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Abstract. How to determine, is a proposed model transformation correct, or not? In 
general, the answer may depend on the model semantics. Of course, a model 
transformation is “correct”, if we can extend it to a “correct” instance data 
transformation. Where should model semantics be defined? Assume, model syntax 
and semantics are defined in the same meta-model. Then, how to separate syntax 
from semantics? The answer could be the definition of model schemas proposed in 
the paper. 

 
 
Outline 
 
The paper is structured as follows. Section 1 discusses the correctness of model 
transformations that are solving the UML to RDBMS transformation problem. Section 2 
introduces an extension of this problem, in which model syntax and semantics are defined 
in the same meta-model. Section 3 is the core of the paper – it proposes a general definition 
of model schemas. Section 4 applies this definition to XML-schemas. Section 5 considers 
the relationship between schemas and model constraints. Finally, Section 6 discusses the 
related work. 
 
 
1. Which UML to RDBMS Transformations Are Correct? 
 
The Object Management Group (OMG) has issued a Request for Proposal for a 
Query/Views/Transformations (QVT) language that would allow defining of mappings 
between different information models [1]. “In defining mappings from model to model, the 
question of correctness of the mapping arises. ... The more complex form of correctness is 
that of semantic correctness; does the result of transformation mean the same thing as the 
input?“ [2]. 

Indeed, let us consider a fragment of the example problem used by MOF QVT 
submitters, the so-called UML to RDBMS transformation problem ([3], Section 5.1.6). 
Figure 1 represents fragments of the input and output meta-models. Figure 2 represents an 
example input model – an interpretation of the UML meta-model. 

The transformation problem is expressed as follows. The input model is an 
interpretation of the input meta-model. It consists of persistent and transient classes owning 
attributes. Attributes may be primitive (having a primitive data type), or complex (having a 
transient class as a type). The output model is an interpretation of the output meta-model. It 
consists of tables owning columns. The transformation in question must: a) Transform each 



persistent class into a single table. b) Transform each class attribute of a primitive type into 
a column of the corresponding table. c) “Drill down” class attributes of complex types to 
leaf-level primitive attributes; transform these primitive attributes into columns of the 
corresponding table. 

How to determine, is a proposed transformation of this kind “correct”, or not? 

Attribute
Name: STRING

Class
Kind: (Persistent,Transient)

Classifier
Name: STRING

PrimitiveDataType Column
Name: STRING
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Name: STRING
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 *
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 *

Type

 *

 1

 
Figure 1. Fragments of UML and RDBMS meta-models 
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Figure 2. Example input model – an interpretation of the UML meta-model 

 
Let us consider two different transformations that are transforming (uniformly) any 

UML model into a RDBMS model. These transformations will be demonstrated for the 
example input model represented in Figure 2. The generalization is obvious. 

“Absolutely lossless” transformation. The following trivial transformation T1 
should be regarded as “absolutely lossless” – it transforms Figure 1 into Figure 3: 

a) T1 transforms a persistent class named C1 into a table named t_C1_Persistent. 
b) If the class C1 owns an attribute A1, and the type of A1 is a transient class C2, 

and C2 owns an attribute B1 of a primitive type STRING, then T1 creates a column named 
c_A1_C2_Transient_B1_STRING. 

c) Similarly, in all the other situations. 

 



T1 is an “absolutely lossless” transformation, because it is reversible – no 
information gets lost during the transformation. Indeed, having an output model, generated 
by T1, we can restore all elements of the input model. 

Note. Of course - with the exception of the transient classes that are not used as 
attribute (or sub-attribute) types in persistent classes. 
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Figure 3. Example output model created by the transformation T1 
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Figure 4. Example output model created by the transformation T2 

 
Practical transformations do not need to be “absolutely lossless”. Of course, 

none of the actual MOF QVT proposals is using this “absolutely lossless” transformation 
T1 (see, for example, [3]). Instead of T1, they are using another transformation T2, which 
transforms Figure 2 into Figure 4, and thus, differs from T1 as follows: 

b) If the class C1 owns an attribute A1, and the type of A1 is the class C2, and C2 
owns an attribute B1of a primitive type STRING, then T2 creates a column named 
c_A1_B1. 

