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ABSTRACT 

This report is a sequel to LA-596, "Efficiency for 
Very Slow Assembly" by K. Fuchs. Herein are given esti- 
mates of temperature rise and pressure developed as a re- 
sult of active material slowly being driven supercritical. 
Marginal assembly rates can thus be determined for both 
metal and solution assemblies above which the disassembly 
by thermal expansion is explosive in the sense that the 
active material or containing vessel is ruptured. 
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BURST CHARACTERISTICS ASSOCIATED WITH THE 
SLOW ASSEMBLY OF FISSIONABLE MATERIALS 

I. INTRODUCTION 

The burst of fissions and associated energy release 
resulting from the very slow assembling of active material 
to a supercritical configuration has been treated by K. 
Fuchs in LA-596. In that report the multiplication rate 
o is considered to be composed of two parts o = al - a2 
where cl(t) is the multi,plication rate which would obtain 
if the temperature remained constant, the time dependence 
being associated with a mechanical change of configuration. 
When o,(t) becomes greater than zero, the fission rate in- 
creases, the energy release leading to thermal expansion 
and consequent loss of reactivity. It is then assumed 
that a2 = b@ where b is a constant and $3 is the number of 
fissions or energy release occurring after d,(t) becomes 
greater than zero. This assumption together with the 
equation d2@/dt2 = n,d(b/dt permits a determination of g(t). 
For future reference, the following brief summary of the 
results in LA-596 are given: 

A). Instantaneous assembly to 011, 

@(t-a) = 2cxl/rb 

to = 1 log 2&'btio where to is the time 
a1 

required for disassembly and so is the initial fission 
rate or power level., 



1) 

2) 

3) 

B). Constant rate of assembly "1 = at. 

Total fissions or energy release per burst: 

PI= 2V?i +2 log 4a/brb, 
b 

Time between bursts: r. 2 cd2 log 4a/bG 
G 0 

Width of burst: fl 2 2 d2/log4a/b$ 
\/a 

0 

the reaction going thusly -- when the disassembly proceeds 
to “2 = "1, the fission rate or power level is a maximum 
and the system is driven subcritical to an extent indicated 
by o = - a ~~/2, a time r0/2 then being required to again 
bring the system to critical and another time r0/2 re- 
quired to develop fully the next burst. 

As mentioned in LA-596, the assumption o2 = b(Z5, b 
constant, means that the thermal expansion is at all times 
"adjusted" to the energy release. For fast (metal) systems, 
as the assembly rates are increased the inertia of the ma- 
terial becomes important, the thermal expansion lags the 
energy release and the size of bursts become larger than 
predicted by equation B-l. This enhancement of the burst 
is already of some importance for assembly rates slower 
than required for violent disassembly. On the other hand, 
for dilute solutions the obtainable values of ol are too 



small to permit the importance of inertia effects regardless 
of the assembly rates. Nevertheless, the disassembly may 
still be violent, and it is that range of assembly rates 
for which the first burst of energy is of the order required 
to give permanent disassembly that this report is concerned. 

Toward this end, Section II gives the appropriate so- 
lutions for temperature and pressure for the case of a 
spherical assembly containing an energy source rising expo- 
nentially with time. In Section III, these solutions are 
utilized to determine the temperature rise and pressure de- 
veloped as functions of assembly rate for 1) a typically 
metal system and 2) hypothetical liquid systems, a) having 
a completely free surface, and b) surrounded by a thin metal 
shell. The last Section considers the effect of partial 
containment for solution assemblies. 



II. BASIC EQUATIONS AND SOLUTION 
FOR THE CASE OF AN ENERGY SOURCE 

INCREASING EXPONENTIALLY WITH TIME 

The general hydrodynamical equations are: 

Continuity equation 

Equation of motion 

Energy conservation 

= - P D + 
(43 a3 

dp/dt + p div V = 0 
- 

II-1 

pdV/dt = - divy 

p & Q/p + div q 

d@ 
hlT 

II-2 

II-3 

where p = density, V = velocity, P 
aB 

= pressure components, 
D 

a@ 
= rate of strain components, Q = heat energy density = 

pCvT where C V 
is the heat capacity per unit mass, and q = 

heat current density. fl is the energy source per unit mass 
which is here taken to have an exponential time dependence. 
For the equation of state, we take the linear form: 

P ij = ( 
[ 

g) T - (K - 2~/3)V*( 
I 

sij - 2pCpij II-4 

where @  ij = strain components (1) , K and v = respectively, 
the modulus of volume elasticity and coefficient of shear, 
t= the displacement vector 

( g = V and !& = dVJdt ). 
bt b t2 

(1) Notation as used in Page - "Introduction to Theoreti- 
cal Physics". 



