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ABsTRACT. This survey describes the algebraic K-groups of local and global fields, and
the K-groups of rings of integers in these fields. We have used the result of Rost and
Voevodsky to determine the odd torsion in these groups.

INTRODUCTION

The problem of computing the higher K-theory of a number field F', and of its rings
of integers Op, has a rich history. Since 1972, we have known that the groups K,,(OF)
are finitely generated [Q3], and known their ranks [Bo], but have only had conjectural
knowledge about their torsion subgroups [Li] [Li2] [Bei] until 1997 (starting with [We2]).
The resolutions of many of these conjectures by Suslin, Voevodsky, Rost and others have
finally made it possible to describe the groups K,(Op). One of the goals of this survey
is to give such a description; here is the odd half of the answer (the integers w;(F') are
even, and are defined in section 2):

Theorem 0.1. Let Og be a ring of S-integers in a number field F. Then K,(Og) &
K, (F) for each odd n > 3, and these groups are determined only by the number ry, 79
of real and complex places of F' and the integers w;(F):

a) If F is totally imaginary, K,(F) 2 72" & Z/w;(F);

b) IF F has ry > 0 real embeddings then, setting i = (n+1)/2,
7"t & 7, Jwi(F), n=1 (mod 8)
7" @ L)2w;(F) ® (Z/2)"~1, n =3 (mod 8)

Kau(Os) 2 Kn(F)={ 7 / 'LE ) =
7 @ 1/ 5w (F), n=>5 (mod 8)
7" @ L/w;(F), n =7 (mod 8)

In particular, K,,(Q) 2 Z for alln = 5 (mod 8) (as w; = 2; see 2.11). More generally,
if F' has a real embedding and n = 5 (mod 8), then K, (F) has no 2-primary torsion
(because 3w;(F) is an odd integer; see 2.8).

The proof of 0.1, will be given in 6.2, 6.5, and section 7 below.
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We also know the order of the groups K,,(Z) when n = 2 (mod 4), and know that
they are cyclic for n < 20,000 (see 7.12 — conjecturally, they are cyclic for every n = 2).
If By, denotes the k® Bernoulli number (2.10), and ¢ denotes the numerator of By /4k,
then |Ky,_o(Z)| is: ¢ for k even, and 2¢j, for k odd; see 7.11.

Although the groups K4x(Z) are conjectured to be zero, at present we only know
that these groups have odd order, with no prime factors less than 107. This conjecture
follows from, and implies, Vandiver’s conjecture in number theory (see 8.5 below). In
Table 0.2, we have summarized what we know for n < 20, 000; conjecturally the same
pattern holds for all n (see 8.6-8).

Ko(Z) =7 KS(Z) = (0?) Klﬁ(Z) = (0?) Kga(Z) (0?) for a > 1
K\(Z)=17/2 Ko(Z) =LDL/2 Ki7(Z)=Z®L/2 Kgoy1(Z)=ZSL/2
KQ(Z) :Z/2 KlO(Z) :Z/2 Kls(Z) :Z/2 K8a+2(Z) Z/262a+1
Kg(Z) = Z/48 Kll(Z) = Z/1008 Klg(Z) = Z/528 Ksa+3(Z) Z/2’U)4a+2
K4(2) =0 Ki13(2) = (07)  Kso(Z) = (07) Kgat4(2Z) = (07)

K5(Z) == Z Klg(Z) == Z Kgl(Z) - Z K8a+5(Z) Z

K(;(Z) =0 K14(Z) =0 KQQ(Z) = Z/691 K8a+6(Z) Z/Cza+2
K72(Z) =7./240 K15(Z) = 7/480  Ki3(Z) = Z./65520  Kgai7(Z) = Z/Wsq 4.

Table 0.2. The groups K, (Z), n < 20,000. The notation ‘(0?)’ refers to a
finite group, conjecturally zero, whose order is a product of irregular primes > 107.

For n < 3, the groups K,,(Z) were known by the early 1970’s; see section 1. The right
hand sides were also identified as subgroups of K, (Z) by the late 1970’s; see sections 2
and 3. The 2-primary torsion was resolved in 1997 (section 7), but the rest of Table 0.2
only follows from the recent Voevodsky-Rost theorem (sections 6 and 8).

The K-theory of local fields, and global fields of finite characteristic, is richly inter-
connected with this topic. The other main goal of this article is to survey the state of
knowledge here too.

In section 1, we describe the structure of K,,(Op) for n < 3; this material is relatively
classical, since these groups have presentations by generators and relations.

The cyclic summands in theorem 0.1 are a special case of a more general construction,
due to Harris and Segal. For all fields F', the odd-indexed groups Ky;_1(F) have a finite
cyclic summand which up to a factor of 2 is detected by a variation of Adams’ e-invariant.
These summands are discussed in section 2.

There are also canonical free summands related to units, discovered by Borel, and
(almost periodic) summands related to the Picard group of R, and the Brauer group
of R. These summands were first discovered by Soulé, and are detected by étale Chern
classes. These summands are discussed in section 3.

The K-theory of a global field of finite characteristic is handled in section 4. In this
case, there is a smooth projective curve X whose higher K-groups are finite, and are
related to the action of the Frobenius on the Jacobian variety of X. The orders of these
groups are related to the values of the zeta function (x(s) at negative integers.

The K-theory of a local field E containing Q, is handled in section 5. In this case,
we understand the p-completion, but do not understand the actual groups K, (E).
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In section 6, we handle the odd torsion in the K-theory of a number field. This
is a consequence of the Voevodsky-Rost theorem. These techniques also apply to the
2-primary torsion in totally imaginary number fields, which gives 0.1(a).

The 2-primary torsion in real number fields (those with an embedding in R) is handled
in section 7; this material is taken from [RW], and uses Voevodsky’s theorem in [V].

Finally, we consider the odd torsion in Ks;(Z) in section 8; the odd torsion in
Ky;—1(Z) is given by 0.1. The torsion occurring in the groups Ks;(Z) only involves
irregular primes, and is determined by Vandiver’s conjecture (8.5). The lack of torsion
for regular primes was first guessed by Soulé in [So].

The key technical tool which makes calculations possible for local and global fields
is the motivic spectral sequence, from motivic cohomology H}, to algebraic K-theory.
With coefficients Z/m, the spectral sequence for X is:

(0.3) EYY = HY (X2 /m(~q) = K_p_q(X: Z/m).

This formulation assumes that X is defined over a field [SV]; a similar motivic spectral
sequence was established by Levine in [Le, (8.8)] over a Dedekind domain, in which
the group H7p(X,Z(3)) is defined to be the (2 — n)th hypercohomology on X of the
complex of higher Chow group sheaves z*.

When 1/m € F, Voevodsky and Rost proved in [V] (m = 2¥) and [V03] (m odd)
that HY, (F,Z/m(i)) is isomorphic to HE (F, u&*) for n < i and zero if n > i. That is,
the Ej-terms in this spectral sequence are just étale cohomology groups.

If X = Spec(R), where R is a Dedekind domain with F = frac(R) and 1/m € R,
a comparison of the localization sequences for motivic and étale cohomology (see [Le]
and [So, p.268]) shows that H% (X, Z/m(i)) is: H% (X, p&') for n < i; the kernel of
HZ (X, p8") — HL(F, u8') for n =i+ 1; and zero if n > i+ 2. That is, the Ea-terms in
the fourth quadrant are étale cohomology groups, but there are also modified terms in
the column p = +1. For example, we have E)~ " = Pic(X)/m. This is the only nonzero
term in the column p = +1 when X has étale cohomological dimension at most two for
£-primary sheaves (cdy(X) < 2), as will often occur in this article.

Writing Z/£°° (i) for the union of the étale sheaves Z/£°°(¢), we also obtain a spectral
sequence for every field F":

HYU(F;Z/t*(—q)) forq <p<0,

= K_,_ (F;Z/6>°),
0 otherwise P q( /£%)

(0.4) EP9= {

and a similar spectral sequence for X which can have nonzero entries in the column
p=+1. If edy(X) < 2 it is:

HY (X;Z/6°(—q)) for ¢ <p<0,
(05)  EY?=1 Pic(X)®Z/t> for (p,q)=(+1,1), = K_p_o(X;Z/£%).

0 otherwise



4 C. WEIBEL

Periodicity for £ = 2 0.6. Pick a generator v{ of 7°(S% Z/16) = Z/16; it defines a
generator of Kg(Z[1/2];Z/16) and, by the edge map in (0.3), a canonical element of
HY,(Z[1/2]; p$) which we shall also call v}. If X is any scheme, smooth over Z[1/2],
the multiplicative pairing of v (see [FS] [Le]) with the spectral sequence converging
to K,(X;Z/2) gives a morphism of spectral sequences EP-? — EP~%44=% from (0.3) to
itself. For p < 0 these maps are isomorphisms, induced by EY? = HY Y(X,Z/2); we
shall refer to these isomorphisms as periodicity isomorphisms.

Since the Voevodsky-Rost result has not been published yet (see [V03]), it is appro-
priate for us to indicate exactly where it has been invoked in this survey. In addition
to 0.1, 0.2, (0.4) and (0.5) in this introduction, the Voevodsky-Rost theorem is used in
theorem 4.7, section 6, 7.10-12 and in section 8.
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§1. CLASSICAL K-THEORY OF NUMBER FIELDS

Let F' be a number field, i.e., a finite extension of Q, and let O denote the ring of
integers in F', i.e., the integral closure of Z in F'. The first few K-groups of F' and Op
have been known since the dawn of K-theory. We quickly review these calculations in
this section.

When Grothendieck invented Ky in the late 1950’s, it was already known that over
a Dedekind domain R (such as O or the ring Og of S-integers in F') every projective
module is the sum of ideals, each of which is projective and satisfies I & J = IJ & R.
Therefore Ko(R) = Z @ Pic(R). Of course, Ko(F) = Z.

In the case R = Op the Picard group was already known as the Class group of F,
and Dirichlet had proven that Pic(Op) is finite. Although not completely understood
to this day, computers can calculate the class group for millions of number fields. For
cyclotomic fields, we know that Pic(Z[u,]) = 0 only for p < 19, and that the size of
Pic(Z[pp)) grows exponentially in p; see [Wash].

Example 1.1 (Regular primes). A prime p is called regular if Pic(Z[up]) has no
elements of exponent p, i.e., if p does not divide the order h;, of Pic(Z[up]). Kummer
proved that this is equivalent to the assertion that p does not divide the numerator of
any Bernoulli number By, k < (p — 3)/2 (see 2.10 and [Wash, 5.34]). Iwasawa proved
that a prime p is regular if and only if Pic(Z[u,v]) has no p-torsion for all v. The
smallest irregular primes are p = 37,59,67,101, 103 and 131. About 39% of the primes
less than 4 million are irregular.

The historical interest in regular primes is that Kummer proved Fermat’s Last The-
orem for regular primes in 1847. For us, certain calculations of K-groups become easier
at regular primes. (See section 8.)

We now turn to units. The valuations on F' associated to the prime ideals p of Op
show that the group F'* is the product of the finite cyclic group p(F') of roots of unity
and a free abelian group of infinite rank. Dirichlet showed that the group of units of
Or is the product of u(F) and a free abelian group of rank 7 + 79 — 1, where r; and
r9 are the number of embeddings of F' into the real numbers R and complex numbers
C, respectively.

The relation of the units to the class group is given by the “divisor map” (of valua-
tions) from F'* to the free abelian group on the set of prime ideals p in Op. The divisor
map fits into the “Units-Pic” sequence:

0— 0F = F* 2% ¢ 7 — Pic(Op) — 0.

If R is any commutative ring, the group K;(R) is the product of the group R* of
units and the group SK;(R) = SL(R)/[SL(R),SL(R)]. Bass-Milnor-Serre proved in
[BMS] that SK;(R) = 0 for any ring of S-integers in any global field. Applying this to
the number field F' we obtain:

(1.2) K1(OFp) = OF =2 p(F) x zm+r—1

For the ring Og of S-integers in F, the sequence 1 — O — OF — Z[S] LA Pic(Of) —
Pic(Og) — 1 yields:

(1.2.1) K1(Os) = 0% = p(F) x glSIHrtr—1,
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The 1967 paper [BMS] was instrumental in discovering the group K and its role in
number theory. Garland proved in [Gar] that K3(Op) is a finite group. By [Q2], we
also know that it is related to K5(F') by the localization sequence:

0 = Ko(Op) — Ko(F) N Bpk(p)* — 0.

Since the map 0 was called the tame symbol, the group K2(Op) was called the tame
kernel in the early literature. Matsumoto’s theorem allowed Tate to calculate Ko(Op)
for the quadratic extensions Q(v/—d) of discriminant < 35 in [BT]. In particular, we
have Ky(Z) = Ko (Z[2Y="]) = Z/2 on {~1, -1}, and K,(Z[i]) = 0.

Tate’s key breakthrough, published in [Tal], was the following result, which was
generalized to all fields by Merkurjev and Suslin (in 1982).

Theorem 1.3. (Tate [Tal]) If F is a number field and R is a ring of S-integers in F

such that 1/ € R then Ko(R)/m = HZ (R, u®?) for every prime power m = €. The

L-primary subgroup of Ko(R) is HZ (R, Zy(2)), which equals HZ (R, u8?) for large v.
If F contains a primitive mt® root of unity (m = £¥), there is a split evact sequence:

0 — Pic(R)/m — Ka(R)/m — ,,Br(R) — 0.

Here ,,Br(R) denotes {x € Br(R)|mz = 0}. If we compose with the inclusion of
K3 (R)/m into Ky(R;Z/m), Tate’s proof shows that the left map Pic(R) — Ky (R;Z/m)
is multiplication by the Bott element 5 € Ko(R;Z/m) corresponding to a primitive mth
root of unity. The quotient ,,,Br(R) of K2(R) is easily calculated from the sequence:

(1.3.1) 0— Br(R) = (2/2)" & [ (@/2) - Q/Z — 0.

vES
finite

Example 1.4. Let F' = Q({s» ) and R = Z[(v, 1/£], where £ is an odd prime and (g is
a primitive £”th root of unity. Then R has one finite place, and r; = 0, so Br(R) = 0 via
(1.3.1), and K2(R)/£ = Pic(R)/¢. Hence the finite groups Ko(Z[(pv, 1/£]) and Ko (Z[(ev])
have /-torsion if and only if £ is an irregular prime.

For the groups K, (Of), n > 2, different techniques come into play. Homological
techniques were used by Quillen in [Q3] and Borel in [Bo] to prove the following result.
Let 7, (resp., 72) denote the number of real (resp., complex) embeddings of F; the
resulting decomposition of F' ®g R shows that [F' : Q] = r1 + 2.

Theorem 1.5. (Quillen-Borel) Let F be a number field. Then the abelian groups
K, (OF) are all finitely generated, and their ranks are given by the formula:

r1+7r2, ifn=1 (mod 4);

k K,(Op) =
ran (Or) {7"2, if n =3 (mod 4).

