c−1Z = codim c−1Z.

But codim c−1Z ≥ codimZ by hypothesis, as claimed.

Proof of 17A.13. The right side is defined by 17A.14. We will follow the
notation established in figure 17A.1, where we have omitted the factor ∆n in
every entry to simplify notation. Note that the central square is cartesian.

X × Z

I@
@

@
@

@

u

PPPPPPPPPPPPPPPPPPP

c

q

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

v

N

X × Y × Z
e- Y × Z

d
- Z

X × Y

q

? b - Y

p

?

X

r

?

Figure 17A.1: Composition of correspondences

By definition 17.6, we have

W∗
1 (W∗

2 (Z)) = r∗(W1 · b∗(p∗(W2 · d∗Z))).
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Since the central square is cartesian, we have b∗p∗ = q∗e
∗ by 17A.9. Since

the pull-back e∗ is a ring homomorphism, we have

b∗(p∗(W2 · d∗Z)) = q∗(e
∗(W2 · d∗Z)) = q∗ (e∗(W2) · e∗d∗Z) .

Consider the two cycles X = e∗(W2) · (de)∗(Z) and Y = W1 and the function
q. The intersection X · q∗Y = e∗(W2) · (de)∗(Z) · q∗(W1) is proper because
Z is in good position with respect to W2 ◦W1. Therefore the conditions for
17A.10 are satisfied, and the projection formula yields Y · q∗X = q∗(q

∗Y ·X ),
i.e.,

W∗
1 (W∗

2 (Z)) = r∗q∗ (q∗(W1) · (e∗(W2) · e∗d∗Z)) .

Since the push-forward and pullback are functorial, we have r∗q∗ = v∗u∗ and
e∗d∗ = u∗c∗. Our cycle then becomes

v∗u∗ (q∗(W1) · e∗(W2) · u∗c∗Z) .

We may use the projection formula (17A.10) once again, this time for u∗,
with X = q∗(W1) · e∗(W2) and Y = c∗Z (the conditions are satisfied by the
same argument we used above). This yields u∗(X · u∗Y) = (u∗X ) · Y, i.e.,

W∗
1 (W∗

2 (Z)) = v∗ (u∗(q
∗(W1) · e∗(W2)) · c∗Z) .

Since the composition of W1 and W2 as correspondences is exactly u∗(q
∗(W1)·

e∗(W2)), the last equation becomes

W∗
1 (W∗

2 (Z)) = v∗((W2 ◦W1) · c∗Z) = (W2 ◦W1)
∗(Z).

This concludes the proof of 17A.13.



Lecture 18

Higher Chow groups and
equidimensional cycles

The next step in the proof of theorem 19.1 (that motivic cohomology and
higher Chow groups agree) is the reduction to equidimensional cycles. The
main references for this lecture are [HigCh] and [FS00].

Definition 18.1. For an equidimensional X, and i ≤ dimX, we write
ziequi(X,m) for zequi(X, dimX − i)(∆m), the free abelian group generated
by all codimension i subvarieties on X×∆m which are dominant and equidi-
mensional over ∆m (of relative dimension dimX − i). We write ziequi(X, •)
and ziequi(X, ∗) for the simplicial abelian group m 7→ ziequi(X,m) and its
associated chain complex, respectively.

By 17.2, ziequi(X,m) is a subgroup of zi(X,m) and ziequi(X, •) is a simpli-
cial subgroup of zi(X, •).
Example 18.2. The inclusion ziequi(X, ∗) ⊂ zi(X, ∗) will not be a quasi-
isomorphism in general. Indeed, if i > d then ziequi(X,m) = 0 while zi(X,m)
is not generally zero. For example, consider X = Spec k. If i > 0 we have
ziequi(Spec k, ∗) = 0. In contrast, zi(Spec k, i) is the group of points on ∆i

which do not lie on any proper face. We will see in 19.7 that Hiz
i(Spec k, ∗) =

H i,i(Spec k) = KM
i (k).

Theorem 18.3. (Suslin [HigCh, 2.1]) Let X be an equidimensional affine
scheme of finite type over k, then the inclusion map:

ziequi(X, ∗) ⊂ - zi(X, ∗)
is a quasi-isomorphism for i ≤ dimX.
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Corollary 18.4. Let X be an affine variety, then for all i ≥ 0

CH i(X,m) = Hm(ziequi(X × Ai, ∗)).

In particular, CH i(Spec k,m) = Hm(ziequi(A
i, ∗)).

Proof. This is an immediate corollary of 18.3, definition 17.1 and the homo-
topy invariance of the higher Chow groups; see page 149.

We need lemmas 18.7, 18.13 and 18.13 to prove theorem 18.3. All of
their proofs rely on a technical theorem 18A.1, which will be proven in the
appendix.

We begin by introducing some auxiliary notions. Let X be a scheme over
S.

Definition 18.5. An N−skeletal map ϕ over X, relative to X → S, is a
collection {ϕn : X ×∆n → X ×∆n}Nn=0 of S-morphisms, such that ϕ0 is the
identity 1X and for every face map ∂j : ∆n−1 → ∆n with n ≤ N the following
diagram commutes.

X × ∆n−1 ϕn−1- X × ∆n−1

X × ∆n

1X × ∂j
? ϕn - X × ∆n

1X × ∂j
?

Note that ϕN determines ϕn for all n < N . When S = X, we shall just call
ϕ an n-skeletal map over X.

The condition that an (N − 1)-skeletal map over X can be extended to
an N -skeletal map is a form of the homotopy extension property, and follows
from the Chinese Remainder Theorem when X is affine.

For example, a 1-skeletal map over X = SpecR (relative to S = X) is
determined by a polynomial f ∈ R[t] such that f(0) = 0 and f(1) = 1; ϕ1 is
Spec of the R-algebra map R[t] → R[t] sending t to f .

Definition 18.6. Given an N -skeletal map ϕ over X and n ≤ N , we define
ϕzi(X, n) to be the subgroup of zi(X, n) generated by all V in X ×∆n such
that ϕ∗

n(V ) is defined and is in zi(X, n). If n > N we set ϕzi(X, n) = 0.
In other words, ϕzi(X, n) is the group of cycles in X × An which intersect
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all the faces properly and whose pullbacks along ϕn intersect all the faces
properly.

By definition 18.5 we know that the face map ∂j : zi(X, n) → zi(X, n−1)
sends ϕzi(X, n) to ϕzi(X, n − 1). Thus ϕzi(X, ∗) is a chain subcomplex of
zi(X, ∗). Moreover it follows from 18.5 that the ϕ∗

n assemble to define a chain
map ϕ∗ : ϕzi(X, ∗) → zi(X, ∗).

Similarly, we can define ϕziequi(X, n) to be the subgroup of ziequi(X, n)
generated by all V such that ϕ∗

n(V ) is defined and is in ziequi(X, n). The
same argument shows that ϕziequi(X, ∗) is a subcomplex of ziequi(X, n) and
that the ϕn form a chain map ϕ∗ : ϕziequi(X, ∗) → ziequi(X, ∗).

0 - ϕzi(X, 1) - ϕzi(X, 0) - 0

zi(X, 2)
?

- zi(X, 1)

i
?

∩

ϕ∗
1

?
- zi(X, 0)

=
?

- 0.

Figure 18.1: A 1-skeletal map ϕ and its chain map ϕ∗.

Lemma 18.7. (See [HigCh, 2.8]) Let C∗ be a finitely generated subcomplex
in zi(X, ∗) with i ≤ dimX. Choose N so that Cn = 0 for n > N . Then there
is an N-skeletal map ϕ over X such that C∗ ⊆ ϕzi(X, ∗), and the chain map
ϕ∗ : ϕzi(X, ∗) → zi(X, ∗) satisfies

ϕ∗C∗ ⊆ ziequi(X, ∗).

Example 18.8. If N = 1, and α ∈ k − {0, 1}, the subvariety V = X × {α}
of X × A1 is in z1(X, 1) but not z1

equi(X, 1). If X = SpecR, fix r ∈ R and
let ϕ1 : X × A1 → X × A1 be the 1-skeletal map defined by the R-algebra
map R[t] → R[t] sending t to f(t) = t+ r(t2 − t). The condition that ϕ∗

1(V )
is in z1

equi(X, 1), i.e., dominant and equidimensional over ∆1, is equivalent to
the condition that the map r : X → A1 is equidimensional, i.e., that r − β
be nonzero in the domain R for all β ∈ k. Indeed, the fibre of ϕ−1

1 (V ) over
t 6= 0, 1 is supported on R/(r− (α− t/t2 − t)), and is empty if t = 0, 1. Such
r always exists when dimX ≥ 1.
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Proof of 18.7. Suppose that Cn is generated by {V k
n } ⊆ zi(X, n). Set d =

dimX − i and note that d ≥ 0 since i ≤ dimX. Then Vn = ∪V k
n is closed in

X × ∆n of dimension n + d.
We proceed by induction on N . Since N is finite, we may assume that

the ∂j(V
k
n ) are supported in Vn−1. Inductively, we may suppose that we

have constructed an (N − 1)-skeletal map {ϕn} such that the fibers of the
projections ϕ−1

n (Vn) → ∆n have dimension ≤ d. Let ∂∆N be the union
of the faces ∆N . The compatibility granted by definition 18.5 implies that
these maps fit together to form a map from X × ∂∆N to itself such that
the fibers of ϕ−1(X × ∂∆N ) ∩ VN → ∂∆N have dimension ≤ d. By Generic
Equidimensionality 18A.1, this map extends to a N -skeletal map ϕN : X ×
∆N → X×∆N over X such that the fibers of ϕ−1

N (VN ) → AN have dimension
≤ d. Because each component W of ϕ−1(V k

n ) satisfies the inequality dimW ≤
n+d = dimV k

n , each cycle ϕ∗
n(V

k
n ) is defined and lies in ziequi(X, n). Since Cn

is generated by the V k
n , it lies in ϕzi(X, n) and satisfies ϕ∗(Cn) ⊂ ziequi(X, n).

Definition 18.9. Let ϕ0 and ϕ1 be N -skeletal maps over X. An N−skeletal
homotopy Φ between ϕ0 and ϕ1 is an N -skeletal map {Φn : X×∆n×A1 →
X×∆n×A1}Nn=0 over X×A1 relative to the projection X×A1 → X, which
is compatible with the ϕj in the sense that the following diagram commutes
for every n.

X × ∆n i0- X × ∆n × A1 �i1 X × ∆n

X × ∆n

ϕ0
n

? i0- X × ∆n × A1

Φn
?

�i1 X × ∆n

ϕ1
n

?

The subgroup Φzi(X, n) of zi(X, n) is defined to be the subgroup generated
by all V in X × ∆n such that (ϕ0)∗(V ), (ϕ1)∗(V ) and Φ∗(V × A1) are all
defined. As in definition 18.6, Φzi(X, ∗) is a subcomplex of zi(X, ∗). In fact,
Φzi is in (ϕ0zi) ∩ (ϕ1zi).

Lemma 18.10. If Φ is an N-skeletal homotopy between ϕ0 and ϕ1, then the
maps (ϕ0)∗ and (ϕ1)∗ from Φzi(X, ∗) to zi(X, ∗) are chain homotopic.

Proof. For 0 ≤ j ≤ n, let hj denote the composite

X × ∆n+1 1X × θj- X × ∆n × A1 Φn- X × ∆n × A1 pr- X × ∆n,
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where the isomorphisms θi : ∆n+1 → ∆n×A1 were defined in 2.16, and pr is
the projection. That is, for V in Φzi(X, n) we define

h∗j [V ] = (1X × θj)
∗Φ∗

n[V × A1] ∈ zi(X, n + 1).

The h∗j form a simplicial homotopy (see [Wei94, 8.3.11]) from ∂0h0 = ϕ1 to
∂n+1hn = ϕ0. Hence their alternating sum h =

∑
(−1)jh∗j satisfies h∂+∂h =

(ϕ1)∗ − (ϕ0)∗. (This is illustrated in figure 18.2 when N = 2.)

0 - Φzi(X, 2)
∂- Φzi(X, 1)

∂ - Φzi(X, 0)

	�
�

�
�

�
�

�

h

	�
�

�
�

�
�

�

h

	�
�

�
�

�
�

�

0

zi(X, 3)
?? ∂ - zi(X, 2)

ϕ1
2

?

∩

ϕ0
2

? ∂ - zi(X, 1)

ϕ1
1

?

∩

ϕ0
1

? ∂ - zi(X, 0)

ϕ1
0

?

∩

ϕ0
0 = 1X

?

Figure 18.2: The chain homotopy between i and ϕ∗ when N = 2.

Proposition 18.11. Let ϕ be an N-skeletal map, and {V k
n } a finite set of

varieties in ϕzi(X, n), n ≤ N . Then there exists an N-skeletal homotopy Φ
between ϕ and the identity map, such that each Φ∗(V k

n × A1) is defined and
lies in ziequi(X × A1, n).