For the applications in mind, the times will be suf- 
ficiently short that the heat conduction plays no important 
part and this term can safely be dropped from equation 11-3. 
Also the thermal expansions will be sufficiently small that 
the density terms appearing in equations II-2 and II-3 can 
be considered constant. The approximation that the energy 
conservation equation is equivalent to CVT = pI will also be 
used in the final analysis, but this will be justified en 
route. 

In the following, spherical symmetry is assumed in 
order to obtain the simplification of working with a single 
displacement variable t (the influence of geometrical symme- 
try being of importance for such cases as solutions which 
have partially open surfaces, the treatment of which is re- 
served for the last section). The preceding equations can 
then be rewritten as: 

itf! = - ( b$ + 26 ) 
P r 

p & = bprr 
lo2 

- - - 2 (Prr 
br 

- Pee>/r 

p&- CVT-+ =-Prr$&- [ 1 
P rr=(glT- (K+%)(f$+%)+4p[/r 

II-5 

II-6 

II-7 

II-8 

II-9 

1: :‘7 .  . . . I  .  ? .~,, .  

” .( 
; , , :  

.  .  ” /  



where &p is the density change associated with the volume 
dilatation (b&r + 2(/r). 

0th order approximation: CVT = @(r,t)a 

It is convenient to adopt the notation @(r,t) = @  jo(r/a), 

T(r,t) = T jo(r/a), etc., it then being understood that the 
coefficients 0 and T have the characteristic e at time 
dependence. 6 

After eliminating the pressure terms from PI- s by 
means of 11-7, 11-8, one obtains: 

- (K + 4y/3) 

The forced solution is: 

t(r,t) = ’ 
pCva(a2+w2) 

(2) j (r/a) = sin(r/a) $ (r/a), this corresponding to the 
usual sgatial distribution of fissions where v a = re, the 
extrapolated radius of the assembly. Throughout this report 
jh(x) will refer to,'the spherical Bessel function of order k 
(as given, for example, in Strattonls "Electromagnetic 
Theory"). 



while the free solution with a time dependence e Oit isa . 

tl(r,t) = Aeat -ijl(is r/a) 1 II-12 

the coefficient A being determined such that the solution 

t+c 1 satisfies some specified boundary condition such as 
the vanishing of Prr at the surface of the assembly. For 
the moment, we will not worry about cl which may be posi- 
tive or negative and, in general, of a magnitude not sub- 
stantially larger than 6 . 

Another convenience is the adoption of the following 
units: 

a> displacement tin units of a. 
b) multiplication rate o in units ofw = V,/a 

where V, is the sound velocity = d(K + 4~/3)/p. The unit 
of time is thus 11, . 

c> energy release per unit mass in units of 

Vo2/y where y = --& g , 
V 

d) temperature rise in units of Vo2/rcv. 

4 pressure, P, in units of K + 4~13. 
The expression for displacement now becomes: 

II-13 

while the temperature and pressure are given by: 

T=c#I II-14 



2 
Prr(r,t) 4p #J -2 X 

K + 4~13 1 + cx 
II-15 

pee(ryt) 
a2 = 1+a2 #I joWa> + 

II-16 
joWa) - i j,(ria) 

1st order approximation: T(r,t) = Ib joWa) - f3 Ib2j02Wa) 

On substituting the 0th order solutions of pressure and 
displacement into the right hand side of the energy conser- ' 
vation equation, one obtains for the value of f3: 

B =a,[l- ' { K (1 + a2) K + 4~13 +K:11$3X 

j22Wa) joa ]I 
As the region of interest is for t << 1, then since y is 
of the order one, it follows from equation II-13 and the 
expression for @  that for o < 1, T = @  j. - @  fl ~~ 2'2Y@j 

0' 
and the 0th order solutions for [, P, and T are satis- 
factory. For ~1 > 1, p 2 y/m + a2L this value leading to 
the results: 

Or,t) = ', 4 j,(rJa) - 1 
l+a 2(1 + a2) (1 + 202) 

y +2joWaki, (r/a> 
11-13' 



T!= d- II-141 
2. 