In particular, if n > 0 is even then K, (Or) is a finite group. If n = 2i — 1, the rank of
K,,(OF) is the order of vanishing of the function (F at 1 — 4.

There is a localization sequence relating the K-theory of Op, F' and the finite fields
Or/g; Soulé showed that the maps K, (Op) — K, (F') are injections. This proves the
following result.
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Theorem 1.6. Let F' be a number field.

a) If n > 1 is odd then K,(Of) = K, (F).

b) If n > 1 is even then K, (OF) is finite but K,,(F) is an infinite torsion group fitting
into the exact sequence

0= Kn(OF) = Kn(F) = € Kn-1(Or/p) — 0.
©PCOF

For example, the groups K3(Op) and K3(F') are isomorphic, and hence the direct
sum of Z™ and a finite group. The Milnor K-group K (F) is isomorphic to (Z/2)™
by [BT], and injects into K3(F') by [MS].

The following theorem was proven by Merkurjev and Suslin in [MS]. Recall that F
is said to be totally imaginary if it cannot be embedded into R, i.e., if 1 = 0 and
ro = [F : Q]/2. The positive integer wy(F') is defined in section 2 below, and is always
divisible by 24.

Theorem 1.7. (Structure of K3F') Let F be a number field, and set w = wo(F).
a) If F is totally imaginary, then K3(F) 2 Z™ @ Z/w;
b) If F has a real embedding then K3 (F) =2 (Z/2)™ is a subgroup of K3(F) and:

K3(F)=2Z" e Z/2w)® (Z/2)™ .

Examples 1.7.1. a) When F' = Q we have K3(Z) = K3(Q) = Z/48, because wa(F') =
24. This group was first calculated by Lee and Szcarba.

b) When F' = Q(i) we have wa(F') = 24 and K3(Q(i)) X Z & Z/24.

c) When F = Q(v/£2) we have wo(F) = 48 because F (i) = Q((g). For these two
fields, K3(Q(v/2) & Z/96 ® Z/2, while K3(Q(v/—2) = Z & 7./48.

Classical techniques have not been able to proceed much beyond this. Although Bass
and Tate showed that the Milnor K-groups KM (F) are (Z/2)" for all n > 3, and hence
nonzero for every real number field (one embeddable in R, so that r; # 0), we have the
following discouraging result.

Lemma 1.8. Let F be a real number field. The map KM (F) — K4(F) is not injective,
and the map KM(F) — K, (F) is zero forn > 5.

Proof. The map n; — K;(Z) sends n to [—1]. Since 7% — K,(Z) is a ring homomor-
phism and n* = 0, the Steinberg symbol {—1,—1,—1, —1} must be zero in K4(Z). But
the corresponding Milnor symbol is nonzero in KM (F), because it is nonzero in KM (R).
This proves the first assertion. Bass and Tate prove [BT] that KM (F) is in the ideal
generated by {—1,—1,—1,—1} for all n > 5, which gives the second assertion. [

Remark 1.9. Around the turn of the century, homological calculations by Rognes [R4]
and Elbaz-Vincent/Gangl/Soulé [EGS] proved that K4(Z) = 0, K5(Z) = Z, and that
Ks(Z) has at most 3-torsion. These follow from a refinement of the calculations by
Lee-Szczarba and Soulé in [Sol] that there is no p-torsion in K4(Z) or K5(Z) for p > 3,
together with the calculation in [RW] that there is no 2-torsion in K4(Z), K5(Z) or
K¢(Z).

The results of Rost and Voevodsky imply that K7(Z) = Z/240 (see [We2]). It is still
an open question whether or not Kg(Z) = 0.
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§2. THE e-INVARIANT

The odd-indexed K-groups of a field F' have a canonical torsion summand, discovered
by Harris and Segal in [HS]. It is detected by a map called the e-invariant, which we
now define.

Let F be a field, with separable closure F' and Galois group G = Gal(F/F). The
abelian group p of all roots of unity in F' is a G-module. For all i, we shall write y(7)
for the abelian group p, made into a G-module by letting g € G act as { — ¢*(¢).
(This modified G-module structure is called the ith Tate twist of the usual structure.)
Note that the abelian group underlying (%) is isomorphic to Q/Z if char(F) = 0 and
Q/Z[1/p] if char(F) = p # 0. For each prime ¢ # char(F'), we write Z/£>°(i) for the
£-primary G-submodule of p(7), so that p(i) = ®Z/£>°(i).

For each odd n = 2i—1, Suslin proved [Sul, Su2] that the torsion subgroup of Ko; 1 F
is naturally isomorphic to (). It follows that there is a natural map
(21) e: Kgf,;_l(F)torS — KZi_l(F)G = /L(Z)G

tors
If 1(7)€ is a finite group, we write w; (F) for its order, so that u(i)¢ 2 Z/w;(F). This is
the case for all local and global fields (by 2.3.1 below). We shall call e the e-invariant,
since the composition 73, ; — Ko;_1(Q) = Z/w;(Q) is Adams’ complex e-invariant by

[Q5].

The target group ,u(z')G is always the direct sum of its Z-primary Sylow subgroups
Z./£*(i)¢. The orders of these subgroups are determined by the roots of unity in the
cyclotomic extensions F'(ugv ). Here is the relevant definition.

Definition 2.2. Fix a prime £. For any field F', we define integers 'wge) (F) by
wge) (F) = max{¢” | Gal(F'(ue)/F) has exponent dividing i}

for each integer 4. If there is no maximum v we set wge) (F) =£.

Lemma 2.3. Let F be a field and set G = Gal(F/F). Then Z/£>(i)C is isomorphic
to Z/wzw (F). Thus the target of the e-invariant is @, Z/wy) (F).

Suppose in addition that wy) (F) is 1 for almost all £, and is finite otherwise. Then
the target of the e-invariant is Z/w;(F'), where w;(F) =[] wlw(F).
Proof. Let ¢ be a primitive £“th root of unity. Then (®* is invariant under g € G (the

absolute Galois group) precisely when g%(¢) = ¢, and ¢®? is invariant under all of G
precisely when the group Gal(F(pe)/F) has exponent i. O

Corollary 2.3.1. Suppose that F(ue) has only finitely many £-primary roots of unity
for all primes £, and that [F(pe) : F] — 00 as £ — oo. Then the w;(F) are finite for all
1# 0.

This is the case for all local and global fields.
Proof. For fixed 7 # 0, the formulas in 2.7 and 2.8 below show that each wge) is finite, and

equals one except when [F'(u,) : F| divides i. By assumption, this exception happens
for ounly finitely many £. Hence w;(F) is finite. O
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Example 2.4 (finite fields). Consider a finite field F,. It is a pleasant exercise to
show that w;(F,) = ¢* — 1 for all i. Quillen computed the K-theory of F, in [Q1],
showing that Ko;(F,) = 0 for s > 0 and that Ko;—1(F;) = Z/w;(F,). In this case, the
e-invariant is an isomorphism.

The key part of the following theorem, i.e., the existence of a Z/w; summand, was
discovered in the 1975 paper [HS| by Harris and Segal; the splitting map was constructed
in an ad hoc manner for number fields (see 2.5.2 below). The canonical nature of the
splitting map was only established much later, in [DFM], [Ham] and [Ka2].

The summand does not always exist when ¢ = 2; for example K5(Z) = Z but
w3(Q) = 2. The Harris-Segal construction fails when the Galois groups of cyclotomic
field extensions are not cyclic. With this in mind, we call a field F' non—ezceptional if the
Galois groups Gal(F'(pugv)/F) are cyclic for every v, and ezceptional otherwise. There
are no exceptional fields of finite characteristic. Both R and @y are exceptional, and
so are each of their subfields. In particular, real number fields (like Q) are exceptional,
and so are some totally imaginary number fields, like Q(v/=7).

Theorem 2.5. Let R be an integrally closed domain containing 1/£, and set w; =

wz@) (R). If £ = 2, we suppose that R is non-exceptional. Then each Ko;—1(R) has a
canonical direct summand isomorphic to Z/w;, detected by the e-invariant.

The splitting Z/w; — Ka;—1(R) is called the Harris-Segal map, and its image is called
the Harris-Segal summand of Ky;—1(R).

Example 2.5.1. If R contains a primitive /“th root of unity {, we can give a sim-
ple description of the subgroup Z/¢” of the Harris-Segal summand. In this case,
HY (R, u") = u$ is isomorphic to Z /%, on generator ( ® --- ® (. If B € Ka(R;Z/£")
is the Bott element corresponding to ¢, the Bott map Z /¥ — Ko;(R;7Z/£") sends 1 to
B°. (This multiplication is defined unless £¥ = 21.) The Harris-Segal map, restricted to
Z/8" C Z/m, is just the composition

p& 2 7,10 B Koi(R; 1/0Y) — Koi1(R).

Remark 2.5.2. Harris and Segal [HS] originally constructed the Harris-Segal map by
studying the homotopy groups of the space BN, where N is the union of the wreath
products u X ¥, g4 = per. Each wreath product embeds in GL,,(R[(,]) as the group
of matrices whose entries are either zero or £“th roots of unity, each row and column
having at most one nonzero entry. Composing with the transfer, this gives a group map
N — GL(R[(]) — GL(R) and hence a topological map BNt — GL(R)™.

From a topological point of view, BN is the zeroth space of the spectrum %°° (B, ),
and is also the K-theory space of the symmetric monoidal category of finite free u-sets.
The map of spectra underlying BNt — GL(R)™ is obtained by taking the K-theory of
the free R-module functor from finite free u-sets to free R-modules.

Harris and Segal split this map by choosing a prime p which is primitive mod /¢, and
is a topological generator of Z, . Their argument may be interpreted as saying that if
Fy = Fp[(ev] then the composite map ¥*°(Buy) - K(R) — K(F,) is an equivalence
after KU-localization.
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If F is an exceptional field, a transfer argument using F(1/—1) shows that there is a
cyclic summand in Kg;_1(R) whose order is either w;(F'), 2w;(F) or w;(F)/2. If F is
a totally imaginary number field, we will see in 6.5 that the Harris-Segal summand is
always Z/w;(F'). The following theorem, proven in section 7.5 below (see [RW]), shows
that all possibilities occur for real number fields, i.e., number fields embeddable in R.

Theorem 2.6. Let F' be a real number field. Then the Harris-Segal summand in
Ks;—1(OF) is isomorphic to:

(1) Z/wy(F), ifi=0 (mod4) ori=1 (mod4), i.e., 20 —1 = =+1 (mod 8);

(2) Z/2w;(F), if i =2 (mod 4), i.e., 20 —1 =3 (mod 8);

(3) Z/%wi(F), if i =3 (mod 4), i.e., 2i — 1 =5 (mod 8).

Here are the formulas for the numbers wy) (F), taken from [HS, p. 28], and from
[W1, 6.3] when £ = 2. Let log,(n) be the maximal power of £ dividing n, i.e., the /-adic
valuation of n. By convention let log,(0) = oo.

Proposition 2.7. Fix a prime £ # 2, and let F' be a field of characteristic # £. Let a be
mazximal such that F(pg) contains a primitive £%th root of unity. Then if r = [F () : F]
and b =log, (i) the numbers wzw = wge) (F) are:

(a) If po € F then wy) = (a+b;

(b) If pg € F and i =0 (mod ) then wz@ = fatb;

(c) If up ¢ F and i # 0 (mod r) then wl@) =1.

Proof. Since £ is odd, G = Gal(F(ppa+»)/F) is a cyclic group of order r¢¥ for all v > 0.
If a generator of G acts on pigatv by ¢ — (9 for some g € (Z/£317)* then it acts on pu®?
by (= ¢9'. O

Example 2.7.1. If F = Q(pp~) and ¢ # 2,p then wz@) (F) = wge) (Q) for all 4. This
number is 1 unless (£ —1)]s; if (£ —1)|é but £ fi then wl@) (F) = £. In particular, if £ =3
and p # 3 then w§3) (F) =1 for odd 4, and w§3) (F) = 3 exactly when i = 2,4 (mod 6).

Of course, p|lw;(F') for all 3.

Proposition 2.8. (¢ = 2) Let F be a field of characteristic # 2. Let a be mazimal
such that F(y/—1) contains a primitive 2°th root of unity. Let i be any integer, and let
b =logy(i). Then the 2-primary numbers w?) = w?)(F) are:
(a) If /=1 € F then wZ@) = 29%d for all i.
(b) If V=1 ¢ F and i is odd then wZ@) = 2.
(c) If /=1 ¢ F, F is exceptional and i is even then w?) = 20+b,
(d) If /=1 & F, F is non—exceptional and i is even then w?) = 20401,
Example 2.9 (local fields). If E is a local field, finite over Q,, then w;(F) is finite
by 2.3.1. Suppose that the residue field is F,,. Since (for £ # p) the number of /-primary
roots of unity in F(f) is the same as in Fy (1), we see from 2.7 and 2.8 that w;(E) is
w;(F,) = ¢* — 1 times a power of p.

If p > 2 the p-adic rational numbers Q, have w;(Q,) = ¢ — 1 unless (p — 1)]3; if
i=(p—1)p’m (ptm) then w;i(Qy) = (¢ — 1)p***.
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For p = 2 we have w; (Q2) = 2(2° — 1) for i odd, because Q, is exceptional, and
w; (Qg) = (2¢ — 1)22*? for i even, i = 2°m with m odd.

Bernoulli numbers 2.10. The numbers w;(Q) are related to the Bernoulli numbers
Bj.. These were defined by Jacob Bernoulli in 1713 as coefficients in the power series

tZk

+§: k1B )1

k=1

t
et —

[\3|H~

(We use the topologists’ By, from [MSt], all of which are positive. Number theorists
would write it as (—1)*¥+1By.) The first few Bernoulli numbers are:

1 1 1 1 ) 691 7 3617
L R T AR T 7 TR R BT T
The denominator of By, is alway squarefree, divisible by 6, and equal to the product of
all primes with (p — 1)|2k. Moreover, if (p — 1) 1 2k then p is not in the denominator of
By /k even if p|k; see [MSt].
Although the numerator of By is difficult to describe, Kummer’s congruences show
that if p is regular it does not divide the numerator of any By/k (see [Wash, 5.14]).
Thus only irregular primes can divide the numerator of By /k (see 1.1).

Remark 2.10.1. We have already remarked in 1.1 that if a prime p divides the nu-
merator of some By /k then p divides the order of Pic(Z[y,]). Bernoulli numbers also
arise as values of the Riemann zeta function. Euler proved (in 1735) that (p(2k) =
By (27)2%/2(2k)!. By the functional equation, we have (p(1 — 2k) = (—1)¥Bg/2k. Thus
the denominator of {(1 — 2k) is 3wax(Q).