Proof. Set d = dim(X) − i. As in the proof of 18.7, we construct Φn by
induction on n. Inductively, we are given an (N − 1)-skeletal map Φn such
that the fibers of the projections Φ−1(V k

n × A1) → ∆n × A1 have dimension
≤ d. Let ∂(∆N × A1) denote the union of (∂∆N ) × A1 and ∆N × {0, 1}.
The compatibility with the faces of ∆N and with i0, i1 granted by definition
18.9 implies that the Φn and ϕN fit together to form a map ∂ΦN from X ×
∂(∆N × A1) to itself such that the fibers of

∂Φ−1
N (X × ∂(∆N × A1) ∩ V k

N × A1) → ∆N × A1

have dimension ≤ d. By Generic Equidimensionality 18A.1, with An =
∆N × A1, this map extends to a map ΦN from X × ∆N × A1 to itself which
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extends ∂ΦN (i.e., an N -skeletal homotopy from the identity to ϕ over X),
such that the fibers of Φ−1

N (V k
N×A1) → ∆N ×A1 have dimension ≤ d over all

points of ∆N×A1 not on ∂(∆N×A1). This completes the inductive step, and
shows that each cycle Φ∗

n(V
k
n ×A1) is defined and lies in ziequi(X×A1, n).

In order to simplify the proof of theorem 18.3 we need to introduce the
“topological” notion of weak homotopy.

Definition 18.12. Two maps f, g : K → L of complexes of abelian groups
are called weakly homotopic if for every finitely generated subcomplex C
of K, the restrictions f |C and g|C are chain homotopic.

It is easy to check that weakly homotopic maps induce the same maps
on homology. If K and L are bounded complexes of free abelian groups, this
notion is equivalent to the usual notion of chain homotopy between maps. To
see that this notion is weaker than chain homotopy, consider a pure subgroup
A of B which is not a summand, such as ⊕∞

1 Z ⊂∏∞
1 Z. Then the canonical

map from (A → B) to (A → 0) is weakly homotopic to zero but not chain
contractible.

Lemma 18.13. (See [HigCh, 2.3 and 2.6]) Let ϕ be an N-skeletal map over
X. Then the maps i and ϕ∗ are are weakly homotopic on ϕzi:

ϕzi(X, ∗) ⊂
i-
ϕ∗

- zi(X, ∗),

and also on ϕziequi:

ϕziequi(X, ∗)
⊂

i-
ϕ∗

- ziequi(X, ∗).

Note that the following diagram commutes

ϕziequi(X,−) ⊂- ϕzi(X,−)

ziequi(X,−)

i

?

∩

ϕ∗

?
⊂ - zi(X,−).

i

?

∩

ϕ∗

?

Moreover if a ∈ ϕzi(X, n) ∩ ziequi(X, n), and ϕ∗a ∈ ziequi(X, n), then a ∈
ϕziequi(X, n).



169

Proof of 18.3. We have to prove that the induced map on homology classes
is an isomorphism:

Hn(z
i
equi(X, ∗)) → Hn(z

i(X, ∗)) (18.13.1)

First we prove surjectivity. Let a ∈ zi(X, n) be such that d(a) = 0.
Lemma 18.7 provides an integer N and an N -skeletal map {ϕn} such that
a ∈ ϕzi(X, n) and ϕ∗(a) ∈ ziequi(X, n). By 18.13, a − ϕ∗a is a boundary in
zi(X, n), i.e., a and ϕ∗(a) represent the same class in homology. Hence the
map 18.13.1 is surjective.

For injectivity we need to consider a ∈ ziequi(X, n) so that d(a) = 0 and
b ∈ zi(X, n + 1) with d(b) = a. Apply lemma 18.7 to b and a. We find an
(n + 1)-skeletal map ϕ such that a, b ∈ ϕzi(X, ∗) and ϕ∗a, ϕ∗b ∈ ziequi(X, ∗).
But now we have:

ϕ∗a = ϕ∗(db) = d(ϕ∗b) = 0.

From lemma 18.13, a and ϕ∗a = 0 represent the same class in the homology
of ziequi(X, ∗). Therefore a is a boundary in ziequi(X, ∗). Hence the map
(18.13.1) is also injective.

Now we shall prove lemma 18.13 using 18A.1.

Proof of 18.13. Consider a subcomplex C∗
⊂ - ϕzi(X, ∗) generated by some

closed irreducible subvarieties V k
n so that ∂j(V

k
n ) is a linear combination of

generators. It suffices to prove that the inclusion of C∗ into zi(X, ∗) is ho-
motopic to ϕ∗. But this is just an application of 18.11 and 18.10.

Lemma 18.14. (See [HigCh] 2.4) For any V and ϕn as before and any
∆m → ∆n × A1, (idX × θ)−1(V × A1) has dimension ≤ m+ t.

So θ∗(V ) is well-defined and we can verify that h is an homotopy.
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Appendix 18A- Generic
Equidimensionality

This appendix is devoted to a proof of the following Generic Equidimension-
ality Theorem, due to Suslin. (See [HigCh] 1.1.)

Theorem 18A.1. Let S be an affine scheme of finite type over a field. Let V
be a closed subscheme of S×An, Z an effective divisor of An and ϕ : S×Z →
S × An any morphism over S. For every t ≥ 0 so that dimV ≤ n+ t, there
exists a map Φ : S × An → S × An over S so that:

1. Φ|S×Z = ϕ;

2. the fibers of the projection Φ−1(V ) → An have dimension ≤ t over the
points of An − Z.

The S-morphism ϕ : S × Z → S × An is determined by its component
ϕ′ : S × Z → An. If S ⊂ Am, we can extend ϕ′ to a morphism ψ′ :
Am×Z → An. If we knew the theorem for Am, there would exist an extension
Ψ′ : Am × An → An of ψ′ such that, setting Ψ(X, Y ) = (X,Ψ′(X, Y )), the
fibers of Ψ−1(V ) → An over points of An − Z have dimension ≤ t, and the
restriction Φ of Ψ to S × An would satisfy the conclusion of the theorem.
Thus we may suppose that S = Am.

Write Am = Spec k[x1, . . . , xm] and An = Spec k[y1, . . . , yn]. If the divisor
Z is defined by a polynomial h ∈ k[Y ] then the component ϕ′ : Am×Z → An

of ϕ extends to f = (f1, . . . , fn) : Am × An → An for polynomials fi ∈
k[X, Y ] defined up to a multiple of h. For each n-tuple F = (F1, . . . , Fn) of
homogeneous forms in k[X] of degree N , consider the maps

ΦF : Am × An → An

ΦF (X, Y ) = (f1(X, Y ) + h(Y )F1(X), . . . , fn(X, Y ) + h(Y )Fn(X)).

171
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By construction, the restriction of ΦF to Z×S is ϕ′, i.e., property (1) holds.
It suffices to show that if N >> 0 and the Fi are in general position then
Φ(X, Y ) = (X,ΦF (X, Y )) has the desired property (2).

If I = (g1, . . . , gs) is the ideal of k[X, Y ] defining V , then the ideal J of
k[X, Y ] defining Φ−1(V ) is generated by the polynomials

gj(X,ΦF ) = gj(x1, . . . , xm,Φ1,Φ2, . . . ,Φn), Φi = fi(X, Y ) + h(Y )Fi(X).

If b is a k-point of An, the ideal Jb of k[X] defining the fiber over b is generated
by the gj(X,ΦF (X, b)). We need to show that if b 6∈ Z, then Jb has height
≥ m− t.

Example 18A.2. Suppose that m = 1 and t = 0. We may assume that
dimV = n, and that V is defined by g(x, Y ) = 0. Then Φ−1(V ) is defined
by g(x,ΦF ), Fi(x) = aix

N , and the fiber over b ∈ An − Z is defined by

g(x, f1(x, b) + h(b)a1x
N , . . .) = 0.

Since b 6∈ Z, h(b) 6= 0. Hence the left side of this equation is a nonzero
polynomial in k[x] for almost all choices of a1, . . . , an when N >> 0. Hence
the fiber over b is finite.

The same argument works more generally when t = m−1; we may assume
that V is defined by g = 0, and the fiber over b is defined by g(X,ΦF (X, b)) =
0. In order to see that the left side is nonzero for almost all choices of
F1, . . . , Fn one just needs to analyze the leading form of g(X,ΦF ) with respect
to X.

For any ring R we grade the polynomial ring R[X] = R[x1, . . . , xm] with
all xi in degree 1. Any polynomial of degree d is the sum f = Fd + . . .+ F0

where Fi is a homogeneous form of degree i; Fd is called the leading form of
f with respect to X. If I is an ideal in R[X] the leading forms of elements
of I generate a homogeneous ideal I ′ of R[X].

Lemma 18A.3. Let R be a catenary Noetherian ring, I ⊂ R[X] an ideal,
and I ′ the ideal of leading forms in I with respect to X. Then ht(I ′) = ht(I).

Proof. Let Ih ⊂ S = R[x0, . . . , xm] be the homogeneous ideal defining the
closure V̄ of V (I) in PmR . Then ht(I) = htS(Ih) = htS(Ih, x0) − 1. But
I ′ = (Ih, x0)S/x0S, so ht(I ′) = htS(Ih, x0) − 1.
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Now the ring k[X, Y ] is bigraded, with each xi of bidegree (0, 1) and
each yi of bidegree (1, 0). Thus each polynomial can be written as a sum
g =

∑
Gij, where the Gij have bidegree (i, j). Ordering the bidegrees lex-

icographically allows us to talk about the bidegree of g, namely the largest
(p, q) with Gpq 6= 0; this Gpq is the bi-homogeneous leading form of g.

Without loss of generality, we assume that the generators g1, . . . , gs of I
have the following property: the bi-homogeneous leading forms Gj(X, Y ) of
gj generate the ideal of the leading forms of I.

Lemma 18A.4. If F1, . . . , Fn are homogeneous forms in k[X] of degree N >
max{degX(fi), degX(gj)} then the ideal J ′ of leading forms in J with respect
to X contains forms hrGj(X,F1, . . . , Fn), for r >> 0.

Proof. (See [HigCh] 1.6.1.) Recall that J is generated by the gj(X,ΦF ).
For any choice of the N -forms Fi it is easy to see that degX gj(X,ΦF ) =
degX Gj(X,ΦF ) = N degY Gj + degX Gj, and that the leading form in
gj(X,ΦF ) with respect to X is hdegY GjGj(X,F1, . . . , Fn).

Proposition 18A.5. Let T ⊂ Am×An be a closed subscheme of dimension ≤
n+ t, t ≥ 0. If k is infinite, then for any N ≥ 0 we can find forms F1, . . . , Fn
in k[X] of degree N so that W = {w ∈ Am : (w, F1(w), . . . , Fn(w)) ∈ T} has
dimension at most t.

Proof. The vector space on n-tuples F = (F1, . . . , Fn) of homogeneous forms
of degree N in k[X] is finite-dimensional, say dimension D. We identify
it with the set of k-rational points of the affine space AD. Consider the
evaluation map

η : Am × AD → Am+n, η(w, F ) = (w, F (w)).

If w 6= 0, the fibers of η : w × AD → w × An are isomorphic to AD−n,
because the linear homomorphism η(w,−) : AD → An is surjective. By
inspection, η−1(0 × An) = 0 × AD. It follows that η−1(T ) has dimension at
most D + t.

Now consider the projection π : η−1(T ) → AD. The theorem on dimen-
sion of the fibers [Har77] III.9.6 implies that there is a nonempty U ⊂ AD

whose fibers have dimension ≤ t. Choosing a rational point in U , the corre-
sponding homogeneous forms (F1, . . . , Fn) satisfy dim{w ∈ Am : (w, F (w)) ∈
T} ≤ t.
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Remark 18A.6. The case N = 0 is easy to visualize, since D = n. There
is an open subset U of An so that for each b ∈ U the fiber T ∩ (Am × b) of
the projection T → An over b has dimension at most t.

If T is defined by bi-homogeneous polynomials, then W is defined by ho-
mogeneous polynomials. Suslin states 18A.5 for the corresponding projective
varieties in [HigCh] 1.7.

We are now ready to complete the proof of theorem 18A.1. By 18A.3,
Jb ⊂ k[X] has the same height as the ideal J ′

b of its leading forms. Suppose
that N > max{degX(fi), degX(gj)}. Since h(b) 6= 0, J ′

b contains all the
Gj(X,F ) by 18A.4. Let T ⊂ Am+n be the variety defined by the ideal of
bi-homogeneous forms of I, i.e., the Gj(X, Y ). Hence the variety W = {w ∈
Am : (w, F (w)) ∈ T} is defined by the Gj(X,F ). By two applications of
18A.3, dim T = dimV ≤ n + t. Thus dimW ≤ t by 18A.5. But the height
of J ′

b is at least the height of the ideal generated by the Gj(X,F ), i.e., the
codimension of W , which is at least m− t.