When compared to the T1’s version of the column name 
c_A1_C2_Transient_B1_STRING, the transformation T2, in its version c_A1_B1, omits the 
intermediate class name and attribute (C2_Transient), and the primitive type name 
(STRING). Thus, T2 is not completely reversible - the information about names of transient 
classes and primitive types gets lost during the transformation. Why should we regard 
this widely used T2 as a “correct” transformation? In which sense, the result of T2 “means 
the same thing as the input“ [2]? 

The intended semantics of the UML to RDBMS transformation is as follows. We do 
not need this transformation by itself. We need it as a basis for instance data (database 
contents) transformations. The input UML model can be regarded as a schema of an 
object-oriented database, and the output RDBMS model – as a schema of a relational 
database. Thus, in fact, to solve the UML to RDBMS transformation problem completely, 
we must provide not only the model (i.e. database schema) transformation. To make it 
useful, we must provide also the instance data (i.e. database contents) transformation that 
would allow converting (without loss of information) the contents of any object-oriented 
database into the contents of a relational database. The solution of this problem is a well-
known topic described in database textbooks for students. 

 



And, of course, for the above small fragment of the problem (Figure 1), the database 
contents transformation D2 extending the schema transformation T2 is trivial. In the 
resulting database created by D2, we do not represent the instances of intermediate complex 
attributes (like as A1 in Figure 2), and links connected to them. But, nevertheless, D2 is 
completely reversible. Indeed, we can restore easily the contents of the input (object-
oriented) database from the contents of the output (relational) database, by using, 
additionally, the information contained in the database schemas: 

a) For each row of the table t_C1, create an instance of the class C1. 
b) For a cell corresponding to the column c_A1_B1, and containing the value 

“123”, create (if not created before) an instance of the attribute A1, and link it to the 
corresponding Owner instance of C1, create (if not created before) the corresponding Type 
instance of the class C2, and create an instance of the attribute B1 containing the value 
“123”, and link it to the corresponding Owner instance of C2. 

c) Similarly, in all the other situations. 
Thus, by referring to database schemas, we can restore all the input database 

information, missing in the output database. And thus, the pair T2+D2 can be regarded as a 
lossless transformation. 

Note. Of course, in the MDA context, many transformations do not need to be 
lossless. In MDA, transformations may lose information; they may merge parts of several 
models, add new information via user interfaces etc. In MDA, a model transformation is 
acceptable, if it performs its task. 
 
 
2. Where Should Model Semantics Be Defined? 
 
As we now see, it may happen that specifying the correctness of model transformations 
may be impossible, if we restrict the problem to the model syntax, and ignore model 
semantics. 

In [4], after considering several model management operators, the author concludes 
(see his Section 3.10): “The model management operators defined in Section 3 are purely 
syntactic. That is, they treat models and mappings as graph structures, not as schemas that 
are templates for instances… Still, in most applications, to be useful, models and mappings 
must ultimately be regarded as templates for instances. That is, they must have semantics. 
Thus, there is a semantic gap between model management and applications that needs to be 
filled.” 

Mathematical theories are formalized by using the first order predicate logic, i.e. by 
using some first order language, the axioms of predicate logic and by assuming the 
necessary specific axioms of a particular theory. The generally acknowledged technique of 
exploring the “semantics” of formal mathematical theories is the notion of interpretation 
(see any logic textbook: sorts, their interpretation domains, interpretations of constant 
letters, function letters and predicate letters, standard interpretations of logical connectives 
and quantifiers). In computer science, finite interpretations (i.e. interpretations with finite 
domains) are, in general, more important than the infinite ones. 

In modeling, usually, the formal aspects of models are specified by using meta-
models. Meta-models are serving here as “theories of models”. Hence, by applying the 
widely approved technique of mathematical logic, we could propose to think of models as 
interpretations of their meta-models. 

Frequently, meta-models are represented as UML class diagrams (together with sets 
of constraints written in OCL). Of course, these diagrams (together with their constraints) 
can be represented as first order formal theories (if necessary, small subsets of set theory 

 



may be involved). Thus, a correct semantics of meta-model diagrams can be obtained 
automatically by applying the above-mentioned standard notion of interpretation. 