Remark 2.10.2. The Bernoulli numbers are of interest to topologists because if n = 4k—1
the image of J : 7, SO — = is cyclic of order equal to the denominator of By /4k, and
the numerator determines the number of exotic (4k—1)-spheres which bound parallizable
manifolds; see [MSt, App.B].

From 2.10, 2.7 and 2.8 it is easy to verify the following important result.

Lemma 2.11. If i is odd then w;(Q) = 2 and w;(Q(v/=1)) = 4. If i = 2k is even
then w; (Q) = w;(Q(v/—1)), and this integer is the denominator of By/4k. The prime £
divides w;(Q) eractly when (£ — 1) divides i.

Example 2.11.1. For F = Q or Q(v/—1), wy = 24, wy = 240, wg = 504 = 23 - 32 . 7,
wg =480=25-3-5, wyg =264=23-3-11, and wyp = 65520 =2%-32-5-7-13.

The w; are the orders of the Harris-Segal summands of K3(Q[v/—1]), K7(Q[v/—1)),

, K23(Q[v/—1]) by 2.5. In fact, we will see in 6.5 that Ko; 1(Q[v—1]) X Z & Z/w;
for all 7 > 2.

By 2.6, the orders of the Harris-Segal summands of K7(Q), K15(Q), K23(Q),
are wy, wg, Wig, etc., and the orders of the Harris-Segal summands of K3(Q), K11(Q),
Ki19(Q), ... are 2wy = 48, 2we = 1008, 2w;9 = 2640, etc. In fact, these summands are
exactly the torsion subgroups of the groups Ks;_1(Q).
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Example 2.12. The image of the natural maps 7 — K,(Z) capture most of the
Harris-Segal summands, and were analyzed by Quillen in [Q5]. When n is 8k + 1 or
8k + 2, there is a Z/2-summand in K,,(Z), generated by the image of Adams’ element
tn- (It is the 2-torsion subgroup by [We2].) Since wsx41(Q) = 2, we may view it as the
Harris-Segal summand when n = 8k + 1. When n = 8k + 5, the Harris-Segal summand
is zero by 2.6. When n = 8k + 7 the Harris-Segal summand of K,,(Z) is isomorphic to
the subgroup J(7,0) & Z/wak+4(Q) of 7s.

When n = 8k + 3, the subgroup J(m,0) & Z/war+2(Q) of n is contained in the
Harris-Segal summand Z/(2w;) of K, (Z); the injectivity was proven by Quillen in [Q5],
and Browder showed that the order of the summand was 2w;(Q).

Not all of the image of J injects into K,(Z). If n = 0,1 (mod 8) then J(m,0) = Z/2,
but Waldhausen showed (in 1982) that these elements map to zero in K, (Z).

Example 2.13. Let F = Q(¢ + ¢~!) be the maximal real subfield of the cyclotomic
field Q(¢), (P = 1 with p odd. Then w;(F) = 2 for odd i, and w;(F) = w;(Q(¢)) for
even i > 0 by 2.7 and 2.8. Note that p|w;(F[(]) for all i, p|w;(F) if and only if 7 is even,
and p|w;(Q) only when (p—1)[i. If n = 3 (mod 4), the groups K, (Z[¢+ (7)) = K, (F)
are finite by 1.5; the order of their Harris-Segal summands are given by theorem 2.6,
and have an extra p-primary factor not detected by the image of J when n # —1
(mod 2p — 2).

Birch-Tate Conjecture 2.14. If F is a number field, the zeta function (z(s) has a
pole of order r5 at s = —1. Birch and Tate [Ta] conjectured that for totally real number
fields (r2 = 0) we have

Cr(=1) = (=1)" |K2(OF)|/w2(F).

The odd part of this conjecture was proven by Wiles in [Wi|, using Tate’s theorem
1.3. The two-primary part is still open, but it is known to be a consequence of the
2-adic Main Conjecture of Iwasawa Theory (see Kolster’s appendix to [RW]), which
was proven by Wiles in loc. cit. for abelian extensions of Q. Thus the full Birch-Tate
Conjecture holds for all abelian extensions of Q. For example, when F' = Q we have
Co(—1) = —1/12, |K2(Z)| = 2 and wy(Q) = 24.
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§3. ETALE CHERN CLASSES

We have seen in 1.2 and 1.3 that H}, and HZ are related to Ky and K. In order
to relate them to higher K-theory, it is useful to have well-behaved maps. In one
direction, we use the étale Chern classes introduced in [So|, but in the form found in
Dwyer-Friedlander [DF].

In this section, we construct the maps in the other direction. Our formulation is
due to Kahn [Ka, Kal, Ka2]; they were introduced in [Kal], where they were called
“anti-Chern classes.” Kahn’s maps are an efficient reorganization of the constructions
of Soulé [So| and Dwyer-Friedlander [DF]. Of course, there are higher Kahn maps, but
we do not need them for local or global fields so we omit them here.

If F is a field containing 1/¢, there is a canonical map from Ky; 1(F;Z/¢) to
H} (F, uée,’f), called the first étale Chern class. It is the composition of the map to
the étale K-group K$¢ | (F;Z/¢") followed by the edge map in the Atiyah-Hirzebruch
spectral sequence for étale K-theory [DF]. For ¢ = 1 it is the Kummer isomorphism
from Ky (F;Z/¢") = F*/F>** to H}(F, pw).

For each ¢ and v, we can construct a splitting of the first étale Chern class, at least if
£ is odd (or £ =2 and F is non-exceptional). Let F, denote the smallest field extension
of F' over which the Galois module ,u%?,i_l is trivial, and let I',, denote the Galois group
of F, over F. Kahn proved in [Ka] that the transfer map induces an isomorphism
HL(F,, u3r, = HL(F,u3"). Note that because H (F,, pev) = F)X/¢¥ we have an
isomorphism of I',-modules H}, (F,, p&’) & (F)) @ p$i—t.

Definition 3.1. The Kahn map HE (F, u5") — Kai—1(F;Z/£") is the composition

= ’ i — Harris-S 1
BP0 & (R, =[R2 ] e,
r,

— |(F)) ®K2i_2(Fy;Z/£”)] Ko 1 (F, )0, 2 o ((F3Z/0Y).

r,

Compatibility 3.1.1. Let F' be the quotient field of a discrete valuation ring whose
residue field k contains 1/£. Then the Kahn map is compatible with the Harris-Segal
map in the sense that for m = £ the diagram commutes.

Hy (F, e 2 HY, (, peit)

Kahnl l Harris-Segal

a
K27;_1(F; Z/m) _— Kgf,;_g(k; Z/m)

To see this, one immediately reduces to the case F' = F,,. In this case, the Kahn map is

the Harris-Segal map, tensored with the identification Hg (F, fi,,) & F*/m, and both
maps d amount to the reduction mod m of the valuation map F* — Z.
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Theorem 3.2. Let F be a field containing 1/£. If ¢ = 2 we suppose that F 1is non-
exceptional. Then for each i the Kahn map H}, (F, us') — Koi_1(F;Z/€%) is an injec-
tion, split by the first étale Chern class.

The Kahn maps are compatible with change of coefficients. Hence it induces maps
H} (F,Z(i)) = Koi—1(F;Zg) and Hi (F,Z/£°(i)) = Koj—1(F;Z/L>).

Proof. When £ is odd (or £ = 2 and /-1 € F), the proof that the Kahn map splits
the étale Chern class is given in [Kal], and is essentially a reorganization of Soulé’s
proof in [So] that the first étale Chern class is a surjection. up to factorials. (Cf. [DF]).
When ¢ = 2 and F' is non-exceptional, Kahn proves in [Ka2] that this map is a split
injection. [

Corollary 3.3. Let Og be a ring of S-integers in a number field F, with 1/{€ Og. If
£ =2, assume that F is non-exceptional. Then the Kahn maps for F' induce injections
H}(Og,u3) — Kaim1(Os; Z/L¥), split by the first étale Chern class.

Proof. Since H} (Og, pst) is the kernel of HE(F,puS’) — @ HY (k(p), p2~1), and
Kgi_l(OS;Z/EV) is the kernel of Kzi_l(F;Z/gy) — @pKQZ 2( ( ) Z/KV) by 16, this
follows formally from 3.1.1. [J

Example 3.4. If F' is a number field, the first étale Chern class detects the torsionfree
part of Ko; 1(Op) = Kog; 1(F) described in 1.5. In fact, it induces isomorphisms

KZ'L 1(OS)®Q£ NK2Z 1(03;@) gHé}t(OSaQi(Z))

To see this, choose S to contain all places over some odd prime £. Then 1/£ € Og,
and Ko;—1(0g) = Kg;—1(F). A theorem of Tate states that

1 even,;

rank He(Os, Qe (4)) — rank HE (Os, Qe (i) = { ri+ry, ¢ odd.

We will see in 3.8 below that HZ (Og,Q(i)) = 0. Comparing with 1.5, we see that the
source and target of the first étale Chern class

Kai—1(0s) ® Zy — K§i_1(Os;Zs) = Hy (Os, Zy(i))

have the same rank. By 3.2, this map is a split surjection (split by the Kahn map),
whence the claim.

The second étale Chern class is constructed in a similar fashion. Assuming that /£ is
odd, or that £ = 2 and F' is non-exceptional, so that the e-invariant splits by 2.5, then
for ¢ > 1 there is also a canonical map

Kai(F32/°) — HE(F, p ™),

called the second étale Chern class. 1t is the composition of the map to the étale K-group
KS${(F;Z/¢"), or rather to the kernel of the edge map K$¢(F;Z/¢¥) — HY,(F, pSth),
followed by the secondary edge map in the Atiyah-Hirzebruch spectral sequence for étale
K-theory [DF].
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Even if £ = 2 and F' is exceptional, this composition will define a family of second étale
Chern classes Ko;(F) — HZ (F, u3'™') and hence Ka;(F) — HZ (F,Z(i +1)). This is
because the e-invariant (2.1) factors through the map Ky;(F;Z/") — Kai—1(F).

For i = 1, the second étale Chern class Ko(F)/m — HZ (F, p?) is just Tate’s map,
described in 1.3; it is an isomorphism for all F' by the Merkurev-Suslin theorem.

Using this case, Kahn proved in [Ka] that the transfer always induces an isomorphism
HZ(F,, y&)r, = HZ(F,u&’). Here, F, and T, = Gal(F, /F) are as in 3.1 above, and
if £ = 2 we assume that F' is non-exceptional. As before, we have an isomorphism of
T,-modules H (F,, ™) = Ko(F,) @ psi".

Definition 3.5. The Kahn map HZ (F, usi™') — Ko;(F;Z/£¥) is the composition

. = i i — Harris-S 1
Hi, (F, p ) & HE,(Fy, nf ™, = [K2(F,,) ® U 1] Harris-Segal,
r,

— | Ky (F,) ®K2i_2(Fy;Z/€”)] Koy (B 20 )p, 2225 Ko (R Z)87).
r,

Compatibility 3.5.1. Let F' be the quotient field of a discrete valuation ring whose
residue field k contains 1/£. Then the first and second Kahn maps are compatible with
the maps 9, from HZ(F) to H (k) and from Ko;(F;Z/m) to Koi—1(k;Z/m). The
argument here is the same as for 3.1.1.

As with 3.2, the following theorem was proven in [Kal, Ka2].

Theorem 3.6. Let F' be a field containing 1/¢. If £ = 2 we suppose that F' is non-
exceptional. Then for each i > 1 the Kahn map HZ (F, g’ ™) — Koy(F;Z/0¥) is an
injection, split by the second étale Chern class.

The Kahn map is compatible with change of coefficients. Hence it induces maps
HZ (F,Ze(i + 1)) — Koi(F; Zyg) and HZ(F,Z/>(i + 1)) = Koi(F;Z/£>).

Corollary 3.7. Let Og be a ring of S-integers in a number field F, with 1/£€ Og. If
=2, assume that F is non-exceptional. Then for each i > 0, the Kahn maps induce
injections HZ (Os, Zy(i + 1)) — K2;,(Os;Zy), split by the second étale Chern class.

Proof. Since HZ (Og,Zy(i+1)) is the kernel of HZ (F, Ze(i+ 1)) — @ Hg, (k(p), Ze(7)),

and Ko;(Og;Zy) is the kernel of Ko;(F;Zg) — @, Kai—1(k(p); Zy), this follows formally

from 3.5.1. O

Remark 3.7.1. For each v, HZ(Os, pSt") — Koi(Os; Z/£¥) is also a split surjection,

essentially because the map HZ (Ogs, Zy(i+1)) — HZ(Os, us' ™) is onto; see [Kal, 5.2].
The summand HZ (Og,Zy(7)) is finite by the following calculation.

Proposition 3.8. Let Og be a ring of S-integers in a number field F' with 1/¢ € Og.

Then for all i > 2, H% (Os,Z(i)) is a finite group, and H% (Os, Qe (3)) = 0.
Finally, HZ(0s,Z/£>°(i)) = 0 if £ is odd, or if £ =2 and F is totally imaginary.

Proof. If £ is odd or if £ = 2 and F is totally imaginary, then H3 (Ogs,Z(i)) = 0
by [Se], so HZ(Os,Z/t>°(i)) is a quotient of HZ(Og,Qe(z)). Since HZ (R, Q. (7)) =
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HZ (R, Z(i)) ® Q, it suffices to prove the first assertion for ¢ > 0. But HZ (Os, Z(i)) is
a summand of Ka;_2(Og) ® Z, for i > 2 by 3.7, which is a finite group by theorem 1.5.

If £ = 2 and F is exceptional, the usual transfer argument for Og C Og C
F(v/=1) shows that the kernel A of H2(Os,Zs(i)) — HZ,(Os',Zs(i)) has exponent 2.
Since A must inject into the finite group HZ (Og, u2), A must also be finite. Hence
H? (Og,Z5(i)) is also finite, and HZ (R, Q(2)) = HZ (R, Zs(i)) @ Q=0. O

Taking the direct limit over all finite S yields:

Corollary 3.8.1. Let F be a number field. Then HZ (F,Z/¢>*(i)) = 0 for all odd
primes £ and all © > 2.

Example 3.8.2. The Main Conjecture of Iwasawa Theory, proved by Mazur and Wiles
[MW], implies that (for odd £) the order of the finite group HZ (Z[1/£],Z(2k)) is the
£-primary part of the numerator of (g(1 — 2k). See for example [RW, Appendix A] or
[KNF, 4.2 and 6.3]. Note that by Euler’s formula 2.10.1 this is also the £-primary part
of the numerator of By/2k, where By, is the Bernoulli number discussed in 2.10.

Real number fields 3.8.3. If £ = 2, the vanishing conclusion of 3.8.1 still holds when F
is totally imaginary. However, it fails when F' has r; > 0 embeddings into R:

Z/2)", 1> 3 odd
H?*(Og;Z/2%°(i)) = H*(F; Z./2%(i)) g{ (2/2) N

0, 1> 2 even.
One way to do this computation is to observe that, by 3.8, H2(Og;Z/2*(i)) has expo-
nent 2. Hence the Kummer sequence is:

0 — H*(0g;Z/2%°(i)) = H*(Os;Z/2) — H*(Og;Z/2°°(3)) — 0.