Lecture 19

Motivic cohomology and higher
Chow groups

With the preparation of the last three lectures, we are ready to prove the
fundamental comparison theorem:

Theorem 19.1. Let X be a smooth separated scheme over a perfect field k,
then for all m and i there is a natural isomorphism:

Hn,i(X,Z)
∼=- CH i(X, 2i− n).

Because CH i(X, 0) is the classical Chow group CH i(X) we obtain:

Corollary 19.2. H2i,i(X,Z) ∼= CH i(X)

It is clear from definition 17.1 that CH i(X,m) = 0 for m < 0. We
immediately deduce the:

Vanishing Theorem 19.3. For every smooth variety X and any abelian
group A, we have Hn,i(X,A) = 0 for n > 2i.

The proof of 19.1 will proceed in two stages. First we will show (in theo-
rem 19.8) that Z(i)[2i] is quasi-isomorphic to U 7→ zi(U×Ai, ∗) as a complex
of Zariski sheaves. Then we will show (in 19.12) that the hypercohomology
of zi(−× Ai, ∗) is CH i(−, ∗).

We saw in 16.7 that Z(i) is quasi-isomorphic to the Suslin-Friedlander
motivic complex ZSF (i). Recall from page 142 that the shift ZSF (i)[2i] is
the chain complex C∗zequi(Ai, 0) associated to the simplicial abelian presheaf
with transfers C•zequi(Ai, 0), which sends X to m 7→ zequi(Ai, 0)(X × ∆m).
The following result generalizes example 17.2.
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Lemma 19.4. Let T be smooth of dimension d. Then for all X there is an
embedding of simplicial abelian groups:

C•zequi(T, d− i)(X) ⊂ - zi(X × T, •).

In particular (for T = Ai), ZSF (i)[2i](X) is a subcomplex of zi(X × Ai, ∗).

Proof. The cycles in Cmzequi(T, d− i)(X) are equidimensional over X × ∆m

at all points, while the ones in zi(X × T,m) need only be equidimensional
at the generic points of the faces of X × T × ∆m. Hence the first group is
contained in the second group of cycles. Moreover, the face maps of the two
simplicial groups are compatible by 1A.12.

Example 19.5. The complex ZSF (i)[2i](Y ) is a subcomplex of zi(Y×Ai, ∗)W
(see 17.5) for every finite correspondence W from X to Y . Indeed,
zequi(Ai, 0)(Y ×∆m) lies in zi(Y ×Ai, m)W×Ai because every generating cycle
is quasi-finite over Y × ∆m.

In contrast, it is easy to see that zequi(Y × Ai, dimY )(∆m) need not lie
in zi(Y × Ai, m)W×Ai, by letting X be a point of Y .

For any schemes X and T , consider the simplicial presheaf on X:

U 7→ zi(U × T, •).

This can be regarded as a simplicial sheaf on the flat site over X and hence
on both the (small) étale site and the Zariski site of X as well. We will
write zi(− × T, ∗) for the associated complex of sheaves. The homology of
zi(− × T, ∗) has the more general structure of a presheaf with transfers by
17.20.

Proposition 19.6. The homology of the embedding in 19.4 is a morphism
of presheaves with transfers:

HmC∗zequi(A
i, 0)(−) → Hmz

i(−× Ai, ∗) = CH i(−× Ai, n). (19.6.1)

Proof. The source and target are presheaves with transfers by 16.3 and 17.20,
respectively. It suffices to show that their transfer maps are compatible.

Let W be an elementary correspondence from X to Y . We need to verify
that φW and W ∗ are compatible with the map (19.6.1). If W is the graph
of a flat map from X to Y , then φW and W ∗ are compatible because both
are just the flat pull-back of cycles. Since W ∗ is defined in 17.16 by passing
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to an affine vector bundle torsor Y ′ → Y , a simple diagram chase (which we
leave to the reader) shows that it suffices to prove the statement when Y is
affine.

Let Y be affine. Since Hnz
i(Y ×Ai, m)W = Hnz

i(Y ×Ai, m) by 17.5, the
result will follow once we show that the following diagram commutes.

zequi(A
i, 0)(Y × ∆m)

φW- zequi(A
i, 0)(X × ∆m)

zi(Y × Ai, m)W

19.5
?

∩

W ∗
- zi(X × Ai, m)

19.4
?

∩

Let i, f and π, respectively, denote the products with Ai × ∆m of the
inclusion W ⊂ - X × Y , and the canonical projections X × Y → Y and
X × Y → X. The transfer map W ∗ was defined as W ∗(Z) = π∗((W × Ai ×
∆m) · f ∗Z) in 17.6. According to 16.3, the transfer map on zequi(Ai, 0)(Y ×
∆m) is φW (Z) = (iπ)∗(ZW×∆m), where the pull-back ZW×∆m was defined on
page 19. By 17A.12, ZW×∆m = (fi)∗(Z), so we have:

φW (Z) = (iπ)∗(fi)
∗(Z) = π∗i∗(fi)

∗(Z).

By 17A.11, i∗(fi)
∗(Z) = (W × Ai × ∆m) · f ∗Z and therefore for every Z in

zequi(Ai, 0)(Y × ∆m) we have:

φW (Z) = π∗((W × Ai × ∆m) · f ∗Z) = W ∗(Z).

Example 19.7. If E is a field over k, then the map of 19.6 evaluated at
SpecE is an isomorphism:

HmC∗zequi(A
i, 0)(SpecE)

∼=- Hmz
i(SpecE × Ai, ∗).

This follows from Suslin’s theorem 18.3 with X = Ai
E , since we may identify

zequi(Ai
k, 0)(∆m

E ) and zequi(Ai
E, 0)(∆m) by 16.6.

This implies that theorem 19.1 is true when evaluated on fields. To see
this, set S = SpecE and recall that Hm(S,C∗) = HmC∗(S) for any complex
of sheaves C∗. By 16.7, the above map fits into the sequence of isomorphisms:

Hn,i(S,Z) ∼= HnZ(i)(S) ∼= HnZSF (i)(S) =

H2i−nC∗zequi(A
i, 0)(S)

∼=- H2i−nz
i(Ai

E, ∗) =

CH i(Ai
E, 2i− n) ∼= CH i(S, 2i− n).
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Theorem 19.8. The map ZSF (i)[2i] = C∗zequi(Ai, 0) → zi(− × Ai, ∗) is a
quasi-isomorphism of complexes of Zariski sheaves.

Proof. The induced homomorphisms on homology presheaves,

HmC∗zequi(A
i, 0) → Hmz

i(−× Ai, ∗) (19.8.1)

are morphisms of presheaves with transfer by 19.6. The left side is homo-
topy invariant by 2.18 and the right side is homotopy invariant because the
higher Chow groups are homotopy invariant (see p.149). By 19.7, this is an
isomorphism for all fields. By 11.2, the sheafification of the map (19.8.1) is
an isomorphism. Hence C∗zequi(Ai, 0) → zi(−×Ai, ∗) is a quasi-isomorphism
for the Zariski topology.

Corollary 19.9. For any smooth scheme X, the inclusion of 19.4 induces
an isomorphism:

Hn,i(X,Z)
∼=- Hn−2i(X, zi(−× Ai, ∗)).

Proof. By 16.7 and 19.8, we have the sequence of isomorphisms:

Hn,i(X,Z) = Hn(X,Z(i)) ∼= Hn(X,ZSF (i)) =

Hn−2i(X,ZSF (i)[2i])
∼=- Hn−2i(X, zi(−× Ai, ∗)).

Corollary 19.9 is the first half of the proof of 19.1. The rest of this
lecture is dedicated to proving the second half, that H−m(X, zi(−×Ai, ∗)) ∼=
CH i(X,m). To do this, we shall use Bloch’s Localization Theorem (see
p.149) to reinterpret the higher Chow groups as the hypercohomology groups
of a complex of sheaves.

A chain complex of presheaves C is said to satisfy Zariski descent on
X if H∗(C(U)) → H∗(U,CZar) is an isomorphism for every open U in X.

Definition 19.10. Let C be a complex of presheaves on XZar (the small
Zariski site of X). We say that C has the (Zariski) Mayer-Vietoris prop-
erty if for every U ⊂ X, and any open covering U = V1 ∪ V2, the diagram

C(U) - C(V1)

C(V2)
?

- C(V1 ∩ V2)
?
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is homotopy cartesian (i.e., the total complex is an acyclic presheaf). This
implies that there is a long exact sequence

· · · → H i(C(U)) → H i(C(V1)) ⊕H i(C(V2)) → H i(C(V1 ∩ V2)) → · · ·

For example, any chain complex of flasque sheaves has the Mayer-Vietoris
property. This is an easy consequence of the fact that C(U) → C(V ) is onto
for each V ⊂ U .

The following result is proven in [BG73].

Theorem 19.11 (Brown-Gersten). Let C be a complex of presheaves on
X with the Mayer-Vietoris property. Then C satisfies Zariski descent. That
is, the maps H∗(C(U)) → H∗(U,CZar) are all isomorphisms.

Our main application of the Brown-Gersten theorem is to prove that
Bloch’s complexes satisfy Zariski descent.

Proposition 19.12. Let X be any scheme of finite type over a field. For
any scheme T , each zi(− × T ) satisfies Zariski descent on X. That is, for
all m and i, we have:

CH i(X × T,m) ∼= H−m(X, zi(−× T )).

In particular (for T = Ai),

CH i(X,m)
∼=- CH i(X × Ai, m)

∼=- H−m(X, zi(−× Ai)).

Proof. (Bloch [Blo86, 3.4]) By 19.11, we have to show that C(U) = zi(U×T )
has the Mayer-Vietoris property. For each cover {V1, V2} of each U we set
V12 = V1 ∩ V2 and consider the diagram:

0 - C(U − V1) - C(U) - C(V1) - coker 1
- 0

0 - C(V2 − V12)

=
?

- C(V2)
?

- C(V12)
?

- coker 2

?
- 0.

By Bloch’s Localization Theorem, the cokernels are both acyclic. A diagram
chase shows that the middle square is homotopy cartesian, i.e., the Mayer-
Vietoris condition is satisfied.

We are now ready to prove the main result of this section, theorem 19.1.
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Proof of 19.1. Using 19.9 and 19.12, we define the map to be the composi-
tions of isomorphisms:

Hn,i(X,Z) ∼= Hn(X,Z(i))
∼=- Hn−2i(X, zi(−×Ai)) ∼= CH i(X, 2i−n).

Zariski descent has also been used by Bloch and Levine to show that the
higher Chow groups are functorial for morphisms between smooth schemes.
We conclude this lecture by showing that their definition agrees with ours.

Definition 19.13. (Bloch-Levine) Let f be a morphism from X to Y . Natu-
ral maps f ∗ : CH i(Y,m) → CH i(X,m) for all m and i are defined as follows.
As in the proof of 17.5, write zi(Y, ∗)f for zi(Y, ∗)Γf

.
If U ⊂ Y is open, zi(Y, ∗)f restricts to zi(U, ∗)f , and zif is a complex

of sheaves. Since Y is locally affine, zif ' zi by 17.5 and there is a map
zif → f∗z

i of complexes of sheaves on Y . The map is now defined using
Zariski descent 19.12 as the composite:

CH i(Y,m) ∼= H−m(Y, zi) ∼= H−m(Y, zif)
f∗- H−m(X, zi) ∼= CH i(X,m).

Example 19.14. If q : Y ′ → Y is flat, then ziq = zi, and the map q∗ defined
in 19.13 is just the flat pull-back of cycles map q∗, described in 17.11.

Lemma 19.15. If X
g- Y

f- Z are morphisms of smooth schemes,
then the maps defined in 19.13 satisfy (fg)∗ = g∗f ∗.

Proof. If fg
∐
f : X

∐
Y → Z, we can restrict (fg)∗ and f ∗ to the subgroup

zi(Z,m)fg
‘

f . Since (fg)∗ = g∗f ∗ on cycles (see [Ser65, V-30]), f ∗ maps this
subgroup into zi(Y,m)g. By construction, the diagram of groups

zi(Z,m)fg
‘

f
⊂- zi(Z,m)fg

zi(Y,m)g

f ∗

? g∗- zi(X,m)

(fg)∗

?

commutes. Sheafifying and applying hypercohomology, 17.5 and Zariski de-
scent 19.12 show that the composite

CH i(Z,m) ∼= H−m(Z, zifg
‘

f )
f∗- H−m(Y, zig)

g∗- H−m(X, zi) ∼= CH i(X,m)

is just (fg)∗, as required.
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Proposition 19.16. The map f ∗ : CH i(Y,m) → CH i(X,m) defined in
19.13 agrees with the map f ∗ = Γ∗

f defined in 17.16.

Proof. Suppose first that X and Y are affine, and consider the commutative
diagram

CH i(Y,m) =H−mzi(Y, ∗) �
∼=

H−mzi(Y, ∗)f - H−mzi(X, ∗)=CH i(X,m)

H−m(Y, zi)

∼=?
�
∼=

H−m(Y, zif )
?