In [5], the authors argue (at the end of their Section 5.3): “there are many reasons to 
avoid stating that “a model is an instance of a meta-model because its elements are 
instances of meta-model-elements”. Indeed, the relationship between a theory and its 
interpretations is much more complicated than the relationship between a class and its 
instance objects.  

Note. Sadly enough, in mathematical logic and in computer science, the term 
“model” has opposite meanings. In mathematical logic, “a model of a theory” is an 
interpretation under which all axioms of the theory become true (i.e. model is a kind of 
“reality” modeled in the theory). In computer science, “model” means some formal 
structure that can replace a fragment of reality in our reasoning about this fragment (i.e. 
model is a kind of “theory” modeling a fragment of reality). In such a situation, speaking of 
models is misleading, and to avoid this, the term “interpretation” could be used instead: an 
interpretation of a theory (of a meta-model) is an interpretation under which all axioms 
(constraints) of it become true. 

In many cases, meta-models define mainly the allowed syntax of the corresponding 
models, and not their full semantics. Where should model semantics be defined? 

As an example, let us consider the models (database schemas) corresponding to the 
meta-models represented in Figure 1, and represented in Figures 2, 3, 4. In Figure 4 we see 
the “table” t_C1 (what’s a table?), which owns three “columns” – c_A1_B1, c_A1_B2, and 
c_A2 (what’s a column?). Of course, we know that, in fact, each table is a collection of 
rows (not mentioned in schemas); each row consists of cells (not mentioned in schemas); 
each cell carries a value and corresponds to one of the columns (assigned to the table); and, 
in each row, each column (assigned to the table) is represented by at most one cell. But, of 
course, this knowledge cannot be derived from Figure 4, which represents (according to its 
meta-model of Figure 1) only the data specific to the database consisting of a single three-
column table t_C1, and not the general semantics of relational databases. 

Table
Name: STRING

Column
Name: STRING

Row Cell
Data: STRING

Owner
 1

 *

Owner
 1

 *

Classifier 1

 *

Classifier 1

 *

 
Figure 5. Fragment of RDBMS semantics meta-model (compare with Figure 1) 

 
However, this knowledge can be derived from the RDBMS semantics meta-model 

represented in Figure 5 (with the following non-graphical constraint added: in each row of a 
particular table, each column – of this table - is represented by at most one cell).  

Note. The above-mentioned non-graphical constraint can be stated in an OCL-like 
language as the following two statements: 

Row is Owner of Cell --> Row.Classifier is Owner of Cell.Classifier 
 CellA.Owner = CellB.Owner --> CellA.Classifier <> CellB.Classifier 

The first statement may be put alternatively as a diagram commutativity condition: 
Cell.Owner.Classifier = Cell.Classifier.Owner. 

By applying the standard notion of interpretation to Figure 5 we obtain, in fact, “two 
in one” – the database schema (i.e. table names with column names assigned to them), 
together with the database contents (i.e. cell values arranged in rows, columns and tables). 
This corresponds very well to the situation in the popular RDBMSs, where database 
schema is regarded as “internals” of each database (“database definition”). For example, in 

 



SQL we do not use CREATE SCHEMA statements; instead, we are using CREATE 
TABLE statements (this allows defining of tables and their relationships “on the fly”). 

Classifier
Name: STRING

Object DataValue
Data: STRING
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Class
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 *
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 *
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 *
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Figure 6. Fragment of UML semantics meta-model (compare with Figure 1) 

 
Similarly, we may follow the official UML semantics definition [6], and, to capture 

the intended class diagram semantics missing in the UML fragment meta-model of Figure 
1, extend it as represented in Figure 6 – with the following two constraints added: a) in each 
object of a particular class, each attribute – of this class - is represented by at most one 
attribute link, b) each attribute link is linked to its value – an object, or a data value, 
depending on the type of the corresponding attribute. After this, by applying the standard 
notion of interpretation, we are forced to have, again, “two in one” – classes together with 
their instance objects. 