P rr 2 prr(Oth order) - , 1 
1 -i- 2a 

2 r#2 II-151 

piM 
2 Pes (0th order) - 1 +12u2 r# 2 11-16' 

By replacing @  in the above equations with (1 + u2,E as 
given in II-13, it can be seen that the 0th order equations 
give values 0f P, T, and 6 having fracti,onal errors 2 [ , 
i.e., small errors of the same magnitude as the error intro- 

.'duced by treating as a constant the density term appearing 
in tke equation of motion. For this report, such errors 
are considered easily tolerable and only solutions based 
'on the 0th order approximation T =: $8, that is, the er 
quations II-13 to 11-16, will be used. 



III. APPLICATIONS TO SYSTEMS HAVING 
1) TYPICALLY MRTAL CHARACTERISTICS, AND 

2) TYPICALLY LIQUID CHARACTERISTICS 

Preliminary remarks, 
A) Qualitative features of the disassembly. 

The energy release is governed by the equation zia =a= 
at r b$J. The rate of energy release is a maximum at the 
time to given by at, - b@ = 0, and the burst terminates 
very soon afterward. For the great percentage of the 
interval 0 s t 5 to, the equation &$ = (at) holds and gives: 

i= i o eat212 and 4 2 4 o eat 
2 

'2/at 

Thus at the time to given by 2a/bh, : 
2 

eat0 12/(ato2/2) an 

amount of energy 81 2 ate/b has been released. For times 
just after to, ~1 is negative and given by: 

P 2 at - b 91 -I- (B' (to) (t - to1 1 
L J 

2 - bcP0 e 
at,2/2 

(t - to) = - a2t 2 0 (t - to) =Eb/i 

ag 
One then obtains: d+=" 

tO 

2 at,/b 

In summary, the energy release Qf the burst is: 

p 2at,/b III-l 

where the time to the "center of the burst" to, henceforth 



called burst duration, is given by: 

2a/bio = e 
ato2/2 

/ (ato2/2) III-2 

(Note that with the approximation log 2a/bio = ato2/2 - 

at 2 
log ato2/2 =" $ , one obtains to = 

T-~/Z where ~~ is the time between bursts as given on Page 6. 

The validity of this approximation requires that at, 2/2 >> 1, 
a very mild condition which implies that the maximum fission 
rate is many times larger than the initial fission rate. 
This condition is assumed throughout the report.) 

B) Regarding the parameters a and b. 
If C-AR is the prompt alpha for a delayed critical assembly 
and AM is the mass difference,between delayed and prompt 
critical, then such a system made slightly supercritical 
has: 

a =” UR (M - M,>/A M 

where M is the actual mass and MC is the prompt critical 
mass at existing conditions of temperature and pressure. 

MC 
= MC0 + 

% 
@-- $6) = MC0 - MC0 n fib 

where M co is the critical mass at the initial normal densi- 

ty, n is the density exponent (as in MC ti pWn) and&T is a 
weighted average of the density change arising from the 
elevated temperatures. For a constant rate of assembly: 



M = MC0 f 3 

and hence for this case, 

Thus, 

a aR dM 
=D dt 

a nM 
b= R co 

AM 

III-3 

III-4 

The term - &p/p is related to the displacement %by means 
of the cantinuity equation 11-5. For the special case when 
%(r,t> = %.jl(r/a) then - &p/p = %.j,(r/a). As an approxi- 
mately correct weighting function for the averaging of the 
density change we will use jo(r/a) which is the spatial 

distribution of fissions. This then gives -d-P = 
7- 

f 1 
In general, %has the form %,jl(r/a) + A - ijl(ior/a) 