- H−m(X, zi).

∼=?

The arrows marked ‘ ∼=′ are isomorphisms by 17.5 and 19.12. The top com-
posite is the map of 17.11, which by 17.17 is the map Γ∗

f of 17.16. The
bottom composite is the map f ∗ of 19.13, proving that f ∗ = Γ∗

f in this case.
In the general case, 17.14 gives a diagram

X ′ g - Y ′

X

p
? f - Y,

q
?

where X ′ → X and Y ′ → Y are affine vector bundle torsors. By definition
17.16, Γ∗

f is (p∗)−1Γ∗
gq

∗, where p∗ and q∗ are flat pull-back of cycles. By 19.14,
these are the same as the maps p∗ and q∗ defined in 19.13. Since Γ∗

g = g∗

by the first part of the proof and g∗q∗ = (qg)∗ = (pf)∗ = p∗f ∗ by 19.15, we
have:

Γ∗
f

17.16
= (p∗)−1Γ∗

gq
∗ = (p∗)−1g∗q∗

19.15
= (p∗)−1p∗f ∗ = f ∗.
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Lecture 20

Covering morphisms of triples

The main goal of the rest of the lectures will be to prove that if F is a
homotopy invariant presheaf with transfers, then the presheaf Hn

Nis(−, F ) is
homotopy invariant. This was stated in theorem 13.7 and it was used in
lectures 13-19. The remaining lectures depend upon lectures 11, 12, and the
first part of 13 (13.1–13.5), but not on the material from 13.6 to the end of
lecture 19.

Definition 20.1. Let TY = (Ȳ , Y∞, ZY ) and TX = (X̄,X∞, ZX) be standard
triples (as defined in 11.5). For convenience, set Y = Ȳ − Y∞ and X =
X̄−X∞. A covering morphism f : TY → TX of standard triples is a finite
morphism f : Ȳ → X̄ such that:

• f−1(X∞) ⊂ Y∞ (and hence f(Y ) ⊂ X);

• f |Y : Y → X is étale;

• f induces an isomorphism ZY
∼=- ZX with f−1(ZX) ∩ Y = ZY .

Note that f need not induce a finite morphism f : Y → X.
By definition, the square Q = Q(X, Y,X − ZX) induced by a covering

morphism of standard triples is upper distinguished (see 12.5):

(Y − ZY ) - Y

(X − ZX)
?

- X.

f
?

We say that this upper distinguished square comes from the covering mor-
phism of standard triples.

183
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Y∞,1 Ȳ

ZY

Y∞,2

ZXX∞

X̄

Figure 20.1: A covering morphism f : Ȳ → X̄

Example 20.2. Suppose that an affine X has a covering X = U ∪ V and
a good compactification (X̄,X∞) over some smooth S. Then the Zariski
square

U ∩ V - U

Q(X,U, V ) :

V
?

- X
?

comes from a morphism of triples, provided that X̄− (U ∩V ) lies in an affine
open neighborhood in X̄.

Indeed, if Z = X − V then T = (X̄,X∞, Z) is a standard triple and
T ′ = (X̄, X̄ − U,Z) is also a standard triple. The identity on X̄ induces a
covering morphism T ′ → T and the above square comes from this morphism.

Recall from 11.11 that a splitting of a standard triple (X̄,X∞, Z) over
V ⊂ X is a trivialization of L∆X

on V ×S Z.

Lemma 20.3. Let f : TY → TX be a covering morphism of standard triples.
A splitting of TX over V induces a splitting of TY over f−1(V ) ∩ Y .

Proof. Since TX was split over V ⊆ X̄, we are given t : L∆X|V×ZX
∼= O. We

need a trivialization

f−1(t) : L∆Y |f−1(V )×ZY
∼= O.

Now (f×f)−1(∆X) is the disjoint union of ∆Y and some Q, so (f×f)∗(L∆X)
is L∆Y ⊗ LQ, where LQ is the associated line bundle. Since f induces an
isomorphism ZY → ZX , Q is disjoint from Y ×SZY . Since LQ has a canonical
trivialization outside Q, we have LQ

∼= O on Y ×S ZY . Since (f × f)∗(t) is a
trivialization of L∆Y

⊗LQ on (f ×f)−1(V ×S ZX), we may regard (f ×f)∗(t)
as a trivialization of L∆Y on (f−1(V ) ∩ Y ) ×S ZY .
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Example 20.4. Let Ȳ → X̄ be a finite separable morphism of smooth
projective curves, X∞ ⊂ X̄ a finite nonempty set containing the branch
locus, and y ∈ Ȳ a k-rational point so that x = f(y) is not in X∞. Set
Y∞ = f−1(X∞)

∐
f−1(x) − {y}. Then (Ȳ , Y∞, {y}) → (X̄,X∞, {x}) is a

covering morphism of standard triples. If X = SpecA and P is the prime
ideal of A defining x, then PB is prime in the coordinate ring B of Y . If
a ∈ A then by 11.13, lemma 20.3 states that if P [1/a] is principal, then so is
PB[1/a].

Definition 20.5. Let Q be any commutative square of the form

B
i - Y

A

f

? i - X.

f

?

We write MV (Q) for the following chain complex in Cork:

MV (Q) : 0 - B
(−f,i)- A⊕ Y

(i,f)- X - 0.

If F is a presheaf, then F (MV (Q)) is the complex of abelian groups:

0 - F (X)
(i,f)- F (A) ⊕ F (Y )

(−f,i)- F (B) - 0.

The general theorem below will involve an intricate set of data which we
now describe. Let f : (Ȳ , Y∞, ZY ) → (X̄,X∞, ZX) be a covering morphism
of standard triples. Let Q denote the square that comes from f . Let Q′ =
(X ′, Y ′, A′) be another upper distinguished square with Y ′ and X ′ affine so
that Q and Q′ are of the form:

B′ - Y ′ B - Y

Q′ : Q :

A′

f ′

? i′ - X ′

f ′

?
A

f

? i - X.

f

?

(20.5.1)

Theorem 20.6. Let j : Q′ → Q be a morphism of upper distinguished squares
of the form 20.5.1 such that:
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• Q comes from a covering morphism of standard triples;

• X ′ → X is an open embedding, and (X̄,X∞, ZX) splits over X ′;

• X ′ and Y ′ are affine.

Then for any homotopy invariant presheaf with transfers F , the map of com-
plexes F (MV (Q)) → F (MV (Q′)) is chain homotopic to zero.

0 - F (X)
(i, f)- F (A) ⊕ F (Y )

(−f, i)- F (B) - 0

0 - F (X ′)

jX

? (i′, f ′)- F (A′) ⊕ F (Y ′)

(
jA
jY

)

? (−f ′, i′)- F (B′)

jB

?
- 0

The proof will be assembled from the following three lemmas.
We say that a diagram in Cork is homotopy commutative if every pair

of composites f, g : X → Y with the same source and target are A1-
homotopic. Any homotopy invariant presheaf with transfers identifies A1-
homotopic maps, and converts a homotopy commutative diagram into a
commutative diagram.

Lemma 20.7. Let j : Q′ → Q be as in the statement of 20.6. Then there
are maps λA ∈ Cor(X ′, A) and λB ∈ Cor(Y ′, B), well-defined up to A1-
homotopy, such that the following diagram is homotopy commutative.

Y ′ f ′
- X ′

	�
�

�
�

�
jY

@
@

@
@

@

jX

R

Y � i
B

∃λB
? f - A

∃λA
? i - X.

Applying a homotopy invariant presheaf with transfers F gives a commutative
diagram:

F (X)
i - F (A)

f - F (B) � i
F (Y )

@
@

@
@

@
jX

R 	�
�

�
�

�

jY

F (X ′)

∃λA
? f ′

- F (Y ′).

∃λB
?
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Proof. By 20.3, both triples TX and TY split. Hence the maps in question
exist and the outer triangles commute by 11.15. The construction of the
trivializations in the proof of 11.15 shows that the middle square commutes.

Since Hsing
0 (X × Y/X) = Cor(X, Y )/A1-homotopy by 7.2, two elements

of Cor(X, Y ) are A1-homotopic exactly when they agree in Hsing
0 (X×Y/X).

This allows us to apply the techniques of lecture 7.

Lemma 20.8. Let h be a rational function on X̄ ×S Ȳ which is invertible
in a neighborhood U of A′ ×S Y∞ and A′ ×S ZY , and equals 1 on A′ ×S Y∞.
Then the Weil divisor D defined by h defines an element ψ of Cor(A′, B)
such that the composition iψ ∈ Cor(A′, Y ) is A1-homotopic to zero.

Proof. As a divisor on the normal variety A′×S Ȳ , we can write D =
∑
niDi

with eachDi integral and supported off of U . Since eachDi misses A′×SY∞, it
is quasi-finite over A′. Since Di is proper over A′, and has the same dimension
as A′, it is finite and surjective over A′. As such, each Di and hence D defines
an element of C0(A

′ ×S B/A
′) which is a subgroup of C0(A

′ × B/A′) =
Cor(A′, B). By construction (see 7.15), the image of D in Pic(A′×S Ȳ , A

′×S

(Y∞
∐
Z)) is given by (O, h), the trivial line bundle with trivialization 1 on

A′ ×S Y∞, and h on A′ ×S ZY . The composition with i : B → Y sends D
to an element of C0(A

′ ×S Y/A
′) whose image in Pic(A′ ×S Ȳ , A

′ ×S Y∞) is
the class of (O, h). By 7.16, this group is isomorphic to Hsing

0 (A′ ×S B/A
′).

But in this group (O, h) = (O, 1) is the zero element. This implies that the
image is zero in Hsing

0 (A′ × B/A′).

Lemma 20.9. Let j : Q′ → Q be as in the statement of 20.6, and λA, λB
as in 20.7. Then there is a map ψ in Cork(A

′, B) fitting into a homotopy
commutative diagram:

B′ λB ◦ i′ − jB- B

..
..
..
..
..
..
..

ψ

�

A′

f ′

?

λA ◦ i′ − jA
- A.

f

?

Moreover the composition A′ ψ- B
i- Y is A1-homotopic to 0.
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Applying a homotopy invariant presheaf with transfers F gives a commu-
tative diagram:

F (A)
f - F (B)

	..
..
..
..
..
..
..

ψ

F (A′)

i′ ◦ λA − jA

?

f ′
- F (B′),

i′ ◦ λB − jB

?

and the composite F (Y )
i- F (B)

ψ- F (A′) is zero.

Proof of 20.9. In order to streamline notation, we write × for ×S.
Let L∆X′ be the line bundle on X ′ × X̄ corresponding to the graph ∆X ′

of X ′ ⊂ - X̄, and L∆Y ′ for the line bundle on Y ′ × Ȳ corresponding to the
graph ∆Y ′ of Y ′ ⊂ - Ȳ . In between these, we have the line bundle M on
X ′ × Ȳ , obtained by pulling back L∆X′.

Since these three line bundles come from effective divisors, they have
canonical global sections. We will write sX for the canonical global section
of L∆X′ on X ′ × X̄, sM for M on X ′ × Ȳ , and sY for L∆Y ′ on Y ′ × Ȳ .
Each global section determines a section on X ′×ZX , X ′×ZY , and Y ′×ZY ,
respectively. Since A′ ⊆ X ′ − ZX and B′ ⊆ Y ′ − ZY , the restrictions of
sX , sM, sY also determine trivializations in each case, of L∆X′ on A′ × ZX ,
of M on A′ × ZY , and of L∆Y ′ on B′ × ZY .

Because ZY ∼= ZX , the inclusion of X ′ × ZX in X ′ × X̄ lifts to X ′ × Ȳ ,
and we may identify the pullbacks of L∆X′ and M to X ′×ZY , together with
their respective trivializations sX and sM on A′ × ZY .

Since the standard triple (X̄,X∞, ZX) splits over X ′, we are given a fixed
trivialization tX of L∆X′ on X ′×ZX . As with sX , we may identify tX with a
trivialization tM of M on X ′ × ZY . By 20.3, tX also induces a trivialization
tY of L∆Y on Y ′ × ZY . Since ZX lives in an affine neighborhood UX in X̄,
we extend tX to X ′ × UX and we fix this particular extension. Pulling back,
the same is true for tM and tY and we fix those two extensions too.

Because tX , tM, tY are trivializations, there are regular functions
rX , rM, rY so that:

sX = rXtX on X ′ × ZX ; sM = rMtM on X ′ × ZY ; sY = rY tY on Y ′ × ZY .
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Because sX is a trivialization on A′ × ZX , rX is invertible on A′ × ZX .
Similarly, rM is invertible on A′ × ZY , and rY is invertible on B′ × ZY .
(See figure 20.2.)