Note. The above-mentioned non-graphical constraints can be stated in an OCL-like 
language as follows: 
Object is Owner of AttributeLink --> Object.Classifier is Owner of AttributeLink.Classifier 

AttributeLinkA. Owner = AttributeLinkB.Owner -->     
AttributeLinkA.Classifier <> AttributeLinkB.Classifier 

Instance is Value of AttributeLink --> Instance.Classifier is Type of AttributeLink.Classifier 
Object.Classifier is Class 

DataValue.Classifier is PrimitiveDataType 
The first and the third of these constraints may be put, alternatively, as diagram 
commutativity conditions: 

AttributeLink.Owner.Classifier = AttributeLink.Classifier.Owner 
AttributeLink.Value.Classifier = AttributeLink.Classifier.Type 

If OMG, in its Request for Proposal for QVT language [1], would have used the 
Figure 5, 6 style meta-models (instead of the Figure 1 style ones), then the QVT partners 
would be forced to demonstrate that their proposed languages are good enough for 
simultaneous transformations of models and instance data.  

Thus, once again, where should model semantics be defined? Now, we see a 
possible solution: we may define model semantics directly in the meta-model. 

 

 



3. Which Models Are Schemas? 
 
Is there a systematic way allowing to separate, in a meta-model, the “data” elements (boxes 
in bold) from the “schema” elements (regular boxes)? 

Instances of “schema” elements (in Figures 5, 6 - Table, Column, Class, Attribute, 
PrimitiveDataType) are present in databases “by schema”. For example, any relational 
database contains exactly those tables that are listed in its schema, and each table contains 
exactly the columns listed for it in the schema. Collections of “data” element instances, on 
the contrary, may differ in different databases having a common schema. For example, two 
common-schema relational databases containing a table named Customers, may contain 
different collections of rows of this table. 

Under which conditions, a part of a meta-model could be regarded - meaningfully - 
as a “schema” for the rest of it? 

From the above two examples the following two theses can be derived. 
Thesis 1. Schema represents only the information specific to a particular model, and 

not the general semantics of the model-type to which it belongs. 
Thesis 2. Schema defines a classification of data elements that conforms to the 

associations existing between these elements. 
Let us try justifying Thesis 2. Simultaneously, its precise meaning will be 

elaborated (see Definition 1 below). Let us assume that our meta-models are defined by 
means of UML class diagrams with non-multiple generalizations and binary associations 
only. 

First, the following restriction seems to be reasonable: each data element should be 
“named in the schema” or, more precisely, each data element should have a mandatory 
many-to-one or one-to-one association with some unique schema element. For data element 
instances, such an association defines a kind of classification. Thus, let us always call this 
distinguished association Classifier. For example, in Figure 5, rows (data element 
instances) are classified by tables (schema element instances), and cells (data element 
instances) are classified by columns (schema element instances). If some data element 
would not be linked in such a way to a schema element, then, in which sense could we 
speak about a “schema”? 

In Figure 6, a somewhat more complicated situation appears: the data element class 
Instance consists of two subclasses – Object and DataValue. At the schema level, this triple 
is represented by the Classifier class consisting of two subclasses – Class and 
PrimitiveDataType. Both of these “triades” conform to the classification defined by the 
Classifier association in the following sense: Object.Classifier is always Class, and 
DataValue.Classifier is always PrimitiveDataType. 

Thus, we have arrived at the following condition for schemas: 
Condition 1 (the simplest case, Figure 5). Each data element has a mandatory 

many-to-one or one-to-one association (called Classifier) with some unique schema 
element (i.e. different data elements are classified by different schema elements).  

Condition 1 (the full version, Figure 6). Subclasses of schema elements are schema 
elements. Subclasses of data elements are data elements. In the generalization hierarchy, 
each top-level data element has a mandatory many-to-one or one-to-one association (called 
Classifier) with some unique schema element (i.e. different data elements are classified by 
different schema elements). The data element generalization hierarchy is mapped into the 
schema element generalization hierarchy in the following sense: a) 
Data_Element.Classifier is always Data.Element.Map; b) If Data_Element_1 is a subclass 
of Data_Element_2, then Data_Element_1.Map is a subclass of Data_Element_2.Map. 