1 I 
and -‘$p/p = C%, where C is a constant dependent on the 
specific boundary condition. Since%0 = + /(l + 02), 

and b = “RnMco C 
AM (1 + a2 

I bo/(l f a2)III-5 

For constant rate of assembly, a is dependent on time but as 
far as b and the disassembly mechanism is concerned, its 
effective value is a 2 at o as it is in this region that any 



lag of thermal expansion behind energy release is es- 
tablished. Equation III-2 now becomes: 

2a 
ato2/2 

-= 
boJ0 bto2i2)e[l + 2a(ato”/W] 

III-6 

Equation III-6 is the basic equation for determining the 
burst duration, and thence the burst characteristics, in 
terms of the assembly rate a. The essential approximation 
involved is in the substitution of (at) for a in the dis- 
placement-energy release relation t(t) =+ (t)/(l + a") 
which was developed for constant a. A justification of 
this approximation in the range of interest can be given 
in the following manner. In the region t < to, the ap- 
proximation %I$ = l/cl + (at)2]is valid for a/w2 << 1, 
i.e., d#ldt << w2/ao. 

# 8000 sec.l 
As will be seen later, w2/ao 2 

for the typical metal assembly or P 6 x lo6 
set -1 for the typical liquid assembly, and the range of 
interest is indeed for assembly rates of much smaller 
magnitudes. In the vicinity of t = t-, the energy release 
function has the form Q =+ (to) +4(-t:) [t - to] - C!p-t-$6 

this giving rise to a displacement of the formB =Q) (to) + 

i 
&to) + c/w2 3 p - to] - Cp - tof/6 + A cosw (t - to1 + 

B sinw (t - to). At the time t = to - l/(at,), the energy 

release is approximately l/e th of@(to) and hence the 
. 

constants A, B, C,(b(t,), and+ (to) must be such that for 

t2t - 0 l/(ato), Q(t) matches+(t) = (PO eat2'2/(at) and 

B (t) matches E(t) = +w 
1 + (at)2 

. The result of this 



matching gives Cx, (to) 2 2 e 
ato2/2 

/at0 2 e 
ato2/2 

/at0 and 

B(t,> = 4 (to) + A ?@ (to)1 [1 + (ato)2], which are the 

previously assumed relationships. 

1) Typically metal assembly. 
This first application will be to an untamped metal 

assembly and for the purpose of illustration the calcu- 
lations will be given in more detail than for the remaining 
cases. 

The displacement is: 

%(r,t) = %ojl(r/a) + A[ - ijl(iar/a)] 

where to = g)J(l + a2) and A is chosen such that the radial 
pressure Prr vanishes at the radius r o of the metal sphere. 
Substituting the above expression for (in the equation of 
state gives: 

P rr = a2 +jo(r/a) + 4V 
1 + a2 

--+F+ $il(r/a) - 
K -I- 4pL/3 1 + a 

4w Aajo(iar/a) + K + 4y,3 A F [- ijl(iar/a)] 

and the condition Prr(r = ro) = 0 leads to: 

+ (K+41.~/3) 
a2jo(ro/a) + 

Asi 
1 + a2 Kjo(iurola) + g j2(iaro/a) 

and the equations for pressure and density change become: 



P rr 
cb 

= z  [jo(r/a) - Fjo($] + ,4w *x 
K + 41~,/3 

a r jl(r/a) - F 5 r j (r i/a> 
o1 O 

where F = 

2 1 for are/a << 1 

P - G job-&d] - 2v x 
68 K + 41.1.13 

[$jl(r/a) - jo(r/a> + $ G jl(ro/a>3 
III-9 

0 

where G z 

2 1 for are/a << 1 

-GL 
P 

,cojo(r/a) + a A jo(iar/a) 
III-10 

for a >> 1 



- 

It may be noted that the above limiting forms of -dpJp are 
characteristic in the sense that as a becomes larger, con- 
ditions imposed by the boundary become less important. 
The term 4~ajl(ro/a)/3Kro appearing in the o << 1 form for 
-&p/p is the consequence of the particular boundary con- 
dition that Prr = 0 at r = ro. An indication of the ef- 
fect which tamper surrounding the active metal sphere would 
have is obtained by changing a/r0 in this term. Thus, 
since la = re where re is the extrapolated radius for the 
fission distribution, reducing a/r0 artificially reduces 
the heating (energy release) near the metal surface, thereby 
making the metal in this region behave like tamper material. 
One concludes, as does LA-596, that for metal assemblies, 
the presence or absence of tamper makes little difference 
as far as the energy release associated with a given as- 
sembly rate is concerned. 