Now plug in the values of the right two groups, which are known by Tate-Poitou duality:
H3(0g;7/2) = (Z)2)™, while H3(Og;Z/2%°(1)) is: (Z/2)™ for i even, and 0 for 7 odd.

3.8.4. Suppose that F is totally real (ro = 0), and set w; = wge) (F). If i > 0 is even then
HY(Og,Z(i)) = Z/w;; this group is finite. If ¢ is odd then H'(Og, Zy(1)) = Z}' ® L/ w;;
this is infinite. These facts may be obtained by combining the rank calculations of 3.4
and 3.8 with (2.1) and universal coefficients.

Theorem 3.9. For every number ﬁ.eld F, and all i, the Adams operation V¥ acts on
Ko 1(F)® Q as multiplication by k*.

Proof. The case © = 1 is well known, so we assume that ¢ > 2. If S contains all
places over some odd prime £ we saw in 3.4 that Ko; 1(0s) @ Q = K¢ | (Os; Q) &
H}.(Og,Q(7)). Since this isomorphism commutes with the Adams operations, and
Soulé has shown in [So3] the ¢* = k% on H} (Ogs,Q(4)), the same must be true on
K 1(0s5)®@Q = Kz 1 (F)®Q,. O
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§4. GLOBAL FIELDS OF FINITE CHARACTERISTIC

A global field of finite characteristic p is a finitely generated field F' of transcendence
degree one over F,; the algebraic closure of F,, in F is a finite field IF, of characteristic
p. It is classical (see [Hart, I.6]) that there is a unique smooth projective curve X over
F, whose function field is F'. If S is a nonempty set of closed points of X, then X — S
is affine; we call the coordinate ring R of X — S the ring of S-integers in F'. In this
section, we discuss the K-theory of F', X and the rings of S-integers of F'.

The group Ko(X) = Z @ Pic(X) is finitely generated of rank two by a theorem of
Weil. In fact, there is a finite group J(X) such that Pic(X) = Z & J(X). For K; and
K(X), the localization sequence of Quillen [Q2] implies that there is an exact sequence

0 = K3(X) = K3(F) 2 @pexk(z)* = Ki(X) — FS —0.

By classical Weil reciprocity, the cokernel of 9 is Fy, so K1(X) = Fy x Fy. Bass and
Tate proved in [BT] that the kernel K5(X) of 0 is finite of order prime to p. This
establishes the low dimensional cases of the following theorem, first proven by Harder
[Har], using the method pioneered by Borel [Bo].

Theorem 4.1. Let X be a smooth projective curve over a finite field of characteristic
p. Forn > 1, the groups K, (X) are finite groups of order prime to p.

Proof. Tate proved that KM (F) = 0 for all n > 3. By Geisser and Levine’s theorem
[GL], the Quillen groups K, (F') are uniquely p-divisible for n > 3. For every closed
point z € X, the groups K, (z) are finite of order prime to p (n > 0) because k(x) is a
finite field extension of IF,. From the localization sequence

@mEXKn(x) — Kn(X) — Kn(F) — EB:I:EXKn—l(x)

and a diagram chase, it follows that K, (X) is uniquely p-divisible. Now Quillen proved
in [GQ] that the groups K,,(X) are finitely generated abelian groups. A second diagram
chase shows that the groups K, (X) must be finite. O

Corollary 4.2. If R is the ring of S-integers in F =Fq4(X) (and S # 0) then:
a) Ki(R) = R* =Ty xZ°, |S|=5+1;
b) Forn > 2, K,(R) is a finite group of order prime to p.

Proof. Classically, K;1(R) = R* & SK1(R) and the units of R are well known. The
computation that SK;(R) = 0 is proven in [BMS]. The rest follows from the localization
sequence K, (X) = Kp(X') = BgesKn_1(z). O

The e-invariant 4.3. The targets of the e-invariant of X and F' are the same groups
as for IF,, because every root of unity is algebraic over F,. Hence the inclusions of
Ko 1(F,) 2 Z/(¢°—1) in K9;_1(X) and Ky;_1(F) are split by the e-invariant, and this
group is the Harris-Segal summand.

The inverse limit of the finite curves X, = X x Spec(Fy) is the curve X = X ®p, F,
over the algebraic closure Fy. To understand K,(X) for n > 1, it is useful to know not
only what the groups K, (X) are, but how the (geometric) Frobenius ¢ : z — x7 acts
on them.
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Classically, Ko(X) = Z&Z®J(X), where J(X) is the group of points on the Jacobian
variety over IF'q; it is a divisible torsion group. If £ # p, the ¢-primary torsion subgroup
J(X)¢ of J(X) is isomorphic to the abelian group (Z/£>)29. The group J(X) may or
may not have p-torsion. For example, if X is an elliptic curve then the p-torsion in
J(X) is either 0 or Z/p*°, depending on whether or not X is supersingular (see [Hart,
Ex. IV.4.15]). Note that the localization J(X)[1/p] is the direct sum over all £ # p of
the £-primary groups J(X),.

Next, recall that the group of units IF; may be identified with the group p of all roots
of unity in Fy; its underlying abelian group is isomorphic to Q/Z[1/p]. Passing to the
direct limit of the K;(X,) yields K1(X) = u & p.

For n > 1, the groups K,(X) are all torsion groups, of order prime to p, because
this is true of each K,,(X,) by 4.1. The following theorem determines the abelian group
structure of the K, (X) as well as the action of the Galois group on them. It depends
upon Suslin’s theorem (see [Sud]) that for s > 1 and £ # p the groups HY, (X, Z/£°(i))

equal the groups HZ (X, Z/£(3)).

Theorem 4.4. Let X be a smooth projective curve over Fy. Then for all n > 0 we
have isomorphisms of Gal(F, /F,)-modules:

ZoZdJ(X), n=0
Ko(X) =< () @ p), n=2—-1>0
J(X)[1/p](i), n=2i>0.

For € # p, the £-primary subgroup of K,_1(X) is isomorphic to K,(X;Z/£*), n > 0,
whose Galoits module structure is given by:

Z)0%(5) ® Z/0°(5), n=2i>0

Kn(?_(;Z/f"")g{J(X)e(i_l), n=2i—-1>0.

Proof. Since the groups K, (X) are torsion for all n > 0, the universal coefficient the-
orem shows that K, (X;Z/£>) is isomorphic to the /-primary subgroup of K,_1(X).
Thus we only need to determine the Galois modules K,,(X;Z/£<). For n = 0,1,2 they
may be read off from the above discussion. For n > 2 we consider the motivic spectral se-
quence (0.5); by Suslin’s theorem, the terms E%’? vanish for ¢ < 0 unless p = ¢, ¢+1, ¢+2.
There is no room for differentials, so the spectral sequence degenerates at Ey to yield
the groups K, (X;Z/¢>®). There are no extension issues because the edge maps are
the e-invariants Ko;(X;Z/£%°) — HY (X, Z/£°(i)) = Z/£>(i) of 4.3, and are therefore

split surjections. Finally, we note that as Galois modules we have Hy (X, Z/(>(i)) =
J(X)e(i — 1), and (by Poincaré Duality [Mi, V.2]) HZ(X,Z/{>®(i+ 1)) 2 Z/>°(). O

Passing to invariants under the group G = Gal(F, /F,), there is a natural map from
K, (X) to K,(X)%. For odd n, we see from 4.4 and 2.4 that Ko;_1(X)® 2 Z/(¢*— 1)
Z./(¢* —1); for even n, we have the less concrete description Ko;(X)® 22 J(X)[1/p](3)C.
One way of studying this group is to consider the action of the algebraic Frobenius ¢*
(induced by ¢~!) on cohomology.
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Example 4.5. ¢* acts trivially on HY (X,Q) = Q; and HZ (X, Q(1)) = Q. It acts
as ¢~ on the twisted groups HY (X, Q,(¢)) and HZ (X, Q. (i + 1).

Weil’s proof in 1948 of the Riemann Hypothesis for Curves implies that the eigen-
values of ¢* acting on HZ (X,Q, (7)) have absolute value ¢/2~%.

Since HZ (X, Q(i)) & HZ(X, Qe (7)), a perusal of these cases shows that we have
HZ(X,Qe(i)) = 0 except when (n,7) is (0,0) or (2,1).

For any G-module M, we have an exact sequence [WK, 6.1.4]

(4.5.1) 0— MC - M 2L=4 M — HY(G, M) — 0.
The case @ = 1 of the following result reproduces Weil’s theorem that the {-primary
torsion part of the Picard group of X is J(X)¢.

Lemma 4.6. For a smooth projective curve X over Fy, £ fq and i > 2 we have:
(1) HE (X, Ze(i)) = H, (X Z/f""(')) > Hi (X, Z/t>(1)% for all n;

(2) HY(X,Z/t2(i)) = Z/w ) (F);

(3) HA(X,Z/t=(i)) = J(X)(i — 1)¢;
(4) HZ(X,Z/t=(i)) 2 2w\ (F); and
(5) HL(X,Z/t>(3)) =0 for all n > 3.

Proof. Since i > 2, we see from 4.5 that HZ (X, Q. (¢)) = 0. Since Q;/Z;, = Z /£, this
yields HZ (X, Z/£>()) = Hgt' (X, Zy(3)) for all n.

Since each H™ = H%, (X, Z/£>°(7)) is a quotient of HZ (X, Q,(4)), ¢*—1 is a surjection,
i.e., HY(G,H™) = 0. Since H"(G,—) = 0 for n > 1, the Leray spectral sequence for
X — X collapses for i > 1 to yield exact sequences

(4.6.1) 0 — H2(X,Z/°(i)) — H2(X,Z/£°(i)) 2— - HZ(X,Z/¢°(i)) — 0.

In particular, H2 (X, Z/£>2(i)) = 0 for n>2. Since HZ (X, Z/¢>°(i)) & Z/£>°(i — 1) this
yields HZ (X, Z/£>(i)) 2 7Z./£°(i — 1)¢ = Z/w;_,. We also see that Hj (X, Z/£>(i)) is
the group of invariants of the Frobenius, i.e., J(X),(i —1)¢ . O

Given the calculation of K, (X)% in 4.4 and the calculation of HE (X, Z/£>(4)) in 4.6,
we see that the natural map K, (X) — K, (X) is a surjection, split by the Kahn maps
3.2 and 3.6. Thus the real content of the following theorem is that K,(X) — K, (X)¢
is an isomorphism.

Theorem 4.7. Let X be the smooth projective curve corresponding to a global field F
over Fy. Then Ko(X) = Z & Pic(X), and the finite groups K,(X) for n > 0 are given

by:

1%

Kn(X) = Kn(X)G { K,(Fy) ® K,(F;), n odd,

Dirp J(X)e(1)C, n=2i even.
Proof. We may assume that n # 0, so that the groups K, (X) are finite by 4.1. It

suffices to calculate the £-primary part K, 1(X;Z/£>°) of K,(X). But this follows
from the motivic spectral sequence (0.5), which degenerates by 4.6. O
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The Zeta Function 4.8. We can relate the orders of the K-groups of the curve X to
values of the zeta function (x(s). By definition, (x(s) = Z(X, ¢*), where

Z(X,1) = exp (i X (Fpn)| %)

n=1

Weil proved that Z(X,t) = P(t)/(1 —t)(1 — qt) for every smooth projective curve X,
where P(t) € Z[t] is a polynomial of degree 2 - genus(X) with all roots of absolute value
1/,/q. This formula is a restatement of Weil’s proof of the Riemann Hypothesis for X
(4.5 above), given Grothendieck’s formula P(t) = det(1 — ¢*t), where ¢* is regarded as
an endomorphism of H}, (X; Q). Note that by 4.5 the action of ¢* on HY, (X; Q) has
det(1 — *t) = (1 — t), and the action on HZ (X; Q) has det(1 — ¢*t) = (1 — gt).

Here is application of theorem 4.7, which goes back to Thomason (see [Th, (4.7)] and
[Li3]). Let #A denote the order of a finite abelian group A.

Corollary 4.9. If X is a smooth projective curve over I, then for all i > 2,

#Ki_o(X) - #Koi—3(Fy) _ H #HZ (X Z4(1))
#Koi_1(Fy) - #Koi—3(X) F#H (X (1)) - #HG (X5 (1)

€

7= Cx (1= 14)|.
Proof. We have seen that all the groups appearing in this formula are finite. The first

equality follows from 4.6 and 4.7. The second equality follows from the formula for
(x(1—14)in48. O

Iwasawa modules 4.9. 1t is worth noting that the group HZ, (X, Z/£>(i)) is the (finite)
group of invariants M #(i)‘p* of the ith twist of the Pontrjagin dual M# of the Iwasawa
module M = Mx. By definition Mx is the Galois group of X over Xoo = X ®r, Fy(c0),
where the field Fj(oc0) is obtained from F, by adding all /-primary roots of unity, and
X is the maximal unramified pro-£ abelian cover of X. It is known that the Iwasawa
module My is a finitely generated free Zy,-module, and that its dual M# is a finite
direct sum of copies of Z/£>° [DM, 3.22]. This viewpoint was developed in [DM], and
the corresponding discussion of Iwasawa modules for number fields is in [MKH].
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65. LocAL FIELDS

Let E be a local field of residue characteristic p, with (discrete) valuation ring V'
and residue field Fy. It is well known that Ko(V) = Ko(F) = Z and K;(V) = VX,
Ky(FE) = E* =2 (V*) x Z, where the factor Z is identified with the powers {7} of a
parameter 7 of V. It is well known that V* = u(FE) x Uy, where p(FE) is the group of
roots of unity in E (or V'), and that Uy is a free Z,-module.

In the equi-characteristic case, where char(E) = p, it is well known that V' = F,[[r]]
and E = F,((m)) [Se], so u(E) = FX, and U; = W (F;) has rank [F, : F,] over Z, =
W (F,). The decomposition of K;(V) = V* is evident here. Here is a description of the
abelian group structure on K, (V) for n > 1.

Theorem 5.1. Let V = F,[[r]] be the ring of integers in the local field E = F,((m)).
Forn > 2 there are uncountable, uniquely divisible abelian groups U, so that

Ko(V) 2 Ko (Fy) ® Un, Kn(E) 2 Kn(V)® Kn_y(F,).

Proof. The map K,,_1(F,;) — K,(E) sending x to {x, 7} splits the localization sequence,
yielding the decomposition of K, (F). If U, denotes the kernel of the canonical map
K,(V) — K,(F,;), then naturality yields K, (V) = U, & K, (F;). By Gabber’s rigidity
theorem [Gab], U,, is uniquely /-divisible for £ # p and n > 0. It suffices to show that
U,, is uncountable and uniquely p-divisible when n > 2.