A′ × ZY

A′ × Y∞,1

A′ × Y∞,2

1

rM

1

A
′
× Ȳ A

′
× X̄

A′ × ZX

rX

1

A′ ×X∞

Figure 20.2: The covering morphism f : Ȳ → X̄ over A′

Because (Ȳ , Y∞, ZY ) is a standard triple, there is an affine open neighbor-
hood U of Y∞

∐
ZY in Ȳ . Hence X ′ × U is an affine open neighborhood of

X ′ ×ZY and X ′ × Y∞ in X ′ × Ȳ . Since ZY and Y∞ are disjoint, the Chinese
Remainder Theorem yields a regular function h on X ′×U which equals 1 on
X ′ × Y∞ and equals rM on X ′ × ZY . Let D ⊂ X ′ × Ȳ denote the the prin-
cipal divisor corresponding to h. By lemma 20.8, the divisor −D defines an
element ψ of Cor(A′, B) such that the composition iψ ∈ Cor(A′, Y ) is homo-
topically trivial. By 7.15, the map Cor(A′, B) → Pic(A′×Ȳ , A′×(Y∞

∐
ZY ))

sends ψ to the class of (OA′×Ȳ , 1∞
∐
r−1
M ).

It remains to verify that the diagram in 20.9 is homotopy commutative.
We first interpret the horizontal maps in 20.9. By the construction of λA

and λB in 11.15 and 20.7, the compositions λA ◦ i′ ∈ Cor(A′, A) and λB ◦ i′ ∈
Cor(B′, B) represent the classes of (L∆A′, s∞

∐
tX) and (L∆B′, s∞

∐
tY ) in

Pic(A′ × X̄, A′ × (X∞

∐
ZY )) and Pic(B′ × Ȳ , B′ × (Y∞

∐
ZY )), respec-

tively. On the other hand, the inclusions jA and jB represent the classes
of (L∆A′, s∞

∐
sX) and (L∆B′ , s∞

∐
sY ), respectively. It follows that the dif-

ferences jA − λA ◦ i′ ∈ Cor(A′, A) and jB − λB ◦ i′ ∈ Cor(B′, B) represent
the classes of (OA′×X̄ , 1∞

∐
rX) and (OB′×Ȳ , 1∞

∐
rY ), respectively. (Cf.

exercise 11.16.)
The composition ψf ′ ∈ Cor(B′, B) represents (OB′×Ȳ , f

∗h−1). Since f ∗h
is a rational function on B ′ × Ȳ which is 1 on B′ × Y∞ and rY on B′ × ZY ,
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we have ψf ′ = λB ◦ i′ − jB in Pic(B′ × Ȳ , B′ × (Y∞
∐
ZY )).

Now the composition fψ ∈ Cor(A′, A) represents the push-forward of ψ
along H0(A

′ ×B/A′) → H0(A
′ ×A/A′). By 7.24, this represents the class of

(OA′×X̄ , f∗(1∞
∐
r−1
M )). By definition 7.22, the norm of h is a rational func-

tion which extends the trivialization f∗(1∞
∐
rM) to an affine neighborhood.

Since h is identically 1 on f−1(X∞) ⊂ Y∞, N(h) = 1 on A′ × X∞ by 7.23.
We will show that N(h) = rX on A′ × ZX in lemma 20.10 below. Hence
fψ = λAi

′ − jA in Cor(A′, A), as desired.

Lemma 20.10. Let f : U → V be a finite map with U and V normal.
Suppose that Z ⊂ V and Z ′ ⊂ U are reduced closed subschemes such that
the induced map Z ′ → Z is an isomorphism, and U → V is étale in a
neighborhood of Z ′.

If h ∈ O∗(U) is 1 on f−1(Z)−Z ′, then N(h)|Z and h|Z′ are identified by
Z ′ ∼= Z.

Proof. Suppose first that f has a section s : V → U sending Z to Z ′. Then
U ∼= s(U)

∐
U ′ and h is 1 on f−1(Z) ∩ U ′. In this case, the assertion follows

from the componentwise calculation of the norm N(h), together with 7.23.
In the general case, let U ′ ⊂ U be a neighborhood of Z ′ which is étale over

V , and let h′ ∈ O∗(U ′ ×V U) be the pullback of h. The graph Z ′′ ⊂ U ′ ×V U
of Z ′ → Z is isomorphic to Z ′, and U ′×V U

′ is an étale neighborhood of Z ′′ in
U ′×V U . By construction, h′ is 1 on U ′×V (f−1(Z)−Z ′′) and U ′×V U → U ′

has a canonical section sending Z ′ to Z ′′; in this case we have shown that
N(h′)|Z′ is identified with h|Z′. Since norms commute with base change,
we can identify N(h) with N(h′) under O∗(V ) ⊆ O∗(U ′). This proves the
lemma.

Proof of 20.6. From 20.7 and 20.8, we have maps s1 = (λA, 0) : F (A) ⊕
F (Y ) → F (X ′) and s2 = (ψ, λB) : F (B) → F (A′)⊕F (Y ′). In order for these
maps to form a chain homotopy from j to zero, we must have sd + ds = j.
This amounts to six equations, three of which come from the commutativity
of the trapezoid in 20.7. The other three, which involve ψ are: ψi ' 0,
jA ' i′λA − ψf and jB ' i′λB − f ′ψ. These are provided by 20.9.

Corollary 20.11. Let Q = Q(X, Y,A) be an upper distinguished square of
smooth schemes coming from a covering morphism of standard triples and
let S = {x1, . . . , xn} be a finite set of points in X.

Then there exists an affine neighborhood X ′ of S in X such that:
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• The induced square Q′ = Q(X ′, Y ′, A′) is upper distinguished, where
A′ = X ′ ∩ A and Y ′ = f−1(X ′);

• For any homotopy invariant presheaf with transfers F , the map
F (MV (Q)) → F (MV (Q′)) is chain homotopic to zero.

0 - F (X) - F (A) ⊕ F (Y ) - F (B) - 0

0 - F (X ′)
?

- F (A′) ⊕ F (Y ′)
?

- F (B′)
?

- 0

Proof. By 11.14, S has an affine neighborhood X ′ over which the triple
(X̄,X∞, Z) splits. We may shrink X ′ in order to assume that it is disjoint
from f(Y∞). Hence Y ′ = f−1(X ′) is finite over X ′, and hence affine, as well
as being contained in Y . The induced square Q′ is upper distinguished be-
cause it is obtained from Q by base change. Thus the hypotheses of theorem
20.6 are satisfied for Q′ → Q.
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Lecture 21

Zariski sheaves with transfers

With the technical results of the last lecture in hand, we are ready to prove
the following results.

Theorem 21.1. Let F be a homotopy invariant presheaf with transfers.
Then the Zariski sheaf FZar is homotopy invariant.

Theorem 21.2. Let F be a homotopy invariant presheaf with transfers.
Then FZar = FNis.

Combining 21.1 and 21.2, we obtain theorem 21.3 below, which is the
case n = 0 of theorem 13.7. This theorem does not require k to be perfect.

Theorem 21.3. If F is a homotopy invariant presheaf with transfers, then
the Nisnevich sheaf FNis is homotopy invariant.

We will prove theorems 21.1 and 21.2 in order, using a sequence of lemmas.
We make the running assumption that F is a homotopy invariant presheaf
with transfers. The Mayer-Vietoris sequence F (MV (Q)) associated to a
commutative square Q is defined in 20.5.

Lemma 21.4. Let U be an open subset of A1 and U = U1 ∪ U2 be a Zariski
covering of U . Then the complex F (MV (Q)) is split exact, where Q =
Q(U, U1, U2).

F (MV (Q)) : 0 - F (U) - F (U1) ⊕ F (U2) - F (U1 ∩ U2) - 0

In particular, F is a Zariski sheaf on A1.

193
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Proof. Setting Y∞ = P1 − U , Y ′
∞ = P1 − U1 and Z = U − U2, the identity of

P1 is a covering morphism (P1, Y ′
∞, Z) → (P1, Y∞, Z) of standard triples as

in example 20.2. Both triples are split over U itself by 11.13, so by theorem
20.6 with Q′ = Q, the complex F (MV (Q)) is chain contractible, i.e., split
exact.

Lemma 21.5. If F is a homotopy invariant Zariski sheaf with transfers, and
U is an open subset of A1, then Hn

Zar(U, F ) = 0 for n > 0.

Proof. If U = {U1, . . . , Un} is a finite cover of U , it follows from 21.4 and
induction on n that the following sequence is exact.

0 → F (U) → ⊕iF (Ui) → ⊕i,jF (Ui ∩ Uj) → . . .→ F (∩iUi) → 0

Hence the Čech cohomology of F satisfies Ȟ i(U , F ) = 0 for i > 0. But then
H1(U, F ) = Ȟ1(U, F ) = 0 by [Har77, Ex III.4.4]. Since dimU = 1, we must
also have H i(U, F ) = 0 for i > 1 (see [Har77, III.2.7]).

Exercise 21.6. Show that 21.4 and 21.5 fail for F = O∗
X if A1 is replaced

by an affine elliptic curve.

Lemma 21.7. If F is a homotopy invariant Nisnevich sheaf with transfers,
and U is an open subset of A1, then Hn

Nis(U, F ) = 0 for n > 0.

Proof. Since dimU = 1, we have Hn
Nis(U, F ) = 0 for n > 1. By [Mil80,

III.2.10], H1
Nis(U, F ) = Ȟ1(U, F ). Therefore we only need to show that

Ȟ1(U, F ) = 0.
Since F takes disjoint unions to direct sums, the Čech cohomology can

be computed using covering families V → X, instead of the more general
{Vi → X}. By 12.6, any such cover of U has a refinement U = {A, V },
where A ⊂ U is dense open, V → U is étale, and the square Q = Q(U, V, A)
is upper distinguished (see 12.5). Embed V in a smooth projective curve V̄
finite over P1, and set V∞ = V̄ − V . By construction (see 20.1), Q comes
from the covering morphism of standard triples (V̄ , V∞, Z) → (P1, U∞, Z),
where U∞ = P1 − U and Z = U − A. Since (P1, U∞, Z) splits over U by
11.13, theorem 20.6 with Q′ = Q implies that the complex F (MV (Q)) is
split exact. That is Ȟ1(U , F ) = 0. Passing to the limit over all such covers
yields Ȟ1(U, F ) = 0.

Lemma 21.8. Let F be a homotopy invariant presheaf with transfers. If X
is smooth and U ⊂ X is dense open, then FZar(X) → FZar(U) is injective.



195

Proof. As FZar is a sheaf it suffices to verify this locally. Let f ∈ FZar(X) be
a nonzero section which vanishes in FZar(U). Pick a point x ∈ X so that f is
nonzero in the stalk Fx = F (SpecOX,x). By shrinking X around x we may
assume that f ∈ F (X). By shrinking U , we may assume that f vanishes in
F (U) and hence in F (V ) for V = Spec(OX,x) ∩ U . By 11.1, f is nonzero in
F (V ), and this is a contradiction.

Proof of 21.1. We have to prove that i∗ : FZar(X × A1) → FZar(X) is an
isomorphism, where i : X → X × A1. It is enough to prove that i∗ is
injective. We may assume that X is connected and therefore irreducible. Let
γ : SpecK - X be the generic point. We get a diagram:

FZar(X × A1)
i∗ - FZar(X)

FZar(SpecK × A1)

(γ × 1)∗
? ∼=- FZar(SpecK)

γ∗
?

where the vertical maps are injective by 21.8. The bottom map is an isomor-
phism by 21.4 since we may regard F as a homotopy invariant presheaf with
transfers over the field K by 2.9:

FZar(A
1
K) = F (A1

K)
∼=- F (SpecK) = FZar(SpecK).

Thus i∗ is injective.

Let sZar(F ) be the separated presheaf (with respect to the Zariski topol-
ogy) associated to the presheaf F . It is defined by the formula:

sZar(F )(X) = F (X)/F0(X), F0(X) = colim
covers

{Ui→X}

kerF (X) →
∏

F (Ui).

Lemma 21.9. sZar(F ) is a homotopy invariant presheaf with transfers.

Proof. The homotopy invariance of sZarF is immediate from the fact that
homotopy invariance is preserved by quotient presheaves. The existence of
transfers is more difficult. Let Z ⊂ S ×X be an elementary correspondence
from S to X. We must show that the corresponding transfer F (X) → F (S)
sends F0(X) to F0(S), i.e., that the image of F0(X) vanishes at each stalk
F (SpecOS,s). It suffices to suppose S local, so that Z is semilocal. Hence
there is a semilocal subscheme X ′ of X with Z ⊂ S × X ′. But by 11.1,
F (X ′) injects into F (U) for each dense U ⊂ X ′, so F0(X

′) = 0. Hence
F0(X) → F (S) is zero, because it factors through F0(X

′) = 0.
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For the next few lemmas, S will be the semilocal scheme of a smooth
quasi-projective variety X at a finite set of points. Since any finite set of
points lies in an affine neighborhood, we may even assume that X is affine.
Clearly, S is the intersection of the filtered family of its affine open neigh-
borhoods Xα in X.