Table I gives a list of properties which are intended 
to represent a typical untamped Uranium assembly. Table II 
gives a list of pressure, temperature, energy release, and 
burst duration as functions of assembly rate, this latter 
being expressed in dollars per second. The pressure com- 
ponents Prr and PQ8 are evaluated at the center and radius 
of the assembly, respectively. If the assenibly were to be 
ruptured during the burst, the value of P@ at the surface 
would have to be sufficiently negative to exceed the tensile 
strength of the material. As indicated by the values listed 
in Table II, the energy release and hence heating near the 
surface is apparently sufficient to prevent development of 
appreciable tensions. After the burst is over, momentum 
keeps the system expanding to an extent such that the 
tensions become of the same order as the listed values of 



P,,(r = 0). In this manner, for assembly rates greater 
-1 than#lOO set , the consequent tensions developed exceed 

the s 5000 atm. tensile strength of Uranium. Values of 

atO are also given in Table II as these 1) indicate the 
important range of alpha, and 2) when divided by ~1 

R 
give 

the peak supercriticality (in dollars) reached by means 
of the different assembly rates. Figure 1 gives a plot 
of peak pressure, temperature rise, and burst duration as 
functions of assembly rate. 



TABLE I. Physical constants (approximate) intended to 
represent a typical untamped Uranium (235) assembly. 

Pressure coefficient: 
Modulus of volume 

elasticity: 

Coefficie.nt of shear: 
Heat capacity per 

gram: 

Density: 

Spatial distribution 
of fissions: 

Assembly radius: 

Prompt alpha at 
delayed critical: 

Initial power level: 

bP/bT = 3.5 x107 dynes cm -2 
deg -1 

K= 10.2 x101' dynes cm-2 

P= 4.9 ~10" dynes crnm2 

cv = .121x107 ergs deg -1 -1 gm 

P = 18.8 gms cm -3 

jo(rba); a = 3.5 cm. 

r = 
0 

9 cm. 

1.0 x 10' set -1 
aR = 

6, = .02 ergs/gm. set, 

Derived Constants 

1 bP = 1.54 

= 3.16 x lo5 cm set -1 

0= !OJa = .90 x 105 set-1 

Energy unit: V,aJY = 6.5 x lOlo ergs gm-1 

Pressure unit: K + 41.~13 = 18.7 x loll dynes cm-2 2 
1.85 x 10' atm. 

Temperature unit: vo2/rcy = 5.35 x lo4 OC. 



TABLE II. Burst characteristics - Untamped metal assembly. 
at -in 

Assembly rate unyts B(r=Q) T(O)-in 
Prr(W Burst 
(atmos- duration 

(dollars/see) of w (joules/gm) deg. C. pheres) pheres) to(seconds) 

1 .083 1.2 10 75 - 55 .0075 

4 .171 2.6 21 170 -110 .00385 

10 .278 4.4 36 330 -172 .00250 --.>3-? ': ^ - -, 2 
92 1300 -310 .00128 - ̂ ' '- -.-7 ii ' 1 

206 4100 -320 .00082 ._. . '. a- 7 



FIG. 1. Effect of partial containment in solution assemblies. 

IO AThlOSPtjERE;q 

, 4 6 8 IO 2 

ASSEMBLY RATE (dollars/ sec.) 

A comparison of the zo/ro = 6 cylinder having a rigid wall 
and open faces with the hypothetical free surface assembly 
designated "no shell". 