Tate showed that the Milnor groups KM (E) are uncountable, uniquely divisible for
n > 3, and that the same is true for the kernel U, of the norm residue map K»2(E) —
w(E); see [Ta2]. If n > 2 then KM (E) is a summand of the Quillen K-group K, (E) by
[Su3]. On the other hand, Geisser and Levine proved in [GL] that the complementary
summand is uniquely p-divisible. [

In the mixed characteristic case, when char(E) = 0, even the structure of V'* is quite
interesting. The torsionfree part U; is a free Z,-module of rank [E : Q,]; it is contained
in (1+ 7V)* and injects into F by the convergent power series for z — In(z).

The group p(E) of roots of unity in £ (or V) is identified with (I}) X ppe (E), where
the first factor arises from Teichmiiller’s theorem that V> — Fy = Z/(q — 1) has a
unique splitting, and ppe (E) denotes the finite group of p-primary roots of unity in E.
There seems to be no simple formula for the order of the cyclic p-group iy (E)

For Ks, there is a norm residue symbol Ky(E) — p(E) and we have the following
result; see [WK, II1.6.6].

Moore’s Theorem 5.2. The group Ko(E) is the product of a finite group, isomorphic
to u(E), and an uncountable, uniquely divisible abelian group Us. In addition,

K3(V) = pipe= (E) x Us.

Proof. The fact that the kernel U, of the norm residue map is divisible is due to
C. Moore, and is given in the Appendix to [Mil]. The fact that U, is torsionfree (hence
uniquely divisible) was proven by Tate [Ta2] when char(F) = p, and by Merkurjev
[Merk]| when char(F)=0. O
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Since the transcendence degree of E over QQ is uncountable, it follows from Moore’s
theorem and the arguments in [Mil] that the Milnor K-groups K (E) are uncountable,
uniquely divisible abelian groups for n > 3. By [Su3], this is a summand of the Quillen
K-group K, (E). As in the equicharacteristic case, K, (E) will contain an uncountable
uniquely divisible summand about which we can say very little.

To understand the other factor, we typically proceed a prime at a time. This has
the advantage of picking up the torsion subgroups of K, (E), and detecting the groups
K, (V)/L. For p-adic fields, the following calculation reduces the problem to the prime
.

Proposition 5.3. If i > 0 there is a summand of Ko; 1(V) & Ky; 1(E) isomorphic
to Koj_1(F,) 2 Z/(q* — 1), detected by the e-invariant. The complementary summand
is uniquely £-divisible for every prime £ # p, i.e., a Z,)-module.

There is also a decomposition Ko;(E) = Ko;(V) @ Kai—1(F,), and the group Ko;(V')
is uniquely £-divisible for every prime £ # p, i.e., a Z,)-module.

Proof. Pick a prime £. By Gabber’s rigidity theorem [Gab], the groups K, (V;Z/¢")
are isomorphic to K, (Fy;Z/¢") for n > 0. Since the Bockstein spectral sequences are
isomorphic, and detect all finite cyclic £-primary summands of K, (V') and K, (F,) [WK,

5.9.12], it follows that Ko;_1(V) has a cyclic summand isomorphic to Z/wy) (E), and
that the complement is uniquely ¢-divisible. Since K,,(V;Z/f) =2 Z /¢, we also see that
K5;(V) is uniquely ¢-divisible. As £ varies, we get a cyclic summand of order w;(F) in
K3;_1(V) whose complement is a Z,)-module.

If . € K9;_1(V), the product {z, 7} € K3;(F) maps to the image of z in Ky;_1(F,)
under the boundary map 0 in the localization sequence. Hence the summand of
K3;—1(V) isomorphic to Ky;_1(F,) lifts to a summand of Ky;(E). This breaks the local-
ization sequence up into split short exact sequences 0 — K, (V) — K, (E) = K,_1(F;) —
0. O

Completed K-theory 5.4. It will be convenient to fix a prime ¢ and pass to the
£-adic completion K (R) of the K-theory space K(R), where R is any ring. We also

A

write K, (R;Zy) for m, K(R). Information about these groups tells us about the groups
K,(R,Z/t") = mn(K (R); Z /"), because these groups are isomorphic to m, (K (R); Z /£¥)
for all v.

If the groups K,(R;Z/¢") are finite, then K, (R;Z,) is an extension of the Tate
module of K,,_1(R) by the £-adic completion of K,,(R). (The Tate module of an abelian
group A is the inverse limit of the groups Hom(Z/¢¥, A).) For example, K, (C;Z;)
vanishes for odd n and for even n equals the Tate module Zj of K,,_1(C). If in addition
the abelian groups K, (R) are finitely generated, there can be no Tate module and we

have K, (R;Ze) = K, (R) ®z Z = lim K,,(R; Z/£").

Warning 5.4.1. Even if we know K, (R;Z;) for all primes, we may not still be able
to determine the underlying abelian group K, (R) exactly from this information. For
example, consider the case n = 1, R = Z,. We know that K;(R;Zp) = (1+pR)* = Z,,
p # 2, but this information does not even tell us that K1(R) ® Z,) = Z,. To see why,
note that the extension 0 — Z) — Z, — ZP/Z(p) — 0 doesn’t split; there are no
p-divisible elements in Z,, yet Z,/Z) = Q,/Q is a uniquely divisible abelian group.
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We now consider the p-adic completion of K(FE). By 5.3, it suffices to consider the
p-adic completion of K (V).

Write w; for the numbers w; = wgp ) (E), which were described in 2.9. For all 7, and
¥ > w;, the étale cohomology group H!(E, uff’.f) is isomorphic to (Z/p*)? ® Z/w; @
Z/wi—1, d =[E : Q,]. By duality, the group H*(E, uf?f“) is also isomorphic to Z/w;.

Theorem 5.5. Let E be a local field, of degree d over Q,, with ring of integers V.
Then for n > 2 we have:

(p) _9;
Ko (V:2y) & Ko (F: Z,) = { Z]w;” (E), n = 21i, }
(Z,) & Z)wP(E), n=2—1.
Moreover, the first étale Chern classes Ko; 1(E;Z/p") & HY(E, uf?f) are natural iso-
morphisms for all i and v.
Finally, each K4;(V') is the direct sum of a uniquely divisible group, a divisible p-group
and a subgroup isomorphic to Z/wgp)(E).

Proof. If p > 2 the first part is proven in [HM, thm. A]. (It also follows from the
spectral sequence (0.3) for E, using the Voevodsky-Rost theorem.) In this case, theorem
3.2 and a count shows that the étale Chern classes HJ, (F; /l,f,?j) — Ko;—1(E;Z/p") are
isomorphisms. If p = 2 this is proven in [RW, 1.12]; surprisingly, this implies that the
Harris-Segal maps and Kahn maps are even defined when F is an exceptional 2-adic
field.

Now fix ¢ and set w; = 'wgp ) (E). Since the Tate module of any abelian group is
torsionfree, and Ky;(F;Z,) is finite, we see that the Tate module of Ky;_;(FE) vanishes
and the p-adic completion of Ky;(F) is Z/w;. Since this is also the completion of
the Z,)-module K5;(V) by 5.3, the decomposition follows from the structure of Z,)-
modules. (This decomposition was first observed in [Kal, 6.2].) O

Remark 5.5.1. The fact that these groups were finitely generated Z,-modules of rank d
was first obtained by Wagoner in [Wg], modulo the identification in [Pa] of Wagoner’s
continuous K-groups with K, (FE;Z/p).

Unfortunately, I do not know how to reconstruct the “integral” homotopy groups
K, (V) from the information in 5.5. Any of the Z,’s in Ky;_1(V;Z;) could come from
either a Zp) in Ky;_1(V) or a Z/p*> in Ky;_»(V'). Here are some cases when I can show
that they come from torsionfree elements; I do not know any example where a Z/p*
appears.

Corollary 5.6. K3(V) contains a torsionfree subgroup isomorphic to Z‘(ip), whose p-
adic completion is isomorphic to K3(V;Zy) & (Zp)®.

Proof. Combine 5.5 with Moore’s theorem 5.2 and 5.3. 0O

I doubt that the extension 0 — Z‘(ip) — K3(V) — Uz — 0 splits.
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Example 5.7. If k£ > 0, K4x41(Z2) contains a subgroup T} isomorphic to Zq) x Z/w;,
and the quotient Kax11(Z2)/T}, is uniquely divisible. (By 2.9, w; = 2(22F+1 — 1).)

This follows from Rognes’ theorem [R1, 4.13] that the map from Kyp11(Z) ® Zy =
Zo®(Z]2) to Kagy1(Za; Z2) is an isomorphism for all £ > 1. (The information about the
torsion subgroups, missing in [R1], follows from [RW].) Since this map factors through
Kyuk11(Zs), the assertion follows.

Example 5.8. Let F' be a totally imaginary number field of degree d = 275 over Q, and
let Ey, ..., Es be the completions of F' at the prime ideals over p. There is a subgroup of
Ks;_1(F') isomorphic to Z" by theorem 1.5; its image in ®@Ko;_1(E;) is a subgroup of
rank at most 7y, while ®Ko;_1(E;;Zp) has rank d = ) [E; : Q,]. So these subgroups
of Ko;_1(E;) can account for at most half of the torsionfree part of ®@Ko;—1(Ej; Zyp).

Example 5.9. Suppose that F'is a totally real number field, of degree d = r; over Q,
and let E1, ..., Es be the completions of F' at the prime ideals over p. For k > 0, there is
a subgroup of K411(F) isomorphic to Z¢ by theorem 1.5; its image in ®Kuj+1(E;) is a
subgroup of rank d, while @Ky 41(Ej; Zp) has rank d = ) [E; : Q,]. However, this does
not imply that the p-adic completion Zg of the subgroup injects into @Kap+1(Ej; Zp).
Implications like this are related to Leopoldt’s conjecture.

Leopoldt’s conjecture states that the torsionfree part Zg_l of (OF)* ® Z,, injects into
the torsionfree part Zg of H;Zl Ogj; see [Wash, 5.31]. This conjecture has been proven
when F is an abelian extension of Q; see [Wash, 5.32].

When F is a totally real abelian extension of Q, and p is a regular prime, Soulé
shows in [So, 3.1, 3.7] that the torsion free part Zg% of Kypy1(F) ® Zj injects into
OKupy1(Ej; Zy) = (Zp)d, because the cokernel is determined by the Leopoldt p-adic L-
function L, (F,w?*, 2k + 1), which is a p-adic unit in this favorable scenario. Therefore
in this case we also have a summand Z‘(ip) in each of the groups Kyi41(E;).

We conclude with a description of the topological type of K (V) and K (E), when p
is odd. Recall that F'U* denotes the homotopy fiber of ¥*¥ — 1 :Z x BU — BU. Since
Wk = ki on me;(BU) = Z for i > 0, and the other homotopy group of BU vanish, we see
that mo;_1 FW* 2 7 /(k* — 1), and that all even homotopy groups of F¥* vanish, except
for mo(FU*) = Z.

Theorem 5.10. ([HM, thm.D]) Let E be a local field, of degree d over Q,, with p odd.
Then after p-completion, there is a number k (given below) so that

K(V)~ SU xU% ! x FU* x BFU*,  K(E)~U?x FU* x BFU*.

The number £ is defined as follows. Set r = [E(u,) : E], and let p® be the number
of p-primary roots of unity in F(u,). If  is a topological generator of Z,;, then k = r",

n= p‘f‘l(p —1)/r. Tt is an easy exercise, left to the reader, to check that my;_ FU* =
Zyp/(k* — 1) is Z/w; for all 3.
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§6. NUMBER FIELDS AT PRIMES WHERE cd = 2

In this section we quickly obtain a cohomological description of the odd torsion in
the K-groups of a number field, and also the 2-primary torsion in the K-groups of a
totally imaginary number field. These are the cases where cdy(Og) = 2, which forces
the motivic spectral sequence (0.5) to degenerate completely.

The following trick allows us to describe the torsion subgroup of the groups K, (R).
Recall that the notation A{£} denotes the £-primary subgroup of an abelian group A.

Lemma 6.1. For a given prime £, ring R and integer n, suppose that K,,(R) is a finite
group, and that K,,_1(R) is a finitely generated group. Then K,(R){{} = K, (R;Z;)
and K,,_1(R){{} = K,,(R;Z /().

Proof. For large values of v, the finite group K, (R;Z/£") is the sum of K,,(R){{} and
K,_1(R){£}. The transition from coefficients Z /¢ to Z/£*~! (resp., to Z/¢*T1) is mul-
tiplication by 1 and £ (resp., by £ and 1) on the two summands. Taking the inverse limit
(resp., direct limit) yields the groups K, (R;Z;) and K, (R;Z/£>°), respectively. O
Example 6.1.1. By 1.6, the lemma applies to a ring Og of integers in a number
field F, with n even. For example, theorem 1.3 says that Ko(Og){{} = K2(Og;Z) =
HZ(Op[1/€],Z4(2)), and of course K (Og){£} = K5(Og;Z/1) is the group Z/w'? (F)
of /-primary roots of unity in F'.

We now turn to the odd torsion in the K-groups of a number field. The Z-primary
torsion is described by the following result, which which is based on [RW] and uses the
Voevodsky-Rost theorem. The notation A will denote the localization of an abelian
group A at the prime /.

Theorem 6.2. Fix an odd prime £. Let F be a number field, and let Ogs be a ring of
integers in F. If R = Og[1/4], then for all n > 2:

HZ (R;Zg(i +1))  forn =2i>0;
T2 E . .
Kn(Os)@y = L) ©® Z)w(F)  forn=2i—1,i even;

Zi5 T @ Z/w (F) forn=2i—1,i odd.

Proof. By 1.6 we may replace Og by R without changing the /-primary torsion. By 6.1
and 1.5, it suffices to show that Ky;(R;Z,) = HZ (R;Ze(i + 1)) and Ko;(R;Z/L>) &
Z/wy) (F). Note that the formulas for K¢(Og) and K;(Og) are different; see (1.2.1).

If F' is a number field and £ # 2, the étale £-cohomological dimension of F' (and of R)
is 2. Since HZ (R;Z/£>°(i)) = 0 by 3.8.1, the Voevodsky-Rost theorem implies that the
motivic spectral sequence (0.5) has only two nonzero diagonals, except in total degree
zero, and collapses at F5. This gives

HO(R; Z./¢®(i)) = ZJw?(F) for n=2i > 2,

(6.2.1) K, (Os;Z/47) = { H'(R; Z/6(5)) forn=2i—-12>1.