Lemma 21.10. Suppose that F is a homotopy invariant presheaf with trans-
fers. Then for any open covering S = U0 ∪ V there is an open U ⊂ U0 such
that S = U ∪V and the sequence F (MV (Q)) is exact, where Q = Q(S, U, V ):

0 → F (S) → F (U) ⊕ F (V ) → F (U ∩ V ) → 0.

Proof. We may assume that S is connected, since we can work separately
with each component. By assumption, there are open Ũ0, Ṽ in X such that
U0 = S ∩ Ũ0, V = S ∩ Ṽ . Since Ũ0 is open in X, there is an affine open Ũ
contained in Ũ0 which contains the finite set of closed points of U0. Setting
U = S ∩ Ũ , we have S = U ∪ V . We will show that F (MV (Q)) is exact for
the square Q = Q(S, U, V ).

We first suppose that k is an infinite field. For each α, set Uα =
Xα ∩ Ũ and Vα = Xα ∩ Ṽ . The canonical map from Q to the square
Qα = Q(Xα, Uα, Vα) induces a morphism of Mayer-Vietoris sequences,
F (MV (Qα)) → F (MV (Q)). It suffices to show that these morphisms
are chain homotopic to zero, because F (MV (Q)) is the direct limit of the
F (MV (Qα)).

Let Z ⊂ X denote the union of X − (Ũ ∩ Ṽ ) and the closed points of S.
For each Xα, we know by 11.17 that there is an affine neighborhood X ′

α of S
in Xα and a standard triple Tα = (X̄α, X∞,α, Zα) with X ′

α
∼= X̄α−X∞,α and

Zα = Xα∩Z. Set U ′
α = X ′

α∩Ũ and V ′
α = X ′

α∩ Ṽ . Since X̄α−(U ′
α∩V ′

α) lies in
X∞,α∪Zα, it lies in an affine open subset of X̄α (by definition 11.5). By 20.2,
the Zariski square Q′

α = Q(X ′
α, U

′
α, V

′
α) comes from a covering morphism of

triples T ′
α → Tα.

By 11.14, the triple Tα is split over an affine neighborhood X ′′
α of S in

X ′
α. Set U ′′

α = X ′′
α ∩ Ũ and V ′′

α = X ′′
α ∩ Ṽ , and form the square Q′′

α =
Q(X ′′

α, U
′′
α, V

′′
α ). Since X ′′

α and Ũ are affine, so is U ′′
α. By theorem 20.6, the

morphism F (MV (Q′
α)) → F (MV (Q′′

α)) is chain homotopic to zero. Since
F (MV (Qα)) → F (MV (Q)) factors through this morphism, it too is chain
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homotopic to zero.

0 - F (Xα) - F (Uα) ⊕ F (Vα) - F (Uα ∩ Vα) - 0

0 - F (X ′
α)

?
- F (U ′

α) ⊕ F (V ′
α)

?
- F (U ′

α ∩ V ′
α)

?
- 0

0 - F (X ′′
α)

?
- F (U ′′

α) ⊕ F (V ′′
α )

?
- F (U ′′

α ∩ V ′′
α )

?
- 0

0 - F (S)
?

- F (U) ⊕ F (V )
?

- F (U ∩ V )
?

- 0.

If k is finite, exactness follows by a transfer argument. Any element a
in the homology of F (MV (Q)) must vanish when we pass to Q ⊗k k

′ for
any infinite algebraic extension k′ of k. Since a must vanish for some finite
subextension k′0, a has exponent [k′0 : k]. Since [k′0 : k] can be chose to be a
power of any prime, we conclude that a = 0.

Lemma 21.10 corrects [CohTh, 4.23], which omitted the passage from U0 to
U .

Corollary 21.11. Let S ′ and S ′′ be semilocal schemes of a smooth quasi-
projective scheme X at finite sets of points, and set S = S ′ ∪ S ′′. Then the
Mayer-Vietoris sequence F (MV (Q)) is exact, where Q = Q(S, S ′, S ′′):

0 → F (S) → F (S ′) ⊕ F (S ′′) → F (S ′ ∩ S ′′) → 0.

Proof. Write S ′ as the intersection of opens Uα ⊂ S and S ′′ as the intersection
of opens Vβ ⊂ S. The sequence F (MV (Q)) is the direct limit of the sequences
F (MV (Qαβ)), where Qαβ = Q(S, Uα, Vβ). By 21.10, there are Uαβ ⊂ Uα such
that the sequences F (MV (Q(S, Uαβ, Vβ))) are exact. Hence the morphisms
from F (MV (Qαβ)) to F (MV (Q)) are zero on homology. Passing to the direct
limit, we see that the homology of F (MV (Q)) is zero, i.e., it is exact.

Note that the sequence 0 → F(S) → F(S ′) ⊕ F(S ′′) → F(S ′ ∩ S ′′) is
always exact when F is a Zariski sheaf on S. This is because it is the direct
limit of the exact sequences 0 → F(S) → F(Uα) ⊕ F(Vβ) → F(Uα ∩ Vβ)
associated to the family of open covers {Uα, Vβ} of S with S ′ ⊂ Uα and
S ′′ ⊂ Vβ.
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Lemma 21.12. Let S be the semilocal scheme of a smooth quasi-projective
scheme X at a finite set of points. Then FZar(S) = F (S).

Proof. By 11.1, F (S) = (sZarF )(S). Since sZarF is a homotopy invariant
presheaf with transfers by 21.9, we may replace F by sZarF and assume
that F is separated. We now proceed by induction on the number of the
closed points of S. Let S ′ be the local scheme at a closed point x of S,
and S ′′ the semilocal scheme at the remaining points. Consider the following
commutative diagram.

0 - F (S) - F (S ′) ⊕ F (S ′′) - F (S ′ ∩ S ′′)

0 - FZar(S)
?

- FZar(S
′) ⊕ FZar(S

′′)

=
?

- FZar(S
′ ∩ S ′′)

into
?

The top row is exact by 21.11, and we have noted that the bottom row is
exact because FZar is a Zariski sheaf. The right vertical map is an injection
because F is separated. The middle vertical map is the identity by induction.
A diagram chase shows that the left vertical map is an isomorphism, as
desired.

We need an analogue of lemma 6.16 for the Zariski topology, showing
that we can lift finite correspondences to open covers under mild conditions.

Lemma 21.13. Let W be a closed subset of X × Y , x ∈ X a point and
V ⊂ Y an open subset such that p−1(x) ⊂ {x} × V , where p : W → X is
the projection. Then there is a neighborhood U of x such that W ×X U is
contained in U × V .

Proof. The subset Z = W −W ∩ (X × V ) is closed, and x 6∈ p(Z). Because
p is a closed map, p(Z) is closed and U = X− p(Z) is an open neighborhood
of x. By construction, W ×X U is contained in U × V .

Corollary 21.14. Let W ∈ Cor(X, Y ) have support W and let p : W → X
be the projection. If x ∈ X and V ⊂ Y are such that p−1(x) ⊂ {x}×V , then
there is a neighborhood U of x and a canonical WU ∈ Cor(U, V ) such that
the following diagram commutes.

U WU

- V

X
? W - Y

?
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Proof. Writing W =
∑
ni[Wi], we may apply lemma 21.13 to each Wi. Since

Wi is finite over X, Wi ×X U is finite over U , so WU =
∑
ni[Wi ×X U ] is

the required finite correspondence. It is canonical because if U ′ ⊂ U , the
composition of U ′ ⊂ U with WU is WU ′ =

∑
ni[Wi ×X U

′].

Theorem 21.15. Let F be a homotopy invariant presheaf with transfers.
Then the Zariski sheaf FZar has a unique structure of presheaf with transfers
such that F → FZar is a morphism of presheaves with transfers.

Proof. By 21.9 we may assume that F is separated, i.e., that F (V ) ⊆ FZar(V )
for every V . We may also assume that X and Y are irreducible without loss
of generality.

We begin with a general construction, starting with an element f ∈
FZar(Y ) and a finite correspondence W from X to Y . Fix a point x ∈ X.
Since p : W → X is finite, the image of p−1(x) under the natural mapW → Y
consists of only finitely many points; let S denote the semilocal scheme of Y
at these points. Since F (S) = FZar(S) by 21.12, there is an open Vx ⊂ Y
such that fx = f |Vx

∈ FZar(Vx) lies in the subgroup F (Vx) ⊆ FZar(Vx). By
21.14, there is a neighborhood Ux of x such that W restricts to a finite cor-
respondence Wx from Ux to Vx. Let W∗(f)x denote the image of fx under
W∗

x : F (Vx) → F (Ux) ⊆ FZar(Ux).
Uniqueness. Suppose that F → FZar is a morphism of presheaves with

transfers. Given W ∈ Cor(X, Y ) and f ∈ FZar(Y ), it suffices to show that
W∗(f) ∈ FZar(X) is uniquely defined in some neighborhood of any point x.
The construction above shows that the image of W∗(f) in FZar(Ux) must
equal W∗(f)x, which is defined using only the sheaf structure on FZar and
the transfer structure on F .

Existence. Fix W ∈ Cor(X, Y ) and f ∈ FZar(Y ). In the construction
above, we produced a neighborhood Ux of every point x ∈ X, an open set
Vx in Y so that fx = f |Vx

belongs to the subgroup F (Vx) of FZar(Vx), and
considered the image W∗(f)x = W∗

x(fx) of fx in F (Ux) ⊆ FZar(Ux).
We first claim that the W∗(f)x agree on the intersections Uxx′ = Ux∩Ux′ .

The element W∗(f) ∈ FZar(X) will then be given by the sheaf axiom (see
figure 21.1).

Pick two points x, x′ ∈ X and set Uxx′ = Ux ∩ Ux′ , Vxx′ = Vx ∩ Vx′. Since
W ×X Ux lies in Ux × Vx for all x (by 21.13), it follows that W ×X Uxx′ lies
in Uxx′ × (Vx ∩ Vx′). Hence there is a finite correspondence Wxx′ from Uxx′
lifting both Wx and Wx′ in the sense of 21.14. That is, the middle square
commutes in figure 21.1.
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FZar(Y ) FZar(X)

∏
FZar(Vx)

?
� ⊃

∏
F (Vx)

W∗
Ux-

∏
F (Ux) ⊂ -

∏
FZar(Ux)

?

∏
FZar(Vxx′)

?
�into ∏

F (Vxx′)

? W∗
xx′-
∏

F (Uxx′)

?
-
∏

FZar(Uxx′)

?

Figure 21.1: The transfer map for FZar

Fix x ∈ X and choose V ⊂ Y , fV ∈ F (V ) and Ux as above. Because
F is separated we have F (V ) ⊂ FZar(V ), so the element fV ∈ F (V ) is
well defined. Given a dense V0 ⊂ V , the map F (V ) → F (V0) sends fV
to fV0

, because FZar(V ) ⊂ FZar(V0) by 21.8. Given U0 ⊂ Ux, the proof of
21.14 shows that the the canonical lift WU0

∈ Cor(U0, V ) is the composition
of the inclusion U0 ⊂ U with the canonical lift WU ∈ Cor(U, V ). Hence
FZar(Ux) → FZar(U0) sends the element W∗(f)x to the image of fV0

under
F (V0) → F (U0) ⊂ FZar(U0).

It is now easy to check using 21.8 that the maps W∗ are additive and give
FZar the structure of a presheaf with transfers.

Proof of 21.2. We have to prove that FZar = FNis. Let F and F ′′ denote
the kernel and cokernel presheaves of F → FNis, respectively. By 13.1, they
are presheaves with transfer whose associated Nisnevich sheaf is zero. Since
sheafification is exact, it suffices to show that F ′

Zar = F ′′
Zar = 0. That is, we

may assume that FNis = 0.
By 21.1 and 21.15, FZar is also a homotopy invariant presheaf with trans-

fers. Since FNis = (FZar)Nis, we may assume that F = FZar, i.e., that F is
a Zariski sheaf. Therefore it suffices to show that F (S) = 0 for every local
scheme S of a smooth variety X. Let S be the local scheme associated to a
point x of X.

By 12.7, it suffices to show that, for any upper distinguished square

B
i - Y

Q :

A

f
? i - X

f
?
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as in 12.5, the square F (Q×X S) is a pull-back.
Shrinking X around x, we may suppose by 11.17 that X is affine and

fits into a standard triple (X̄,X∞, Z) with A = X −Z. Shrinking Y around
the finite set f−1(x), we may also suppose by 11.17 that Y is affine, and fits
into a standard triple so that Q comes from a finite morphism of standard
triples in the sense of 20.1. Hence 20.11 implies that the map F (MV (Q)) →
F (MV (Q×X S)) is chain homotopic to zero.

0 - F (X) - F (A) ⊕ F (Y ) - F (B) - 0

0 - F (S)
?

- F (A ∩ S) ⊕ F (Y ×X S)
?

- F (B ×X S)
?