2) Liquid assembly surrounded by a thin metal shell. 
In the liquid the displacement is of the form: 

while in the shell it is: 

ts = (0 As (- ijl(iar/L$ + Bs [- 

where n 1 is the spherical Neumann function of order one 

and L is a length defined by L 7 vs/w = .l/(Ks + 41~~/3)/p& 

The three constants Al9 A,, and B, are determined 

from the three conditions a) vanishing of Prr at the 

outside shell surface, b) and c) continuity of (and Prr 

at the'liquid-shell interface. For o << 1 and small shell 
thickness,A 9 one obtains: 

A&* III-11 

As 2 

Bss - 

III-12 

III-13 

where r o is the radius of the liquid shell interface. In 



. 

the expression for A above, 
b 

it is seen that for A+ a0, 
A&= - 3aj 1 (ro/a)/roa, a value which corresponds to the 
case of a rigid container, t (ro) = 0, and, because for 
most metals Ks/KL>> 1 also corresponds very closely to the 
case of the thick metal shell. 
The relation between density change and co = +/(l + 02) is: 

III-14 

The pressure in the liquid is given by: 

III-15 

For shell thicknesses of the order of a couple millimeters 
or more and nominal assembly rates, the pressure developed 
is essentially determined by the second term in III-15 and 
is thus nearly constant throughout the liquid. The tan- 
gential tension developed in the shell is -P zr P/2A. 

88 Otf 
Effect of gas evolution: The fact that most of the fission 
energy source goes into thermal energy makes it possible to 
incorporate gas evolution into the equation of state by 
means of a simple change in the pressure coefficient. 
Thus, letting 

Vt = volume per unit mass of solution 
VJ = volume of liquid per unit mass of solution 

vg = volume of gas per unit mass of solution 
!Q= energy release required to produce one mole of 

gas = 3,l x 1013 ergs 

(based on ,289 liters of hydrogen generated per 
KW minute operation of the hypo water boiler (3)) * 

(3) This datum on gas production was obtained from L.D.P. 
King, 



then, since Vt = 5 + V g9 one has 

Ve(AP,AT) = 'da (AP9AT) + F c$$ 
1 

III-16 

where AP and AT are the changes in pressure and tempera- 
ture associated with the energy release 0 = C,AT. T and P 
are the absolute temperature and pressure and R is the gas 
constant. 
riting v bvB ?a 

.k as V B =V,+ $$AT+ (& AP 

and vt - v. 5: Av,, equation III-16 becomes: 

( - "5 ) ( 
avt 

pve) 
bP 

ft.4 RT Cv 
= -I- K 

I 
pvtq AT - K~+ 

III-17 

BP 
np9 and (BP,'bT) 

% 
are the bulk modulus 

and prressure coefficient of the liquid alone. The evolution 
of gas is thus taken into account by substituting 

in the already developed relations, the effective values of 
P and T in the bracket term corresponding closely to the 

eak pressure and temperature developed in the burst; these 
effective values can be determined by successive guesses. 



That the coefficient of AV,/V, is unchanged by gas evo- 

lution does 

being given 

not imply an unchanged compressibility, this 
1 b Av, 

Table III gives a list of the physical properties in- 
tended to characterize a typical,liquid assembly. Table 
IV contains the .estimates of peak pressure, etc., at vari- 
ous assembly rates for the three cases, 1) no shell, 2) 
l/4 cm shell, and 3) rigid container. The elastic proper- 
ties of the shell have been taken equal to those listed in 
Table I. Figure 2 gives a graph of temperature rise and 
peak pressure for the first two cases above. For the case 
of no shell where the pressures developed are low, the gas 
evolution plays an extremely important part in reducing 
the reactivity and limiting the energy release, the bracket 

term 
[ 

bP 
(ST+ 

RT Cv 
+KPVt j3-y 

I 
being approximately 70 times 

greater than (,$)I . W ith the solution contained by a 

metal shell or in general when the pressures developed are 
70 atmospheres or more, the effect of gas evolution on 
burst size becomes of minor importance. 



TABLE III. Physical constants (approximate) intended 
to represent a typical solution assembly. 

v, 
Pressure coefficient forbp 

the liquid: In- 
Effective pressure coef- 

ficient for the solution 
(to include effect of 
gas evolution) 

= 1.9 X lo7 dynes cm-2deg-1 

.L 
I 

RT C 
'&T = 1.9 x lo7 + m. < 

Modulus of volume 
elasticity: 

Heat capacity per 
gram: 

K= 4.2 x lOlo dynes/cm2 

Density: 
cV = 4.19 x lo7 ergs/gm.deg. 