The next step: associations connecting data elements also should be represented in 
the schema. For example, in Figure 5, the association Owner connects data elements Cell 

 



and Row. The association Owner between Column and Table, in fact, represents this Cell-
Row-association in the schema part of Figure 5 - because the following constraint holds 
(see above): 

Row is Owner of Cell --> Row.Classifier is Owner of Cell.Classifier 
Indeed, on the one hand, each cell is owned by some row, which is classified by some table. 
On the other hand, each cell is classified by some column, which is owned by the same 
table that classifies the row. 

Thus, we have arrived at the following 
Condition 2 (Figure 7). For each Data_Association there is a unique 

Schema_Association, to which it conforms in the following sense:  
Data_Element_1 is in Data_Association with Data_Element_2 --> 

Data_Element_1.Classifier is in Schema_Association with Data_Element_2.Classifier 

Schema_Element_1 Schema_Element_2

Data_Element_1 Data_Element_2
Data_Association

Classifier 1 Classifier 1

Schema_Association

 
Figure 7. Representing a data association in a schema 

 
Here, Data_Association conforms to the classifications of Data_Element_1-s and 

Data_Element_2-s: if x is associated with y via Data_Association, then the classifiers of x 
and y must be associated via Schema_Association (but not necessarily conversely!). 

Some more specific situations are possible: 
a) x and y are associated via Data_Association, iff the classifiers of x and y are 

associated via Schema_Association. Then, in fact, Data_Association is completely 
derivable from Schema_Association. Hence, such a Data_Association can be 
removed from the meta-model without loss of information. 

b)  Data_Association and Schema_Association both are many-to-one. Then Condition 
2 may be put equivalently as a diagram commutativity condition: 

Data_element_1.Data_Association.Classifier = 
  Data_element_1.Classifier. Schema_Association 

c) “Table”. Both associations are many-to-one, and, additionally, 
x1.Data_Association = x2.Data_Association --> x1.Classifier <> x2.Classifier. 
Then, Figure 7 is isomorphic to Figure 5, i.e. we can regard instances of 
Schema_Element2 as tables (“table views”), consisting of columns named by 
instances of Schema_Element1. Instances of Data element_2 represent rows, and 
instances of Data_Element_1 – cells. 
Now, what about the associations, connecting data elements and schema elements, 

other than the Classifier of Condition 1? First of all, we must reject - as “non-schematic” - 
the associations that are connecting one instance of a data element with several instances of 
the same schema element. Thus, it remains to consider only many-to-one and one-to-one 
associations of data elements with schema elements (as DS_Association in Figure 8). In 
fact, each such DS_Association defines a different classification of instances of 
Data_Element_1 (than the one defined by the Classifier association).  

If DS_Association conforms to the “canonical” classification of Data_Element_1, 
i.e. if there is a schema association S_Association such that 

Data_Element_1.DS_Association = Data_Element_1.Classifier.S_Association, 
then, in fact, DS_Association is completely derivable from S_Association. Such a 
DS_Association can be removed from the meta-model without loss of information. 

 



If, on the contrary, DS_Association does not conform to the “canonical” 
classification, then we may “refine” this classification by introducing a new 
Schema_Element_12 consisting of pairs (Schema_Element_1, Schema_Element_2) and by 
re-defining the Classifier association as follows (Figure 8): 

(Schema_Element_1, Schema_Element_2) classifies Data_Element_1, iff 
Schema_Element_1 classifies Data_Element_1 (in the old sense) & 

Data_Element_1 is in DS_Association with Schema_Element_2. 
After this, DS_Association becomes completely derivable from the new Classifier 
association and S_Association defined as follows (Figure 8): 

(Schema_Element_1, Schema_Element_2) 
is in S_Association with Schema_Element_2. 

And, as such, we can remove DS_Association from the meta-model. 

Data_Element_1

Schema_Element_12

Data_Element_1

Schema_Element_1

Schema_Element_1

Schema_Element_2

Schema_Element_2

S_Association
1

Classifier 1

Classifier 1 DS_Association 1

Classifier1 S_Association1

 
Figure 8. Representing a data-schema association in a schema 

 
Thus, we have arrived at the following 
Condition 3. Classifier is the only kind of associations between data elements and 

schema elements. 
Now, we can formalize the notion of schemas: 
Definition 1. Assume a meta-model that is defined by means of a UML class 

diagram with non-multiple generalizations and binary associations only. Assume, its classes 
are divided in two disjoint subsets - schema elements and data elements in such a way that 
the above Conditions 1, 2, 3 hold. Then, let us say that this meta-model defines schemas. 