The description of Ko;_1(Og){¢} follows from 6.1 and 1.5.
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The same argument works for coefficients Zg; for i > 0 we have HZ}t(R Zy(3)) = 0 for
n # 1,2, so the spectral sequence degenerates to yield Ko;(R;Zs) & HZ (R, Z(3)). (This
is a finite group by 3.8.) The description of Ky;(R){{} follows from 6.1 and 1.5. O

Because HZ (R, Zy(i + 1)) /£ = HZ (R, p$*), we immediately deduce:
Corollary 6.3. For all odd £ and i > 0, K2;(Og)/t = H2(Og[1/£], u$*t1).

Remark 6.4. Similarly, the mod-£ spectral sequence (0.3) collapses to yield the K-
theory of Og with coefficients Z /¢, £ odd. For example, if Og contains a primitivel fth
root of unity and 1/£ then H'(Og; pS*) = 0% /05" @ ,Pic(Og) and H?(Og; pf*) =
Pic(Og)/L & ¢Br(Og) for all i, so
Z/¢ & Pic(Os) /¢, n=>0
K, (0s;Z/0) =2 0%/0% @ (Pic(Os) forn=2—-1>1,
Z]L® Pic(Og)/Ld ¢Br(Og) forn=2i>2

The Z/¢ summands in degrees 2i are generated by the powers 3¢ of the Bott element
B € Ko(Og;Z/2) (see 2.5.1). In fact, K.(Og;Z/¥) is free as a graded Z[S]-module on
Ko(Os;Z/8), K1(Og;Z/¢) and ,Br(Og) € K3(Og;Z/¢); this is immediate from the
multiplicative properties of (0.3).

When F is totally imaginary, we have a complete description of K,(Og). The 2-
primary torsion was first calculated in [RW]; the odd torsion comes from theorem 6.2.

Theorem 6.5. Let F' be a totally imaginary number field, and let Og be the ring of
S-integers in F' for some set S of finite places. Then for all n > 2:

7. ® Pic(0s), forn =0;
" (O ) N Zr2+15|-1 @Z/wh forn=1;
meET HZ (Og[1/4];Ze(i + 1))  forn =2i > 2;
7" @ L/w; forn =2i—1>3.

Proof. The case n = 1 comes from (1.2.1), and the odd torsion comes from 6.2, so it
suffices to check the 2-primary torsion. This does not change if we replace Og by R =
Os[1/2], by 1.6. By 6.1 and 1.5, it suffices to show that Ko;(R;Zs) & HZ (R; Za(i+ 1))
and Ky;(R; Z/2%°) = Z.Jw> (F).

Consider the mod 2°° motivic spectral sequence (0.5) for the ring R, converging to
K.(R;Z/2%). 1t is well known that cd2(R) = 2, and HZ (R;Z/2°(:)) = 0 by 3.8.1.
Hence the spectral sequence collapses; except in total degree zero, the Fs-terms are
concentrated on the two diagonal lines where p = q, p = ¢ + 1. This gives

K, (R;Z/2%) = { HO(R; Z,/2°(i)) = Z/w{?(F) for n=2i >0,
HY(R;Z/2°°(3)) forn=2i—1>1.
The description of Kq;_1(R){2} follows from 6.1 and 1.5.
The same argument works for coefficients Z,; for i > 0 we have HZ (R, Z(i)) = 0
for n # 1,2, so (0.5) degenerates to yield Ko;(R;Z2) = HZ (R, Z5(7)). (This is a finite
group by 3.8). The description of Ky;(R){2} follows from 6.1 and 1.5. O
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Example 6.6. Let F' be a number field containing a primitive th root of unity, and let
S be the set of primes over £ in Op. If t is the rank of Pic(R) /¢, then HZ (R, Z(i))/f &
HZ (R, %@i) ~ HZ (R, ) ® ,u?i_l has rank ¢+ |S| —1 by (1.3.1). By 6.5, the £-primary
subgroup of K»5;(Og) has t + |S| — 1 nonzero summands for each i > 2.

Example 6.7. If £/ # 2 is a regular prime, we claim that K9;(Z[(,]) has no ¢-torsion.
(The case K is tautological by 1.1, and the classical case Ky is 1.4.) Note that the
group Ko; 1(Z[(4]) = Z™ & Z/w;(F) always has £-torsion, because wge) (F) > { for all ¢
by 2.7(a). Setting R = Z[(, 1/¢], then by 6.5,

Koi(Z[¢)) & HZ (R, Zy(i + 1)) @ (finite group without /-torsion).

Since £ is regular, we have Pic(R)/£ = 0, and we saw in 1.4 that Br(R) = 0 and |S| = 1.
By 6.6, HZ, (R, Z(i + 1)) = 0 and the claim now follows.

We conclude with a comparison to the odd part of (z(1 —2k), generalizing the Birch-
Tate Conjecture 2.14. If F' is not totally real, (z(s) has a pole of order 79 at s = 1 — 2k.
We need to invoke the following deep result of Wiles [Wi], which is often called the
“Main Conjecture” of Iwasawa Theory.

Theorem 6.8 (Wiles). Let F be a totally real number field. If £ is odd and Og =
Or[1/¢] then for all even i =2k > 0:

[HE(Os, Zo(i)|

0= (05,20 ™

where u; 18 a rational number prime to £.

The numerator and denominator on the right side are finite by 3.4. Lichtenbaum’s
conjecture follows, up to a power of 2, by setting i = 2k:

Theorem 6.9. If F' is totally real, then

|Kar—2(OF)|

_ —_ (_1\km
Cr(l—2k)=(-1) Kot (O]

up to factors of 2.

Proof. By the functional equation, the sign of (p(1 — 2k) is (—1)*". Tt suffices to
show that the left and right sides of 6.9 have the same power of each odd prime /.
The group HZ (Op[1/4),Z(7)) is the £-primary part of Ka;_2(OF) by 6.2. The group
H}.(Or[1/£], Z(3)) on the bottom of 6.8 is Z/wge)(F) by 3.8.4, and this is isomorphic
to the £-primary subgroup of Ka;_1(Op) by theorem 6.2. [
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§7. REAL NUMBER FIELDS AT THE PRIME 2

Let F' be a real number field, i.e., F' has r; > 0 embeddings into R. The calculation of
the algebraic K-theory of F' at the prime 2 is somewhat different from the calculation
at odd primes, for two reasons. One reason is that a real number field has infinite
cohomological dimension, which complicates descent methods. A second reason is that
the Galois group of a cyclotomic extension need not be cyclic, so that the e-invariant
may not split (see 2.12). A final reason is that the groups K,(F';Z/2) do not have a
natural multiplication, because of the structure of the mod 2 Moore space RP2.

For the real numbers R, the mod 2 motivic spectral sequence has EY? = Z/2 for
all p, ¢ in the octant ¢ < p < 0. In order to distinguish between the groups E%?, it is
useful to label the nonzero elements of HY (R, Z/2(3)) as 3;, writing 1 for By. Using the
multiplicative pairing with (say) the spectral sequence 'E3"* converging to K, (R;Z/16),
multiplication by the element 7 € 'Ey' " allows us to write the nonzero elements in the
—ith column as 77 3;. (See table 7.1.1 below)

From Suslin’s calculation of K, (R) in [Su2], we know that the groups K, (R;Z/2)
are cyclic and 8-periodic (for n > 0) with orders 2,2,4,2,2,0,0,0 (for n =0,1,...,7).

Theorem 7.1. In the spectral sequence converging to K,(R;Z/2), all the dy differentials
with nonzero source on the lines p = 1,2 (mod 4) are isomorphisms. Hence the spectral
sequence degenerates at E3. The only extensions are the nontrivial extensions Z/4 in
K8a+2(R; Z/Q) .

1 1

p1 7 b1 n

B2 nb 7’ np1 Ui

B3 nB2 6 | 0] 0 | n°h 0
nBs | n*B2 | n*B | n* 0[]0 0 0
The first 4 columns of Es The first 4 columns of E5

Table 7.1.1. The mod 2 spectral sequence for R.

Proof. Recall from 0.6 that the mod 2 spectral sequence has periodicity isomorphisms
EPa = Ep=4a-4 5 < (. Therefore it suffices to work with the columns —3 < p < 0.

Because K3(R;Z/2) = Z/2, the differential closest to the origin, from 3, to 73, must
be nonzero. Since the pairing with 'Fy is multiplicative and dy(n) = 0, we must have
da(n?Ba) = 1?3 for all j > 0. Thus the column p = —2 of Ej3 is zero, and every term
in the column p = 0 of Ej is zero except for {1,7,n}.

Similarly, we must have do(83) = 1381 because K5(R;Z/2) = 0. By multiplicativity,
this yields da(n783) = 7138, for all j > 0. Thus the column p = —3 of Ej3 is zero, and
every term in the column p = —1 of Ej3 is zero except for {81,781,7?81}. O

7.1.2. The analysis with coefficients Z/2°° is very similar, except that when p > gq,
EY? = HY Y(R;Z/2%°(—q)) is: 0 for p even; Z/2 for p odd. If p is odd, the coefficient
map Z/2 — Z/2° induces isomorphisms on the EY'? terms, so by 7.1 all the dy dif-
ferentials with nonzero source in the columns p = 1 (mod 4) are isomorphisms. Again,
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the spectral sequence converging to K, (R;Z/2°°) degenerates at F3 = E. The only
extensions are the nontrivial extensions of Z/2% by Z/2 in Kg,4(R;Z/2°°) =2 Z /2.

7.1.8. The analysis with 2-adic coefficients is very similar, except that (a) H°(R; Z2 (7))
is: Z for i even; 0 for ¢ odd and (b) (for p > ¢) EY? = HY (R, Z/2°°(—q)) is: Z/2 for
p even; 0 for p odd. All differentials with nonzero source in the column p = 2 (mod 4)
are onto. Since there are no extensions to worry about, we omit the details.

In order to state the theorem 7.3 below for a ring Og of integers in a number field
F', we consider the natural maps (for n > 0) induced by the r; real embeddings of F,
(Z/2)™, i—nodd
0, 1 — n even.

(7.2.0) a2(i): H"(Os;2/2% (i) — @) H"(R; Z/2 (i) = {

This map is an isomorphism for all n > 3 by Tate-Poitou duality; by 3.8.3, it is also an
isomorphism for n = 2 and 7 > 2. Write H'(Og;Z/2%(i)) for the kernel of a}(7).

1/.

Lemma 7.2. The map H'(F;Z/2%(i)) >, (Z)2)™ is a split surjection for all even i.
Hence H'(Og;Z/2% (1)) =2 (Z/2)™ & HY(Og;Z/2%°(i)) for sufficiently large S.

Proof. By the strong approximation theorem for units of F', the left map vertical map

is a split surjection in the diagram:

F*/FX2 5 HYF,Z/2) — HYF,Z/2°())

ontolGBG l J’al(i)

o [}

(Z)2)" = o R*/R*? = oHY(R,Z/2) — ®HY(R,Z/2%(i)).
Since F* /F*? is the direct limit (over S) of the groups 0% /O%?, we may replace F by
Og for sufficiently large S. [
We also write A x B for an abelian group extension of B by A.

Theorem 7.3. ([RW, 6.9]) Let F be a real number field, and let R = Og be a ring of
S-integers in F containing Op[3]. Then ag(i) is onto when i = 4k > 0, and:

( Z/wa(F) for n = 8a,
HY(Og;Z/2%(4k + 1)) forn =8a+1,
72 forn =8a + 2,
K, (0s:2/2%) = | Hl((’)g;Z/2°°(4k—|-%)) for n =8a+ 3,
Z/2wapi0® (Z)2) 1 forn =8a+4,
(Z/2)"~! x HY(Og;7Z/2%°(4k + 3))  for n = 8a + 5,
0 forn =8a + 6,
| HY(Og;Z/2°°(4k + 4)) forn=8a+7.

Proof. The morphism of spectral sequences (0.5), from that for Og to the sum of r;
copies of that for R, is an isomorphism on E%'? except on the diagonal p = g (where it
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is an injection) and p = ¢ + 1 (where we must show it is a surjection). When p = +1
(mod 4), it follows from 7.1.2 that we may identify d5¢ with o/d ?. Hence d5? is an
isomorphism if p > 2 4 ¢, and an injection if p = ¢q. As in 7.1.2, the spectral sequence
degenerates at Ej3, yielding K,,(Og;Z/2°°) as proclaimed, except for two points: (a) the
extension of Z/w4e42 by Z/2™ when n = 8a + 4 is seen to be nontrivial by comparison
with the extension for R), and (b) when n = 8a + 6 it only shows that K,,(Og;Z/2%)
is the cokernel of ag(4a + 4).

To resolve (b) we must show that ak(4a + 4) is onto when a > 0. Set n = 8a + 6.
Since K,,(Og) is finite, K,,(Og; Z/2°°) must equal the 2-primary subgroup of K,,_1(Ogs),
which is independent of S by 1.6. But for sufficiently large S, the map a'(4a + 4) is a
surjection by 7.2, and hence K, (Og;Z/2*°) =0. O

Proof of Theorem 0.1. Let n > 0 be odd. By 1.5 and 1.6, it suffices to determine
the torsion subgroup of K,,(Og) = K, (F). Since K, 11(Og) is finite, it follows that
K,11(Og;Z/£%) is the £-primary subgroup of K, (Og). By 6.5, we may assume F' has
a real embedding. By 6.2, we need only worry about the 2-primary torsion, which we
can read off from 7.3, recalling from 2.8(b) that wz@) (F)=2forodd:. O

To proceed further, we need to introduce the narrow Picard group and the signature
defect of the ring Og.

Narrow Picard group 7.4. Each real embedding o; : F — R determines a map
F* — R* — Z/2, detecting the sign of units of F' under that embedding. The sum
of these maps is the sign map o: F* — (Z/2)™. The approximation theorem for F'
implies that o is surjective. The group ij of totally positive units in F' is defined to be
the kernel of o.

Now let R = Og be a ring of integers in F. The kernel of o|g : R* — F* — (Z/2)™
is the subgroup Rj; of totally positive units in R. Since the sign map o|g factors through
F*/2 = H(F,Z/2), it also factors through o' : HY(R,Z/2) — (Z/2)". The signature
defect j(R) of R is defined to be the dimension of the cokernel of a!; 0 < j(R) < 7,
because o(—1) # 0. Note that j(F) = 0, and that j(R) < j(Op).

By definition, the narrow Picard group Pic, (R) is the cokernel of the the restricted
divisor map ' — P _ggZ. (See [Co, 5.2.7]. This definition is due to Weber; Pic(Os)
is also called the ray class group Cl%; see [Neu, VI.1].) The kernel of the restricted
divisor map is clearly R}, and it is easy to see from this that there is an exact sequence

0— RY - R* % (Z/2)™ — Picy(R) — Pic(R) — 0.
A diagram chase (performed in [RW, 7.6]) shows that there is an exact sequence

(7.41) 0— HY(R;Z/2) — H'(R;Z/2) o (Z/2)™ — Picy(R)/2 — Pic(R)/2 — 0.