P 1 = 
Spatial distribution 

of fissions: jo(r/a), a = 8 cm. 
Assembly radius: r 0 =7E3 
Promp,t alpha at delayed 

critical: = 100 set -1 
?R 

Initial power level: 0, = .02 ergs/gm. 

Derived Constants 

v=dii& 2.05 x lo5 cm. set -1 

V/a = 2.56 x lo4 set -1 ClJ= 



TABLE IV. Burst characteristics - Liquid assembly. 

at0 in 
Assembly rate units Ib Temp. Press. Burst 

(atmos- duration 
(dollarsJsec) ofw joules Oc. pheres) (seconds) 

1) no shell .256 .00135 l.-5 0.4 .0008 1.35 
2.56 .0045 4.9 1.2 .03 .45 

25.6 .015 30 7 1.1 .15 

i : 
i : 
! jm 
:: :M 2) l/4. cm 
-0 r-3 metal 
.'pj ~, 0 shell 
k 
;“. 
li:, tj / '; ', I 3) rigid 
$ i, : j, container eil\hb 

76.8 .027 150 35 6.7 .090 
256 .051 990 240 46 .051 

.256 .00146 70 17 80 1.46 
2.56 .0048 350 80 260 .48 

25.6 .016 1300 310 870 .16 

.256 .00150 320 75 770 1.50 
2.56 .0049 1100 260 2500 .49 

25.6 .0162 3700 880 8300 .16 
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IV. EFFECT OF PARTIALLY FREE 
SURFACE IN SOLUTION ASSEMRLIES 

As a simple geometrical model to test the effect of a 
partially free surface, we will choose a cylindrical liquid 
assembly whose faces are open and whose walls are rigidly 
contained (it having already been seen that such con- 
tainment is approximated by a metal vessel). At the height 
to diameter ratio limits of zero and infinity one duplicates 
the cases of no shell and rigid container given in the pre- 
ceding section. 

The displacement vector now has the form: 

where ? and2 are unit vectors in the radial (r) and axial 
(z) directions respectively. With this coordinate system 
the expressions for the basic equations are: 

Continuity equation: bt - d-p/p = &$ + ; E+b- 

Equation of state: P = g T - K 

Equation of motion: p 

Energy conservation: pI = CVT IV-4 

Associated with these equations is the auxiliary condition 

which implies no rotation of the liquid. 

With the energy release 0 having the prescribed form 



eatJo(klr)cos k2*j where Jo is the zeroth order Bessel 

function (as tabulated for example in Jahnke-Emde and to 
be distinguished from the previously used symbol j. which 
referred to the spherical Bessel function), and the constants 
kl and k2 are determined by the assembly shape, the forced 
solutions for t and 9 are: 

kl t= kl 
2 

kla+ k22 

k2 
2 

kl'+ k22 

l+a 
2 Jl(klr)cos k2+ 

lb 

1+02 O l 
J (k r)sin k2* 

where as formerly, fi is expressed in units of Vo2/r and o 

in units of w = 
(k12+ k22)/p l 

With the boundary conditions t(ro,z) = 0 and P(r,zo) = 
0, where r. and2zo are the radius and height of the cylindri- 
cal assembly, one obtains: 

2 0 
kl t = 

kl 

kl 
L 

+ k2 Q+02 C 
Jl(kp) - 

Jl(kpo)Jl(i~or) 

J1 (iporo) 3 
X 

cos k2a 
IV-5 

k2? = 
k2 

2 
p1 klJIOyo)Jo(iYor) 

kl 
2 

+ k2 
2 

1 + a2 c 
Jo&p) + 

[ -’ i(l;J1 (i~~l”~) ] 7 
X 

sin k2z 
IV-6 



a2 
P= PI JoOy) + 

klJl(klro) J,(ip,r) 

1 + a2 [- iPoJ~(~Poro)] 3 
X 

IV-7 
cos kz" 

-dv fi 2 klJl(klro>Jo(i~,r) 
--=- 

P 1 + a2 
J$y) - u 

f- i~oJ~woro) ] 3 X 

IV-8 
cos k2% 

In these equations po2 = k22 + (k12+ k22) o2 and the 

pressure is expressed in units of K. 
If one neglects the difference between the actual and 

so-called nuclear dimensions of the assembly, then Jo(klro) 

= 0 and sin k2zo = 0 so that kl = 2.405/r. and k2 = 1.5710~. 