- 0

Taking the limit over smaller and smaller neighborhoods X of x, we see that
F (MV (Q ×X S)) is exact. But then F (Q ×X S) is a pullback square, as
claimed.
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Lecture 22

Contractions

Let F be a homotopy invariant presheaf. Define a new presheaf F−1 (known
as the contraction of F in the literature) by the formula:

F−1(X) = coker
(
F (X × A1) → F (X × (A1 − 0))

)
.

For r > 1 we define F−r to be (F1−r)−1.
Since the inclusion t = 1 : X ⊂ - X × (A1 − 0) ⊂ X × A1 is split by the

projectionX×A1 → X, we have a canonical decomposition F (X×(A1−0)) ∼=
F (X) ⊕ F (X)−1. Hence, F−1 is also homotopy invariant, and if F is a sheaf
then so is F−1. Here are some examples of this construction.

Example 22.1. If F = O∗
X then F−1 = Z, because O∗(X × (A1 − 0)) =

O∗(X) × {tn} for every integral X. By 4.1, there is a quasi-isomorphism
Z(1)−1 ' Z[−1].

More generally, the higher Chow groups CH i(−, n) are homotopy invari-
ant (see p. 149) and their contractions are given by the formula:

CH i(X, n)−1
∼= CH i−1(X, n− 1). (22.1.1)

This follows from the the Localization Sequence (see p. 149):

CH i−1(X, n)
(t=0)∗- CH i(X×A1, n) → CH i(X×(A1−0), n) → CH i−1(X, n−1),

which is split as above by the pullback along t = 1 (using 19.13).
Theorem 19.1 allows us to rewrite the formula in (22.1.1) as:

Hm,i(X,Z)−1 = Hm
Zar(X,Z(i))−1

∼= Hm−1
Zar (X,Z(i− 1)) = Hm−1,i−1(X,Z).

This yields the formula Z(i)−1 ' Z(i − 1)[−1] in the derived category, and
in DM.

203
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Example 22.2. We will see in the next lecture (in 23.1 and 23.8) if F is a
homotopy invariant Zariski sheaf with transfers then Hn(−, F ) is homotopy
invariant and Hn

Zar(−, F )−1
∼= Hn

Zar(−, F−1).

Example 22.3. Suppose that 1/n ∈ k, and let M be a locally constant n-
torsion sheaf, such as µn. The argument of 22.1 applied to étale cohomology,
shows that

Hm
ét (X,M ⊗ µn)−1

∼= Hm−1
ét (X,M).

Exercise 22.4. Let U be the standard covering of X × (An − 0) by U1 =
X × (A1 − 0) × An−1, ..., Un = X × An−1 × (A1 − 0). If F is homotopy
invariant and n ≥ 2, show that Ȟ0(U , F ) ∼= F (X), Ȟn−1(U , F ) ∼= F−n(X),
and that Ȟr(U , F ) = 0 for all other r.

Now suppose that F is a Zariski sheaf, and that its cohomology groups
are also homotopy invariant. Show that, for all m and n > 0, the cohomology
with supports satisfies:

Hm
X×{0}(X × An, F ) ∼= Hm−n(X,F )−n.

Hint : Use the Čech spectral sequence Ȟp(U , HqF ) ⇒ Hp+q(X×(An−0), F ).

Proposition 22.5. Let F be a homotopy invariant presheaf with transfers.
Then (FNis)−1

∼= (F−1)Nis.

Proof. By 13.1 and 21.3, FNis is a homotopy invariant sheaf with trans-
fers. By inspection, the natural map (F−1)Nis → (FNis)−1 is a morphism of
presheaves with transfers. By 11.2 (applied to the kernel and cokernel), it
suffices to show that F−1(S) = (FNis)−1(S) when S = SpecE for a field E.
The left side is F (A1

E − 0)/F (A1
E) by definition, while the right side equals

FNis(A1
E − 0)/FNis(A1

E). These are equal by 21.4 and 21.2.

In the rest of this lecture, we will compare F−1 to various sheaves F(Y,Z),
which we now define.

Definition 22.6. Given a closed embedding i : Z ⊂ - Y , and a presheaf F ,
we define a Nisnevich sheaf F(Y,Z) on Z as follows. Let K = K(Y,Z) denote
the presheaf cokernel of F → j∗j

∗F , where j : V ⊂ - Y is the complement
of Z. That is, K(U) is the cokernel of F (U) → F (U ×Y V ) for all U . We set
F(Y,Z) = (i∗K)Nis.

Since sheafification is exact, there is a canonical exact sequence of sheaves

FNis → (j∗j
∗F )Nis → i∗F(Y,Z) → 0. (22.6.1)
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Example 22.7. If Z = {z} is a closed point on Y , then the value at Z
of F(Y,Z) is the cohomology with supports, H1

Z(Y, FNis). Indeed, if S is the
Hensel local scheme of Y at Z then F(Y,Z)(Z) is the cokernel of FNis(S) →
FNis(S − Z, F ), i.e., H1

Z(S, FNis). But this equals H1
Z(Y, FNis) by excision

[Har77, Ex.III.2.3]. Similarly, we haveHn(−, F )(Y,Z)
∼= Hn+1

Z (Y, F ) for n > 0.
This follows from excision and the exact sequence

Hn−1(S, F ) → Hn−1(U, F ) → Hn
z (S, F ) → 0.

Example 22.8. Fix a Nisnevich sheaf F and consider the presheaf Hn(−, F ).
We claim that if n > 0 then

Hn(−, F )(Y,Z) = i∗Rnj∗(F ).

Indeed, in 22.6.1 we have Hn(−, F )Nis = 0, and Rnj∗(F ) is the sheaf on Y
associated to the presheaf j∗j

∗Hn(−, F ) = j∗H
n(−, F |V ). Hence

i∗H
n(−, F )(Y,Z)

∼= (j∗j
∗Hn(−, F ))Nis = Rnj∗(F ).

Now apply i∗ and observe that i∗i∗ is the identity.

Example 22.9. Let i : S ⊂ - S × A1 be the embedding i(s) = (s, 0), with
complement S × (A1 − 0). By definition, F−1(U) = K(U × A1) where the
cokernel presheaf K is defined in 22.6. The adjunction yields a natural map
from K(U × A1) to i∗i

∗K(U × A1) = i∗K(U). That is, we have a natural
morphism of sheaves on S:

(F−1)Nis → F(S×A1,S×0).

Proposition 22.10. Let F be a homotopy invariant presheaf with transfers.
Then (F−1)Nis|S ∼= F(S×A1,S×0) for all smooth S.

Proof. We need to compare F−1 and j∗j
∗F/F at a sufficiently small neighbor-

hood of any point s of any smooth affine S. We will use the standard triple
T = (P1

S → S, S × {∞}, S × {0}), which is split over S × A1 by 11.12. For
each affine neighborhood U of S×0 in S×A1, set TU = (P1

S,P
1
S−U, S×{0}).

We claim that by shrinking S we can make TU into a standard triple. At
issue is whether or not (P1

S −U)∪ (S×{0}) lies in an affine open subscheme
of P1

S. Since the fiber Us over s is open in P1
s, there is an affine open V ⊂ P1

k

so that s ×k V contains both {0} and the finite set P1
s − Us. Hence the
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complements of U and S×V in P1
S intersect in a closed subset, disjoint from

the fiber P1
s. Since P1

S is proper over S, we may shrink S about s (keeping S
affine) to assume that the complements are disjoint. Hence the affine S × V
contains the complement P1

S − U as well as S × {0}, as claimed.

Now the identity on P1
S is a finite morphism of standard triples TU → T

in the sense of 20.1 by 20.2. Setting U0 = U−(S×{0}), the square Q coming
from this is:

U0
- U

S × (A1 − 0)
? j- S × A1

?

By the standard triples theorem 20.6 applied to Q′ = Q, the complex
F (MV (Q)) is split exact:

0 → F (S × A1) → F (S × (A1 − 0)) ⊕ F (U) → F (U0) → 0.

Since F is homotopy invariant, this implies that F (U) → F (U0) is injective
and that F−1(S) ∼= F (U0)/F (U). Since j : S × (A1 − 0) ↪→ S × A1 has
j∗j

∗F (U) = F (U0), the right side is j∗j
∗F/F (U). Passing to the limit over

U and S, we get the statement.

Lemma 22.11. Let f : Y → X be an étale morphism and Z a closed
subscheme of X such that f−1(Z) → Z is an isomorphism. Then for every
presheaf F :

F(X,Z)

∼=- F(Y,f−1(Z)).

Proof. Since this is to be an isomorphism of Nisnevich sheaves, we may
assume that X is Hensel local, and that Z is not empty. Then Y is
Hensel semilocal; the assumption that f−1(Z) ∼= Z implies that Y is lo-
cal and in fact Y ∼= X. In this case the two sides are the same, namely
F (X − Z)/F (X) ∼= F (Y − Z)/F (X).

Lemma 22.11 uses the Nisnevich topology in a critical way. For the Zariski
topology, the corresponding result requires F to be a homotopy invariant
presheaf with transfers, and may be proven along the same lines as 22.10;
see [CohTh, 4.13].
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Theorem 22.12. Let i : Z → X be a closed embedding of smooth schemes
of codimension 1, and F a homotopy invariant presheaf with transfers. Then
there exists a covering X = ∪Uα and isomorphisms on each Uα ∩ Z:

F(Uα,Uα∩Z)
∼= (F−1)Nis.

That is, for each α there is an exact sequence of Nisnevich sheaves on Uα:

0 → Fα → jα∗j
∗
αFα → i∗(F−1)Nis → 0.

Here Fα = (F |Uα
)Nis and jα denotes the inclusion Uα ∩ (X − Z) ⊂ - Uα.

Moreover, for every smooth T we also have isomorphisms on (Uα∩Z)×T :

F(Uα×T,(Uα∩Z)×T )
∼= (F−1)Nis.

Proof. We have to show that every smooth pair (X,Z) of codimension one
is locally like (S×A1, S× 0). If dim(Z) = d then, by shrinking X about any
point (and writing X instead of U), we may find an étale map f : X → Ad+1

such that Z ∼= f−1(Ad).

Z ⊂
i - X

Ad

f
?

⊂ - Ad+1∼= Ad × A1

f
?

By construction, Z × A1 is étale over Ad × A1. Form the pullback X ′ =
X ×Ad+1 Z × A1 and note that both X ′ → X and X ′ → Z × A1 are étale
with Z ′ = Z ×Ad Z lying above Z and Z × 0, respectively. Since Z ′ → Z is
étale and has a canonical section ∆, we can write Z ′ = ∆(Z)

∐
W . Setting

X ′′ = X −W , both X ′′ → X and X ′′ → Z × A1 are étale, with ∆(Z) the
inverse image of Z and Z× 0, respectively. Applying lemma 22.11 twice and
then 22.10, we obtain the required isomorphisms of Nisnevich sheaves on Z:

F(X,Z)
�

∼=
F(X′′ ,∆(Z))

∼=- F(Z×A1,Z×0)
∼= (F−1)Nis.

To see that the sequence of sheaves is exact, we only need to observe that
Fα injects into j∗j

∗Fα by lemma 21.8, since Fα = (F |Uα
)Zar by 21.2.

In order to prove the final assertion, it suffices to replace Z, X and Ad

with Z × T , X × T and Ad × T in the above argument.
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Porism 22.13. The same proof shows that if Z → X is a closed embedding
of smooth schemes of codimension r, then locally F(X,Z)

∼= F(Z×Ar,Z×0).

Example 22.14. Let M be a locally constant n-torsion étale sheaf and
consider F (X) = H1(X,M ⊗ µn). By 22.3, (F−1)Nis ∼= M . By [Mil80, p.
243], we also have F(X,Z)

∼= M . In this case, the isomorphisms F(X,Z)
∼=

(F−1)Nis of 22.12 hold for any cover of X.



Lecture 23

Homotopy Invariance of
Cohomology

We finally have all the tools to prove 13.7 which we restate here for the
convenience of the reader.

Theorem 23.1. Let k be a perfect field and F a homotopy invariant presheaf
with transfers. Then Hn

Nis(−, FNis) is a homotopy invariant presheaf (with
transfers) for every n.

Proof. It suffices to prove that the Hn
Nis(−, FNis) are homotopy invariant,

since we already know that they are presheaves with transfers from 13.4. We
shall proceed by induction on n. The case n = 0 was completed in Theorem
21.3, so we know that FNis is homotopy invariant. Hence, we may assume
that F = FNis.

Consider X × A1 π- X. Since π∗F (U) = F (U × A1) ∼= F (U), we have
π∗F = F . By induction we know that Rqπ∗F = 0 for 0 < q < n. By theorem
23.2 below, Rnπ∗F = 0 as well. Hence the Leray spectral sequence

Hp
Nis(X,R

qπ∗F ) ⇒ Hp+q
Nis (X × A1, F )

collapses enough to yield Hn
Nis(X,F ) ∼= Hn

Nis(X × A1, F ). That is, the
presheaf Hn

Nis(−, F ) is homotopy invariant.