(H'(R;Z/2) is defined as the kernel of a!.) Thus the signature defect j(R) is also
the dimension of the kernel of Pic; (R)/2 — Pic(R)/2. If we let ¢t and u denote the
dimensions of Pic(R)/2 and Pic (R)/2, respectively, then this means that u =t + j(R).
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If s denotes the number of finite places of R = Og, then dim H*(R;Z/2) = r1 +
r9 + s+t and dim H%(R;Z/2) = ry + s +t — 1. This follows from (1.2.1) and (1.3.1),
using Kummer theory. As in (7.2.0) and (7.4.1), define H"(R;7Z/2) to be the kernel of
a™: H*(R;Z/2) — H™(R;Z/2)™ = (Z/2)™.

Lemma 7.4.2. Suppose that % € R. Then dimffl(R, Z/2) = r9 + s + u. Moreover,
the map o? : H2(R,Z/2) — (Z/2)™ is onto, and dim H?(R,Z/2) =t + s — 1.

Proof. The first assertion is immediate from (7.4.1). Since H2(R;Z/2*°(4)) = (Z/2)™
by (3.8.3), the coefficient sequence for Z/2 C Z/2°°(4) shows that H?(R;Z/2) —
H?(R;Z/2°°(4)) is onto. The final two assertions follow. [J

Theorem 7.5. Let F' be a real number field, and Og a ring of integers containing %
If 7 = j(Og) is the signature defect, then the mod 2 algebraic K -groups of Og are given
(up to extensions) for n > 0 as follows:

( H*(0s;7/)2) ® 7./2 for n = 8a,
HY(Og;Z/2) forn =8a+1,
H%(0s;7./2) x 7.]2 forn = 8a+ 2,

(Z/2)=1 x HY(Og;Z/2) for n =8a+ 3,
(Z/2)7 x H*(Og;Z/2) forn = 8a+4,
(Z/2) =1 x HY (Og;Z/2) forn = 8a+5,
(Z/2)7 @ H*(Og;7/2) forn =8a+6,

K, (0s;7Z/2) = <

\ HY(0s;Z/2) forn=8a+7.
1
51 H'
0 H? H?
0 H? H? (Z/2)r1
m | ' |zt (Z/2)7
H? 0 (Z./2)7 0
0 0 0 0

The first 4 columns (=3 < p < 0) of E3 = E
Table 7.5.1. The mod 2 spectral sequence for Og.

Proof. (Cf.[RW, 7.8].) As in the proof of Theorem 7.3, we compare the spectral sequence
for R = Og with the sum of r; copies of the spectral sequence for R. For n > 3 we
have H™(R;Z/2) = (Z/2)™. 1t is not hard to see that we may identify the differentials
dy : H*(R,Z/2) — H""3(R,Z/2) with the maps a™. Since these maps are described in
7.4.2, we see from 0.6 that that the columns p < 0 of E3 are 4-periodic, and all nonzero
entries are described by Figure 7.5.1. (By (0.5), there is only one nonzero entry for p > 0,
EF"™! = Pic(R)/2, and it is only important for n = 0.) By inspection, E3 = E.,
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yielding the desired description of the groups K, (R,Z/2) in terms of extensions. We
omit the proof that the extensions split if n = 0,6 (mod 8). O

The case F' = QQ has historical importance, because of its connection with the image
of J (see 2.12 or [Q5]) and classical number theory. The following result was first estab-
lished in [We2]; the groups are not truly periodic only because the order of Kg,_1(Z)
depends upon a.

Corollary 7.6. For n > 0, the two-primary subgroups of K,(Z) and K2(Z[1/2]) are
essentially periodic, of period eight, and are given by the following table. (When n =17
(mod 8), we set a = (n+1)/8.)

n (mod 8) 1 2 3 41516 7 8
K (Z){2)} | Z/2 | Z/2 | 2/16 | 0| 0| 0| Z/16a

In particular, K, (Z) and K,(Z[1/2]) have odd order for all n = 4,6,8 (mod 8), and
the finite group Kg,12(Z) is the sum of Z/2 and a finite group of odd order. We will
say more about the odd torsion in the next section.

Proof. When n is odd, this is theorem 0.1; wfli) is the 2-primary part of 16a by 2.8(c).
Since s = 1 and t = u = 0, we see from 7.4.2 that dim H'(Z[1/2];Z/2) = 1 and that
H%(Z[1/2);7/2) = 0. By 7.5, the groups K, (Z[1/2];Z/2) are periodic of orders 2, 4,
4, 4,2, 2 1,2 forn =0,1,...,7 respectively. The groups K,,(Z[1/2]) for n odd, given
in 0.1, together with the Z/2 summand in Kg,2(Z) provided by topology (see 2.12),

account for all of K,,(Z[1/2];Z/2), and hence must contain all of the 2-primary torsion
in K,(Z[1/2]). O

Recall that the 2-rank of an abelian group A is the dimension of Hom(Z/2, A). We
have already seen (in either theorem 0.1 or 7.3) that for n = 1,3,5,7 (mod 8) the
2-ranks of K,,(Og) are: 1, r1, 0 and 1, respectively.

Corollary 7.7. For n = 2,4,6,8 (mod 8), n > 0, the respective 2-ranks of the finite
groups K,,(Og) are: 11 +s+t—1,j+s+t—1,j+s+t—1ands+t—1.

Proof. (Cf. [RW, 0.7].) Since K,(R;Z/2) is an extension of Hom(Z/2, K,,_1R) by
K, (R)/2, and the dimensions of the odd groups are known, we can read this off from
the list given in theorem 7.5. [

Example 7.7.1. Consider F' = Q(,/p), where p is prime. When p =1 (mod 8), it is
well known that ¢ = j = 0 but s = 2. It follows that Kg,12(Op) has 2-rank 3, while
the two-primary summand of K,,(Op) is nonzero and cyclic when n = 4,6,8 (mod 8).

When p = 7 (mod 8), we have j = 1 for both O and R = Op[1/2]. Since r; = 2
and s = 1, the 2-ranks of the finite groups K, (R) are: ¢t + 2, t+ 1, t + 1 and ¢ for
n=2,4,6,8 (mod 8) by 7.7. For example, if t = 0 (Pic(R)/2 = 0) then K,,(R) has odd
order for n = 8 (mod 8), but the 2-primary summand of K,,(R) is (Z/2)? when n = 2
and is cyclic when n = 4, 6.



K-THEORY OF INTEGERS 33

Example 7.7.2. (2-regular fields) A number field F' is said to be 2-regular if there is
only one prime over 2 and the narrow Picard group Picy(Op[3]) is odd (i.e., t =u =0
and s = 1). In this case, we see from 7.7 that Kg,42(OF) is the sum of (Z/2)™ and a
finite odd group, while K,(Op) has odd order for all n = 4,6,8 (mod 8) (n > 0). In
particular, the map K}/ (F) — K4(F) must be zero, since it factors through the odd
order group K4(OF), and KM (F) = (Z/2)™.

Browkin and Schinzel [BS] and Rognes and Ostveer [RQ] have studied this case. For
example, when F' = Q(y/m) and m > 0 (r; = 2), the field F is 2-regular exactly when
m =2, orm=porm=2p with p=3,5 (mod 8) prime. (See [BS].)

A useful example is F' = Q(+/2). Note that the Steinberg symbols {—1, -1, -1, -1}
and {—1,—1,—1,1+4+/2} generating KM (F) = (Z/2)? must both vanish in K4(Z[v2]),
which we have seen has odd order. This is the case 7 = p = 0 of the following result.

Corollary 7.8. Let F be a real number field. Then the rank p of the image of KM (F) =
(Z)2)™ in K4(F) satisfies j(Op[1/2]) < p < r1 — 1. The image (Z/2)° lies in the
subgroup K4(Or) of K4(F), and its image in K4(Og)/2 has rank j(Og) for all Og
containing 1/2. In particular, the image (Z/2)P lies in 2 - K4(F).

Proof. By 1.8, we have p < r; = rank K} (F). The assertion that KM (F) — K4(F)
factors through K4(OF) follows from 1.7, by multiplying K4 (F) and K3(OFf) = K3(F)
by [-1] € K1(Z). It is known [SF, 15.5] that the edge map H™(F,Z(n)) — K, (F') in the
motivic spectral sequence agree with the usual map KM (F) — K,,(F). By Voevodsky’s
theorem, KM (F)/2¥ = H"(F,Z(n))/2" = H"(F,Z/2"(n)). For n = 4, the image of the
edge map from H*4(Og,7Z/2"(4)) = H4(F,7/2"(4)) — K4(Os;7Z/2) has rank j by table
7.5.1; this implies the assertion that the image in K4(Os)/2 C K4(Os;Z/2) has rank
j(Os). Finally, taking Og = Op[1/2] yields the inequality j(Og) < p. O

Example 7.8.1. (p = 1) Consider F = Q(/7), O = Z[V7] and R = Op[1/2];
here s = 1, t = 0 and j(R) = p = 1 (the fundamental unit v = 8 + 31/7 is totally
positive). Hence the image of KM (F) = (Z/2)? in K4(Z[\/7]) is Z/2 on the symbol
o ={-1,-1,-1,4/7}, and this is all of the 2-primary torsion in K4(Z[/7]) by 7.7.

On the other hand, Og = Z[v/7,1/7] still has p = 1, but now j = 0, and the 2-rank of
K4(Og) is still one by 7.7. Hence the extension 0 — K4(Op) — K4(Og) — Z/48 — 0
of 1.6 cannot be split, implying that the 2-primary subgroup of K4(Og) must then be
7./32.

In fact, the nonzero element o is divisible in K4(F'). This follows from the fact that
if p = 3 (mod 28) then there is an irreducible ¢ = a + by/7 whose norm is —p = ¢q.
Hence R’ = Z[\/7,1/2q] has j(R') = 0 but p = 1, and the extension 0 — K4(Or) —
K4(Os) = Z/(p* — 1) — 0 of 1.6 is not split. If in addition p = —1 (mod 2”) — there
are infinitely many such p for each v — then there is an element v of K4(R’) such that
2v*T1y = o See [We3] for details.

Question 7.8.2. Can p be less than the minimum of ry — 1 and j+s+t — 17

As in (7.2.0), when i is even we define H?(R; Z»(i)) to be the kernel of a?(i) -
H?(R; Zs(i)) — H*(R; Zo (i)™ = (Z/2)"™. By 7.4.2, H*(R;Zs(7)) has 2-rank s + ¢ — 1.
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Theorem 7.9. ([RW, 0.6]) Let F' be a number field with at least one real embedding,
and let R = Og denote a ring of integers in F' containing 1/2. Let j be the signature
defect of R, and write w; for wl@)(F).

Then there is an integer p, 7 < p < ry, such that, for all n > 2, the two-primary
subgroup K, (0s){2} of K,(Og) is isomorphic to:

(HZ.(R; Zs(4a + 1)) for n = 8a,
72 forn=8a+1,
HZ (R; Zy(4a + 2)) for n = 8a+ 2,
Kn(Os)zy | P/ OB Bare | Jorn=Sa
(Z/2)P x HE (R; Za(4a + 3))  forn =8a+4,
0 forn=8a+35,
HZ (R; Zo(4a + 4)) for n = 8a+ 6,
\ Z/W4q+4 forn =8a+17.

Proof. When n = 2i — 1 is odd, this is theorem 0.1, since wz@ (F) =2 whenn =1
(mod 4) by 2.8(b). When n = 2 it is 1.3. To determine the two-primary subgroup
K, (Os){2} of the finite group Ka;12(Os) when n = 2i+ 2, we use the universal coeffi-
cient sequence

0— (Z/QOO)T — K2i+3(05; Z/2oo) — K2i+2(05){2} — 0,

where 7 is the rank of K9;13(Og) and is given by 1.5 (r = r1 4+ r3 or r3). To compare
this with theorem 7.3, we note that H'(Og, Z/2°°(4)) is the direct sum of (Z/2°°)" and
a finite group, which must be H%(Os, Z2(i)) by universal coefficients; see [RW, 2.4(b)].
Since ag(i) : HY(R;Z2(i)) — (Z/2)™ must vanish on the divisible group (Z/2°)", it
induces the natural map o%(i): HZ(Og;Zs(i)) = (Z/2)™ and

H'(0s,2/2%(i)) = (Z/2%°)" & H*(Os, Za(1)).

This proves all of the theorem, except for the description of K, (Og), n = 8a +
4. By mod 2 periodicity 0.6, the integer p of 7.8 equals the rank of the image of
H*(0s,7/2(4)) & H*(Os,7/2(4k + 4)) = (Z/2)™ in Hom(Z/2, K,(Os)), considered
as a quotient of K,,11(0g;Z/2). O

We can combine the 2-primary information in 7.9 with the odd torsion information
in 6.2 and 6.9 to relate the orders of K-groups to the orders of étale cohomology groups.
Up to a factor of 2", they were conjectured by Lichtenbaum in [Li2]. Let |A| denote
the order of a finite abelian group A.

Theorem 7.10. Let F' be a totally real number field, with r1 real embeddings, and let
Og be a ring of integers in F'. Then for all even i > 0

r [ K2i-2(0s)| _ 11, |HE(Os[1/4]; Z5(3))|

2 Kaa(0s)] ~ 11, [ HA(Os[L/8]: Zo0))|
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Proof. (Cf. proof of 6.9.) Since 2i — 1 = 3 (mod 4), all groups involved are finite
(see 1.5, 3.8 and 3.8.4.) Write h™*(¢) for the order of HZ(Og[1/£];Z(i)). By 3.8.4,
hli(f) = 'wge) (F). By 0.1, the /-primary subgroup of Ks; 1(Og) has order hl#(£) for
all odd £ and all even ¢ > 0, and also for £ = 2 with the exception that when 2: —1 =3
(mod 8) then the order is 21 h1(2).

By 6.2 and 7.9, the f-primary subgroup of Ka; 2(Os) has order h%*(¢) for all ¢,
except when £ = 2 and 2i — 2 = 6 (mod 8) when it is A1¢(2)/2". Combining these
cases yields the formula asserted by the theorem. [J

Corollary 7.11. For R = Z, the formula conjectured by Lichtenbaum in [Li2] holds up
to exactly one factor of 2. That is, for k > 1,
|Kak—2(Z)| _ B _ (=1)F

Ky 1(Z)] 4k 2

C(1 - 2k).

Moreover, if ci, denotes the numerator of Jj—,’;, then

Kaneal®)] = {

Ck, k even
2 ¢, k odd.