For *, >@nd o 9 o/ro << 1, which as will be seen is the 

interesting range, the equations for the pressure and densi- 
ty change may be written as: 

p .2 a2 
1 + a2 

+ h,b,? 7 IV-9 

c 
Jo(kld - a2 bo/ro) 2 

3 
IV-10 

In these equations, the zo/ro terms are associate,d with the 

rigid wall condition. For z. < roJ IV-9 and IV-10 exagger- 

ate the importance of these terms, and hence with the help 
of Table IV one concludes that the degree of containment 



represented by x0 < r. is of no importance for the listed 

range of assembly rates (i.e., less than 250 dollars/set.). 
Table V gives a listing of burst duration, pressure 

developed, and temperature rise as functions of assembly 
rate for the case zo/ro = 6 which corresponds to * 85% of 
the liquid surface being rigidly contained. Figure 3 gives 
a plot of temperature rise and pressure developed as 
functions of assembly rate for this case and the no metal, 
shell case of the preceding section. 

Concluding remarks. The tables and figures contained 
in this report have been based on the delayed critical 

prompt alpha values of 1.0 x lo6 sec'l for the metal as- 

sembly and 1.0 x lo2 set -1 for the liquid assemblies, these 
corresponding approximately to the measured values for the' 
untamped Oralloy sphere and the Hypo Water Boiler. The de- 
pendence of burst duration, pressure developed, and temper- 
ature rise on oR is given quite well by the following quali- 
tative argument: 

The parameters a and b in the .equation -i/i = at - b'(b 

contain oR linearly so one may write 

a= aRao ; b = CJRbo 

The equation governing burst duration is: 

?!*to2 
e / l/p&to2 2 $ 2 constant 

0 

and hence at0 2 2 a constant =' C. For both metal and incom- 

pletely contained liquid assemblies T = P, = 2ato/b and 



TABLE V. Burst characteristics for an open ended cylindrical 
liquid assembly having a height to diameter ratio of 6 to 1. 

Assembly 
r.ate at (in Id 

(dollars _ - 
. . /sec. ) units ofw 

0 \--- joules 
- 1 /gm) 

.256 .00135 1.5 

2.56 

Temp. Pressure Burst 

Oc. 
(atmos- duration 
pheres) bed 

0.35 .023 1.35 

2.2 

87 37 

76.8 .028 1350 322 215 .093 
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FIG, 3. Burst characteristics - Untamped metal assembly. 



P 2 a2pr = (ato)2$3 where T, @ , and P are-expressed in the 

units Vo2&Cv, Vo2/y , and K. Hence one obtains: 

Burst duration: to 2dYqy r\, a$ 

Pressure: 

Temp. rise: Vo2T/y Cv 2 

W ith respect to the temperature rise: in a metal assembly 

y is a constant and temperature % o -?A? 
R ' but in liquid as- 

semblies the gas evolution makes y dependent upon the 

temperature and pressure, specifically as: 

bP To+ T 
pO 

Y'"fl FcIl+70( T 
0 

) (po+p-) 

where PO and To are the initial pressure and temperature 

(assumed equal to 1 atmosphere and 2900A.) and T and P are 

the' temperature and pressure increases produced by the 
energy burst. 

W ith respect to the initial power level: if the assembly 
rate is commenced from a well below critical configuration 
in which there is a steady source of fissions S, then as 
critical is approached the source fissions are chain multi- 

plied and i, 2 S J 
7r% ,' 

t Wyf)'d $b/dt 



where yf = the reactivity change between delayed and prompt 
critical = effective fraction of neutrons delayed. This 
relation between io and S considers the multiplication of 
prompt neutrons alone and hence is valid only for assembly 
rates which cover the reactivity interval yf in a time 
small compared to the delayed neutron periods, - a condition 
which has been tacitly assumed throughout the report. 