We have thus reduced the proof of 23.1 to the following theorem. Recall
from [EGA4, 17.5] that the Hensel local scheme Spec(R) of a smooth variety
at some point is formally smooth, i.e., geometrically regular.

209
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Theorem 23.2. Let k be a perfect field, and F a homotopy invariant Nis-
nevich sheaf with transfers such that Rqπ∗F = 0 for 0 < q < n. If S is a
formally smooth Hensel local scheme over k, then Hn

Nis(S × A1, F ) = 0.

The requirement that k be perfect comes from the following fact (see
[EGA0, 19.6.4]): if k is perfect, every regular local k-algebra is formally
smooth over k.

Proof. We will proceed by induction on d = dim(S). If d = 0 then S =
Spec(K) for some field K; in this case, Hn

Nis(S × A1, F ) = Hn
Nis(A

1
K, F ) = 0

by 21.7. Here we have used exercise 2.9 to regard F as a homotopy invariant
presheaf with transfers over K.

If dim(S) > 0, and U is any proper open subscheme, then Rqπ∗F |U = 0 for
0 < q ≤ n, by induction on d. Thus the canonical map π|∗U : Hn

Nis(U, F ) →
Hn
Nis(U ×A1, F ) is an isomorphism, and its inverse is induced by the restric-

tion s|U of the zero section s : S → S × A1 to U . From the diagram

Hn
Nis(S × A1, F )

j∗- Hn
Nis(U × A1, F )

0 =Hn
Nis(S, F )

s∗

?
- Hn

Nis(U, F )

s|∗U ∼=
?

we see that the top map j∗ is zero for all such U .

Now S = Spec(R) for a regular local ring (R,m); choose r ∈ m− m
2 and

set Z = Spec(R/r), U = S − Z. Because Z is regular and k is perfect, Z
is formally smooth over k. For this choice, the map j∗ is an injection by
proposition 23.3 below. Hence the source Hn

Nis(S × A1, F ) of j∗ must be
zero.

Proposition 23.3. Let k be a perfect field and S the Hensel local scheme
of a smooth scheme X at some point. Let U be the complement of a smooth
divisor Z on S. Under the inductive assumption that Rqπ∗F = 0 for all
0 < q < n, the following map is a monomorphism:

Hn
Nis(S × A1, F ) → Hn

Nis(U × A1, F ).
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Proof. Let i and j denote the inclusions of Z × A1 and U × A1 into S × A1

respectively. Regarding F as a sheaf on S × A1, the map in question factors
as:

Hn
Nis(S × A1, F )

τ- Hn
Nis(S × A1, j∗j

∗F )
η- Hn

Nis(U × A1, j∗F ).

We first show that the right-hand map η is injective. This will follow from
23.4 below, once we have shown that Rqj∗F = 0 for 0 < q < n. The
inductive assumption implies that Hq(F ) is a homotopy invariant presheaf
with transfers. Since q > 0 we have Hq(F )Nis = 0. Now see from 22.5 that
(Hq(F )−1)Nis ∼= (Hq(F )Nis)−1 = 0. By 22.8 and 22.12 (with T = A1) we
have

Rqj∗F ∼= i∗H
q(F )(S×A1,Z×A1)

∼= i∗(H
q(F )−1)Nis = 0.

We now prove that the left-hand map τ is injective as well. Since F is a
homotopy invariant presheaf with transfers, F injects into j∗j

∗F by lemma
21.8. By 22.6, there is a short exact sequence of Nisnevich sheaves on S×A1:

0 → F → j∗j
∗F → i∗F(S×A1,Z×A1) → 0.

Since S is local, theorem 22.12 (with T = A1) implies that F(S×A1,Z×A1)
∼= F−1

on Z × A1. Consider the associated long exact sequence in cohomology.

Hn−1(S × A1, j∗j
∗F ) → Hn−1(Z × A1, F−1)

∂-

Hn(S × A1, F ) → Hn(S × A1, j∗j
∗F ) → Hn(Z × A1, F−1)

It suffices to show that the mapHn−1(S×A1, j∗j
∗F ) → Hn−1(Z×A1, F−1)

is onto. If n > 1, this follows from the homotopy invariance of F−1 and the
fact that Z is Hensel local:

Hn−1(Z × A1, F−1) ∼= Hn−1(Z, F−1) = 0.

If n = 1, we argue as follows. Since F and F−1 are homotopy invariant,
the two left horizontal maps are isomorphisms in the commutative diagram:

F (U)
∼=- F (U × A1) �=

H0(S × A1, j∗j
∗F )

F−1(Z)

22.12 onto

? ∼=- F−1(Z × A1)
?

�= H0(Z × A1, F−1).
?
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The left vertical map is onto by 22.12, because S is local. It follows that the
right vertical map is onto, as desired.

Lemma 23.4. Let G be any sheaf on U × A1 such that Rqj∗G = 0 for
0 < q < n. Then the canonical map Hn(X × A1, j∗G) → Hn(U × A1, G) is
an injection.

Proof. Consider the Leray spectral sequence

Hp(X × A1, Rqj∗G) =⇒ Hp+q(U × A1, G).

Using the assumption on the vanishing of the Rqj∗G, it is easy to see that
there is a short exact sequence:

0 → Hn(X × A1, j∗G) → Hn(U × A1, G) → H0(X × A1, Rnj∗G).

We have now completed the proof of homotopy invariance of the coho-
mology sheaves, which was promised in lecture 13 (as theorem 13.7).

For the rest of this lecture, we fix a homotopy invariant Zariski sheaf with
transfers F over a perfect field k. Because we have proven theorem 13.7, we
may use proposition 13.8, which says that H∗

Zar(X,F ) ∼= H∗
Nis(X,F ). We

will sometimes supress the subscript and just write H∗(X,F ).

Corollary 23.5. If S is a smooth semi-local scheme over k and F is a
homotopy invariant sheaf with transfers, then for all n > 0:

• Hn(S, F ) = 0;

• Hn(S × T, F ) = 0 for every open subset T of A1
k.

Proof. (Cf. 13.8.) By 23.1, each Hn(−, F ) is a homotopy invariant presheaf
with transfers. If E is the field of fractions of S, then Hn(SpecE, F ) = 0 for
n > 0 because dimE = 0. By 11.1, this implies that Hn(S, F ) = 0.

Now Hn(X) = Hn(X × T, F ) is also a homotopy invariant presheaf with
transfers by 23.1, and Hn(S) injects into Hn(SpecE) = Hn(Spec(E)×T, F )
by 11.1. By 2.9 and 21.7, this group vanishes for n > 0.

Example 23.6. Let (R,m) be a discrete valuation ring containing k, with
field of fractions E and residue field K = R/m. Setting S = SpecR and
Z = SpecK, theorem 22.12 yields F(S,Z)

∼= F−1 and an exact sequence of
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Nisnevich sheaves on S, 0 → F → j∗F → i∗F−1 → 0. Since H1
Nis(S, F ) = 0

by 23.5, the Nisnevich cohomology sequence yields the exact sequence:

0 → F (SpecR) → F (SpecE) → F−1(SpecK) → 0.

More generally, if R is a semilocal principal ideal domain with maximal ideals
mi, the same argument (using 23.5) yields an exact sequence:

0 → F (SpecR) → F (SpecE) → ⊕iF−1(SpecR/mi) → 0.

Exercise 23.7. If X is a smooth curve over k, show that F−1(x) ∼= H1
x(X,F )

for every closed point x ∈ X. Conclude that there is an exact sequence

0 → F (X) → F (Spec k(X)) →
⊕

x∈X

F−1(x) → H1
Zar(X,F ) → 0.

Proposition 23.8. Let k be a perfect field and F a homotopy invariant
Zariski sheaf with transfers. Then Hn(−, F )−1

∼= Hn(−, F−1) for all smooth
X. That is, there is a natural isomorphism:

Hn
Zar(X × (A1 − {0}), F ) ∼= Hn

Zar(X,F ) ⊕Hn
Zar(X,F−1).

Proof. Write T for A1 − {0} and consider the projection π : X × T → X.
Let S be the local scheme at a point x of X. The stalk of Rqπ∗F at x
is Hq(S × T, F ), which vanishes for q > 0 by 23.5. Therefore the Leray
spectral sequence degenerates to yield Hn(X × T, F ) ∼= Hn(X, π∗F ). But
π∗F ∼= F ⊕ F−1 by the definition of F−1.

Example 23.9. Let F be a homotopy invariant Zariski sheaf with transfers.
Combining proposition 23.8 with 23.1 and 22.4, we get the formula:

Hn
Z×{0}(Z × Ar, F ) ∼= Hn−r(Z, F−r).

If Z = Spec(K) for a field K, this shows that Hn
{0}(A

r
K , F ) vanishes for n 6= r,

while the value of Hr
{0}(A

r
K, F ) at Spec(K) is F−r(Spec(K)).

Lemma 23.10. Let S be a d-dimensional regular local scheme over a perfect
field k. If F is a homotopy invariant sheaf with transfers and Z is the closed
point of S, then Hn

Z(S, F ) vanishes for n 6= d, while Hd
Z(S, F ) ∼= F−d(Z).
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Proof. Since the case d = 0 is trivial, and d = 1 is given in example 23.6,
we may assume that d > 1. Write U for S − Z. Since F (S) injects into
F (U) by 11.1, H0

Z(S, F ) = 0. For n > 0, we may use Hn−1(−, F ), which
is a homotopy invariant presheaf with transfers by 23.1. By 22.11 and two
applications of 22.7, we have

Hn
Z(S, F ) ∼= Hn−1(−, F )(S,Z)

∼= Hn−1(−, F )(Z×Ad,Z×0)
∼= Hn

Z×0(Z × Ad, F ).

By 23.9, this group vanishes for n 6= d, and equals F−d(Z) if n = d.

If z is a point of X with closure Z, and A is an abelian group, let (iz)∗(A)
denote the constant sheaf A on Z, extended to a sheaf on X.

Theorem 23.11. Let X be smooth over k, and F a homotopy invariant
Zariski sheaf with transfers. Then there is a canonical exact sequence of
Zariski sheaves on X:

0 → F →
∐

codim z=0

(iz)∗(F ) →
∐

codim z=1

(iz)∗(F−1) → . . .→
∐

codim z=r

(iz)∗(F−r) → . . .

Proof. It suffices to assume that X is local with generic point x0 and closed
point xd, and construct the exact sequence

0 → F (S) → F (x0) →
∐

codim z=1

(F−1(z)) → . . .→
∐

codim z=r

(F−d(z)) → . . .→ F (xd) → 0.

When dim(X) = 1 this is 23.6, so we may assume that d = dim(X) > 1. For
any r ≤ d, let Hn(Xr, F ) denote the direct limit of the groups Hn(X−T, F )
with codim(T ) > r. For any Zariski sheaf F , and r > 0, the direct limit
(over T and all Z of codimension r) of the long exact cohomology sequences
H∗
Z(X−T, F ) → H∗(X−T, F ) → H∗(X−Z−T, F ) yields an exact sequence

0 →
∐

codim z
=r

H0
z (Xz, F ) → F (Xr) → F (Xr−1) →

∐

codim z
=r

H1
z (Xz, F ) → H1(Xr, F ) . . .

Each Xz is an r-dimensional local scheme. Hence the groups Hn
z (Xz, F )

vanish except for n = r by 23.10, and Hr
z (Xz, F ) ∼= F−r(z). For r > 0 this

yields:
F (X) ∼= F (Xd−1) ∼= · · ·F (Xr) ∼= · · · ∼= F (X1);

0 = Hr(X,F ) ∼= Hr(Xd−1, F ) ∼= · · · ∼= Hr(Xr+1, F );
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and (since X0 is a point)

0 = Hr(X0, F ) ∼= Hr(X1, F ) ∼= · · · ∼= Hr(Xr−1, F ).

Using these, we get exact sequences:

0 → F (X) → F (x0) →
∐

codim z=1

H1
z (Xz, F ) → H1(X1, F ) → 0;

and (for 0 < r ≤ d)

0 → Hr−1(Xr−1, F ) →
∐

codim z=r

Hr
z (Xz, F ) → Hr(Xr, F ) → 0.

Splicing these together (and using 23.10) yields the required exact sequence.

Remark 23.12. Since the sheaves (iz)∗(F−r) are flasque, theorem 23.11 gives
a flasque resolution of the sheaf F . Taking global sections yields a chain
complex which computes the cohomology groups Hn(X,F ). This shows that
the coniveau spectral sequence

Ep,q
1 =

⊕

codim x=p

Hp+q
z (X,F ) =⇒ Hp+q(X,F )

degenerates, with Ep,0
2 = Hp(X,F ) and Ep,q

2 = 0 for q 6= 0.
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[Ser65] J.-P. Serre, Algèbre locale. Multiplicités, Springer-Verlag, Berlin,
1965.
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