Proof. The equality By/4k = (—1)*¢(1 — 2k)/2 comes from 2.10.1. By 6.9, the formula

holds up to a factor of 2. By 2.11, the two-primary part of By/4k is 1/w§i). By 2.8(c),
this is also the two-primary part of 1/8k. By 7.6, the two-primary part of the left-hand
side of 7.11 is 2/16 when k is odd, and the two-primary part of 1/8k when k = 2a is
even. [J

Examples 7.12. (Ky;_2(Z)) The group Kai_2(Z) is cyclic of order ¢j or 2¢; for all
k < 5000. For small k£ we need only consult 2.10 to see that the groups Ks(Z), K10(Z),
K13(Z) and Ky6(Z) are isomorphic to Z/2. We also have Kg(Z) = K14(Z) = 0. (The
calculation of K¢(Z) up to 3-torsion was given in [EGS].) However, c¢g = 691, cs = 3617,
co = 43867 and c13 = 657931 are all prime, so we have Ky3(Z) = Z/691, K3¢(Z) =
2.)3617, K34(Z) = 2./2 & Z./43867 and Kso = Z/2 & Z/657931.

The next hundred values of cx are squarefree: ci9 = 283 - 617, ¢11 = 131 - 593,
c12 = 103-2294797, c14 = 9349-362903 and c15 = 1721-1001259881 are all products of two
primes, while ¢16 = 37-683- 305065927 is a product of 3 primes. Hence K3g(Z) = Z/c10,
K42(Z) = Z/2611, K46 = Z/Clg, K54(Z) = Z/Cl4, K58(Z) = Z/2615 and K@z(Z) =
L/ci6 =7Z/37®Z]/683 @ Z/305065927.

Thus the first occurrence of the smallest irregular prime (37) is in Kgo(Z); it also
appears as a Z/37 summand in Kq34(Z), Koos(Z), ..., Ka94(Z). In fact, there is 37-
torsion in every group Kra,162(Z) (see 8.6 below).

For k < 5000, only seven of the ¢ are not square-free; see [OEIS, A090943]. The
numerator cj, is divisible by £2 only for the following pairs (k,£): (114,103), (142, 37),
(457,59), (717,271), (1646, 67) and (2884, 101). However, Kaj_(Z) is still cyclic with
one Z/¢% summand in these cases. To see this, we note that Pic(R)/£ = Z /¢ for these £,
where R = Z[(s]. Hence Kui_2(R)/¢ = H*(R,Zy(2k))/¢ = H*(R,Z/4(2k)) = Pic(R) =
Z/¢. The usual transfer argument now shows that Ky;_2(Z)/ is either zero or Z/¢ for
all k.
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§8. THE ODD TORSION IN K, (Z)

We now turn to the ¢-primary torsion in the K-theory of Z, where £ is an odd prime.
By 2.11 and 6.2, the odd-indexed groups Ks;_1(Z) have £-torsion exactly when i = 0
(mod £ — 1). Thus we may restrict attention to the groups Ks;(Z), whose {-primary
subgroups are HZ (Z[1/£]; Z(i + 1)) by 6.2.

Our method is tonsider the cyclotomic extension Z[(] of Z, { = e . Because the
Galois group G = Gal(Q(¢)/Q) is cyclic of order £ — 1, prime to £, the usual transfer
argument shows that K,(Z) — K,(Z[(]) identifies K, (Z) ® Z, with K,(Z[(]))® ® Z,
for all n. Because K, (Z) and K, (Z[1/£]) have the same {-torsion (by the localization
sequence), it suffices to work with Z[1//].

2mi /L

Proposition 8.1. When £ is an odd regular prime there is no £-torsion in Ko;(7Z).

Proof. Since £ is regular, we saw in example 6.7 that the finite group K2;(Z[(]) has no
{-torsion. Hence the same is true for its G-invariant subgroup, Ky;(Z). O

It follows from this and 2.11 that Ko;(Z;Z/¢) contains only the Bockstein representa-
tives of the Harris-Segal summands in K9;_1(Z), and this only when 27 = 0 (mod 2/—2).

We can also describe the algebra structure of K, (Z;Z/£) using the action of the cyclic
group G = Gal(Q(¢)/Q) on the ring K,(Z[(];Z/¢). For simplicity, let us assume that
£ is a regular prime. It is useful to set R = Z[(,1/¢] and recall from 8.3 that K, =
K.(R;Z/?)is a free graded Z/£[]-module on the £ generators of R* /£ € K1(R; Z /),
together with 1 € Ko(R;Z/¥).

By Maschke’s theorem, Z/{[G] = Hf;g Z/¢ is a simple ring; every Z/£[G]-module
has a unique decomposition as a sum of irreducible modules. Since p, is an irreducible
G-module, it is easy to see that the irreducible G-modules are /J,?i, 1=0,1,..,0—2.
The “trivial” G-module is ,u?e_l = ,u?o = Z/¢. By convention, ,u%’_i = u?e_l_i.

For example, the G-module (3*) of K»;(Z[(];Z/¢) generated by S is isomorphic to
p$t. Tt is a trivial G-module only when (£ — 1)|s.

If A is any Z/£[G]-module, it is traditional to decompose A = @Al where Al
denotes the sum of all G-submodules isomorphic to ,uig’i.

Example 8.2. Set R = Z[(y, 1/£]. It is known that the torsionfree part R* /u, = 75
of the units of R is isomorphic as a G-module to Z[G] ®z[q Z, where c is complex
conjugation. (This is sometimes included as part of Dirichlet’s theorem on units.) It
follows that as a G-module,

Hg (R, ) = R /R* =y @ (Z/0) @ p? & - @ pd* .

The root of unity ( generates the G-submodule py, and the class of the unit £ of R
generates the trivial submodule of R* /R

Tensoring with ,uf’i_l yields the G-module decomposition of R* ® ,u?i. If 2 is regular
this is Ko 1(R;Z/) = H} (R, u$) by 6.4. If i is even, exactly one term is Z/¢; if 4 is
odd, Z/¢ occurs only when i =0 (mod £ — 1).
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Notation 8.2.1. Set R = Z[(s,1/¥], For i = 0,...,“73, pick a generator x; of the G-
submodule of R* /R** isomorphic to ,u%_%. The indexing is set up so that y; = 8%'z;
is a G-invariant element of Ky;41(R;Z/f) = HJ (R, p$* ™). We may arrange that
To = Yo is the unit [£] in Kq(R;Z/L).

The elements B4~ of HY, (R, u$* ') and v = B2[(] of H} (R, u$*") are also G-
invariant. By abuse of notation, we shall also write 8¢~ and v, respectively, for the
corresponding elements of Kop_o(Z[1/¢];Z/0) and Kop_3(Z[1/¢];Z]2).

Theorem 8.3. If ¢ is an odd regular prime then K, = K, (Z[1/£];Z/¢) is a free graded
module over the polynomial ring Z/0[3*1]. It has (£ + 3)/2 generators: 1 € Ky, v €
Koy _3,and y; € K4'i+1 (7, =0,..., 6_73)

Similarly, K,(Z;Z/f) is a free graded module over Z/L[3*"Y); a generating set is
obtained from the generators of K, by replacing yo by yoB¢ 1.

The submodule generated by v and B! comes from the Harris-Segal summands of
Ky4;—1(Z). The submodule generated by the y’s comes from the Z summands in K4;11(Z).

Proof. K,(Z[1/¢];Z/%) is the G-invariant subalgebra of K,(R;Z/f). Given 8.2, it is not
very hard to check that this is just the subalgebra described in the theorem. [J

Examples 8.3.1. When ¢ = 3, the groups K, = K.(Z[1/3];Z/3) are 4-periodic of
ranks 1, 1,0, 1, generated by an appropriate power of 32 times one of {1, [3],v}.

When £ = 5, the groups K, = K,(Z[1/5];Z/5) are 8-periodic, with respective ranks
1,1,0,0,0,1,0,1 (* = 0,...,7), generated by an appropriate power of 3* times one of
{1, [5], Y1, ’U}.

Now suppose that £ is an irregular prime, so that Pic(R) has {-torsion for R =
Z[¢,1/4]. Then H} (R, pe) is R* /¢ & 4 Pic(R) and HZ (R, 1) = Pic(R)/¢ by Kummer
theory. This yields K, (R;Z/¢) by 6.4.

Example 8.4. Set R = Z[(y,1/4] and P = Pic(R)/¢. If £ is regular then P = 0 by
definition 1.1. When / is irregular, the G-module structure of P is not fully understood;
see Vandiver’s conjecture 8.5 below. However, the following arguments show that Pl =
0, i.e., P contains no summands isomorphic to ufi, forz=0,—-1,-2,-3.

The usual transfer argument shows that P¢ 2 Pic(Z[1/£])/£ = 0. Hence P contains
no summands isomorphic to Z/¢. By 1.4, we have a G-module isomorphism (P ® pg) =
K3(R) /L. Since K3(R)/£C = Ky(Z[1/£])/£ =0, (P ® ) has no Z/£ summands — and
hence P contains no summands isomorphic to ,uég’_l.

Finally, we have (P ® p$?) 2 K4(R)/¢ and (P ® ud®) = Kg(R)/{ by 6.5. Again, the
transfer argument shows that K,,(R)/¢¢ = K,,(Z[1/£])/¢ for n = 4,6. These groups are
known to be zero by [R4] and [EGS]; see 1.9. It follows that P contains no summands
isomorphic to u?‘2 or ,uég’_?’.

Vandiver’s conjecture 8.5. If £ is an irregular prime then Pic(Z[¢, + ¢, ']) has no
{-torsion. Equivalently, the natural representation of G = Gal(Q({z)/Q) on Pic(Z[(])/¢
is a sum of G-modules u?i with ¢ odd.

This means that complex conjugation ¢ acts as multiplication by —1 on the /-primary
subgroup of Pic(Z[(]), because c is the unique element of G of order 2.
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As partial evidence for this conjecture, we mention that Vandiver’s conjecture has
been verified for all primes up to 12 million; see [Bul2]. We also known from 8.4 that
p®* does not occur as a summand of Pic(R) /¢ for i = 0, —2.

Remark 8.5.1. The Herbrand-Ribet theorem [Wash, 6.17-18] states that £| By if and
only if Pic(R)/£¢=2*] £ 0. Among irregular primes < 4000, this happens for at most 3
values of k. For example, 37|ci¢ (see 7.12), so Pic(R)//P] = Z/37 and Pic(R) /%] = 0
for k # 5.

Historical Remark 8.5.2. What we now call “Vandiver’s conjecture” was actually dis-
cussed by Kummer and Kronecker in 1849-1853; Harry Vandiver was not born until
1882 and only made his conjecture circa 1920. In 1849, Kronecker asked if Kummer
conjectured that a certain lemma ([Wash, 5.36]) held for all p, and that therefore p
never divided h™ (i.e., Vandiver’s conjecture holds). Kummer’s reply [Kum, pp.114—
115] pointed out that the Lemma could not hold for irregular p, and then called the
assertion [Vandiver’s conjecture] “a theorem still to be proven.” Kummer also pointed
out some of its consequences. In an 1853 letter (see [Kum, p.123]), Kummer wrote to
Kronecker that in spite of months of effort, the assertion [Vandiver’s conjecture| was
still unproven.
For the rest of this paper, we set R = Z[(;, 1/£], where (¢ = 1.

Theorem 8.6. (Kurihara [Kur|) Let £ be an irreqular prime number. Then the follow-
ing are equivalent for every k between 1 and K_Tl:

(1) Pic(Z[c])/£-24 = 0.

(2) Kax(Z) has no £-torsion;

(3) Kaq(t—1)+4k(Z) has no L-torsion for all a > 0;

(4) HX(Z[1/€], 5% *1) = 0.
In particular, Vandiver’s conjecture for £ is equivalent to the assertion that K (Z) has
no £-torsion for all k < 3—71} and implies that K4 (Z) has no £-torsion for all k.

Proof. Set P = Pic(R)/¢. By Kummer theory (see 1.4), P & H?(R, ;) and hence
P® ,u?% =~ H%(R, ,u?m“rl) as G-modules. Taking G-invariant subgroups shows that
H2(Z[1/4), u2%F 1) = (P @ p$?*)E = PI=2k]. Hence (1) and (4) are equivalent.

By 6.3, Kui,(Z) /£ = H?(Z[1/€], u$?**1) for all k > 0. Since pu$® = ,u?a(e_l)% for all
a and b, this shows that (2) and (3) are separately equivalent to (4). O

Theorem 8.7. If Vandiver’s conjecture holds for ¢ then the £-primary torsion subgroup
of Kax—2(Z) is cyclic for all k.
If Vandiver’s conjecture holds for all £, the groups Ku,—o(Z) are cyclic for all k.

(We know that the groups Kax—2(Z) are cyclic for all k& < 500, by 7.12.)

Proof. Set P = Pic(R)/¢. Vandiver’s conjecture also implies that each of the “odd”
summands PI'—2%] = Pl=2k] of P is cyclic, and isomorphic to Zy/cy; see [Wash, 10.15]
and 3.8.2 above. Since Pic(R) ® u$?* ! = H?(R, u$?*), taking G-invariant subgroups
shows that P1—2k] =~ H2(Z[1/£],,u?2k). By theorem 6.2, this group is the /-primary
torsion in Ky o(Z[1/4]). O
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Using 2.10 and 2.11 we may write the Bernoulli number By /4k as cg/way in reduced
terms, with c; odd. The following result, which follows from theorems 0.1, 8.6 and 8.7,
was observed independently by Kurihara [Kur] and Mitchell [Mit].

Corollary 8.8. If Vandiver’s conjecture holds, then K, (Z) is given by Table 8.8.1, for
all m > 2. Here k is the integer part of 1 + 7.

n (mod 8) 1 2 3 415 6 7
Kn(Z) Z@Z/Q Z/2Ck Z/2w2k 0| zZ Z/Ck Z/’U)gk
Table 8.8.1. The K-theory of Z, assuming Vandiver’s Conjecture.

Remark 8.9. The elements of Ko;(Z) of odd order become divisible in the larger group
K5;(Q). (The assertion that an element a is divisible in A means that for every m there
is an element b so that a = mb.) This was proven by Banaszak and Kolster for i odd
(see [Ban, thm. 2]), and for 7 even by Banaszak and Gajda [BG, Proof of Prop.8]. It is
an open question whether there are any divisible elements of even order.

For example, recall from 7.12 that Ks3(Z) = Z/691 and K3¢(Z) = Z/3617. Banaszak
observed [Ban] that these groups are divisible in K22(Q) and K3(Q), i.e., that the
inclusions K93(Z) C K92(Q) and K3¢(Z) C K30(Q) do not split.

Let ¢t; and s; be respective generators of the summand of Pic(R)/¢ and K;(R;Z/¥)
isomorphic to ,u?_j . The following result follows easily from 6.4 and 8.2, using the proof
of 8.3, 8.6 and 8.7. It was originally proven in [Mit]; another proof is given in the article
[MKH] in this Handbook. (The generators s;3’ were left out in [Mit2, 6.13].)

Theorem 8.10. If / is an irreqular prime for which Vandiver’s conjecture holds, then
K, = K.(Z;Z]?) is a free module over Z_/E[,Be_l] on the (£—3)/2 generators y; described
in 8.3, together with the generators t;3? € Kq; and s;37 € Koyjt1.
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