Note. For some of the data associations, the above-mentioned stronger “Table” 
version of Condition 2 may be appropriate. 

Definition 1 conforms to Thesis 2. Indeed, by this definition, schemas are 
classifications of data instances that conform to associations existing between these 
elements. Thesis 2 can be used as a guideline when trying to define schemas in new 
situations (for an example, see Section 4 below). 

Problem A. Does Definition 1 conform to Thesis 1? 
Definition 2a. Assume a meta-model that defines schemas. Model (database) is an 

interpretation (in the sense of predicate logic) of the meta-model (i.e. an interpretation that 
includes both the schema part and the data part). 

Definition 2b. Assume a meta-model that defines schemas. Model schema 
(database schema) is an interpretation of the schema part of the meta-model (i.e. each 
model includes its schema). 

 



Now, in this context, let us consider model transformations. If two meta-models 
define schemas, then we may consider two kinds of transformations. 

Definition 3a. Assume two meta-models MMA and MMB that define schemas. 
Model transformation is an algorithm transforming each MMA-model into an MMB-
model in such a way that the schema part is transformed into the schema part, and the data 
part – into the data part. 

Definition 3b. Assume two meta-models MMA and MMB that define schemas. 
Schema transformation is an algorithm transforming the schema part of each MMA-
model into the schema part of an MMB-model. 

To be considered as lossless, model transformations do not need to be reversible 
with respect to the schema part of input models. This is not necessary, because schema 
element instances belong to the input model “by schema”, i.e. they can be restored from the 
meta-data - from the input schema. Thus, we can propose the following uniform definitions 
of lossless transformations. 

Definition 4a. Assume two meta-models MMA and MMB that define schemas. Let 
us consider a model transformation D that converts any MMA-model into an MMB-
model. Then D is called lossless, iff, there is a reverse transformation (algorithm) that 
restores, from any of the results of D (i.e., MMB-models), the entire data part of the 
corresponding input MMA-model.  

Definition 4b. A schema transformation is called lossless, iff it can be extended to 
a lossless model transformation. 

Both of the UML to RDBMS schema transformations considered above (the 
“theoretical” transformation T1 and the “practical” transformation T2) can be extended to 
lossless model transformations (see Section 1). Thus, according to the Definition 4b, both 
schema transformations are lossless. 

Problem B. Which reversible schema transformations (like as the above 
“theoretical” transformation T1) can be extended to lossless model transformations? 

Problem C. How complicated is the task of detecting, does a lossless model 
transformation exist for two model schemas, or not? 
 
 
4. XML-Schemas 
 
In order to verify the above concept of schemas, let us consider XML and XML-schemas 
[7]. The bottom part of Figure 9 represents a simplified meta-model of “unconstrained 
XML”, where tagged elements may be mixed up freely without any typing. 

If we wish to obtain here a kind of schemas, then, according to Thesis 2, we must 
introduce some classification of XML elements. Of course, the solution is obvious: XML-
tags define the natural XML-element classification. In this way we obtain a simplified 
XML-schema meta-model represented in Figure 9 - with the following non-graphical 
constraints added: 

“For types: no loops are allowed via Parent association.” 
XML_Record_Type  is Parent of XML_Element_Type <--> 

XML_Element_Type is Field of XML_Record_Type 
XML_List_Type  is Parent of XML_Element_Type <--> 

XML_Element_Type is Member of XML_List_Type 
XML_ElementA is Parent of XML_ElementB --> 

XML_ElementA.Classifier is Parent of XML_ElementB.Classifier 
XML_Atom.Classifier is XML_Atom_Type 

XML_Sequence.Classifier is XML_ Sequence_Type 

 



This schema constrains XML-documents: now, an element cannot contain arbitrary 
sub-elements, it may contain only sub-elements of specific types pre-scribed by the schema. 

XML_Atom
Data: STRING

XML_Element

XML_Atom_Type

XML_Element_Type
Tag: STRING

XML_Sequence_Type

XML_List_TypeXML_Record_Type

XML_Sequence

Parent

 *

 0..1

Classifier

 *

 1

Member
 1

 *

Parent

 *

 *
Field

 *

 1..*

 
Figure 9. Simplified meta-model of XML-schemas 
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Owner
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 1 Classifier 1

 *

Key

Column

 *

 1..*

 
Figure 10. Extended fragment of RDBMS semantics meta-model 

 
 
5. Constraints 
 
As an example, let us consider key-constraints in relational databases. A table may possess 
zero or more keys, each consisting of one or more columns of this table. The corresponding 
meta-model is represented in Figure 10 - with the following commutativity constraint 
added: Key.Column.Owner = Key.Owner. 

The meaning of the key-constraint defined by Key can be expressed as follows: in a 
table, if the cell data of two rows coincide for all columns that belong to Key, then these 
rows are equal. Or, expressed in an OCL-like language: 

 
For All Table, RowA, RowB: 
If  RowA.Owner = Table & RowB.Owner = Table & KeysAreEqual(RowA, RowB) 
Then RowA = RowB, 
 
where KeysAreEqual(RowA, RowB) is the following expression: 

 



For All Column, CellA, CellB: 
If Column.Key = Table & CellA.Owner = RowA & CellB.Owner = RowB & 

CellA.Classifier = Column & CellB.Classifier = Column 
Then CellA.Data = CellB.Data 
 
Thus, as a schema element, Key can serve only as an “enumerator” of constraints of 

a specific kind. The definition of the meaning of these constraints involves more than 
schema – it involves data elements and their Data attributes. This is not surprising (see 
Thesis 1): relational schemas do not define the general semantics of relational databases. 
Each schema represents only the information specific to a particular database. 

Note. In a similar way, arbitrary functional dependencies can be specified. 

Book
{Row}

Author
{Row}

Library
{Database}

Books
{Table}

Authors
{Table}

Author_Id
{Column}

Title
{Column}

Id
{Column}

Name
{Column}

INTEGER
{Atomic values}

STRING
{Atomic values}

X

X

X

ListOf ListOf

 
Figure 11.  Example database schema according to [12] 

 
 
6. Related Work 
 
About the significance of diagram commutativity in modeling semantics – see [8]. 

In [9] an elegant theory of “graph schemas” for unstructured data is developed. An 
unstructured set of data may conform to several schemas, each of which, in its way, 
constrains data, thus allowing for query optimization. Despite the different setting, in their 
Section 5 the authors arrive at a version of the above Thesis 2: “Nodes in a schema have the 
potential to classify nodes in a database”. 

After the first versions of [10, 11], in [12] an extremely general algebraic definition 
of database schemas (called “abstract schemas”) is proposed.  To explain the basic idea, let 
us define a schema for a relational database Library consisting of two tables Books and 
Authors (S means “sort”, see also Figure 11): 

S(Library) = Books X Authors; 
S(Books) = ListOf(Book); S(Authors) = ListOf(Author); 
S(Book) = Author_Id X Title; S(Author) = Id X Name; 
S(Author_Id) = INTEGER; S(Title) = STRING; 
S(Id) = INTEGER; S(Name) = STRING; 

 



Each named database element is defined here as a sort (i.e. domain) of allowed 
values. The last four elements are atomic, the other ones are complex, and their domains are 
defined by using a fixed set of type constructors (ListOf constructs lists of values, X – 
records of values). A database is defined then as any value of the sort Library. 

In general, a database schema of this kind can be defined as an acyclic oriented 
graph of the kind represented in Figure 11 (single root, atomic sorts as leafs, accessible 
nodes only). 

This notion of schema conforms to the above Thesis 1: schema represents only the 
data specific to the Library databases, and not the general semantics of “algebraic” 
databases (i.e. schemas do not define the meaning of INTEGER, STRING, ListOf and X). 
However, if we would restrict our databases to the relational databases only, then 
mentioning rows in the schema would become obsolete: all relational tables consist of rows 
and cells. 

How about Thesis 2? Of course, sorts define a classification of data instances. Since 
the data model of “abstract schemas” does not include associations (they are implemented 
by using primary and foreign keys and the corresponding constraints), this is enough to 
conclude that the notion of “abstract schemas” conforms to Thesis 2. 
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