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Abstract. Using Markov chains, we systematically compute all the trun-
cated differentials of Skipjack, assuming the nonlinear G boxes are ran-
dom permutations. We prove that an attacker with one random truncated
differential from each of 2'?® independently-keyed encryption oracles has
advantage of less than 27! in distinguishing whether the oracles are
random permutations or the Skipjack algorithm.

1 Introduction

Skipjack encrypts a 64-bit plaintext by applying eight type-A rounds, followed
by eight type-B rounds, then eight more A rounds and eight more B rounds
[8]. The A and B rounds, given in Fig. 1, are feedback shift registers on four
16-bit words, with a nonlinear permutation G (a four-round Feistel network). B
rounds, when keyed correctly and with w; swapped with w», ws swapped with
wy, invert the A rounds. Compare the “Fibonacci” form of the A-round shift
register to that of a Feistel cipher shown in Fig. 2; they differ in the placement
of the nonlinear function.
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Fig. 1. Skipjack consists of eight rounds through the type A shift register, followed by
eight rounds of the reversed shift register type B, then eight further rounds each of
types A and B. G is a keyed bijection. A round counter is also input to the exor

A differential for a cipher consists of a set A of differences of plaintexts, a set
A* of differences of ciphertexts, and a probability p that two randomly chosen
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Fig. 2. The “Fibonacci” form of the Skipjack A round (left) has its nonlinear permu-
tation G in a different position than the nonlinear function F of a Feistel shift register
(right)
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plaintexts with difference in A will be encrypted to ciphertexts with difference
in A*, for a fixed key. For Skipjack, the appropriate definition of the “difference”
between texts t and t' is the exor ¢t @ ¢'. Differentials with p significantly different
— either more or less — than the same probability for a random permutation
can be used as distinguishers, and often to build key-recovery attacks [4]. For
traditional differentials, the sets A, A* are singletons [2]; so-called truncated
differentials deal with larger sets [5].

There are no known attacks on all 32 rounds of Skipjack better than ex-
haustive search over the 80-bit key space. However, the unbalanced structure of
the Skipjack network, in which the nonlinear permutation affects only a quarter
of the bits at each round, slows diffusion of nonlinearities, and makes it easy
to follow differentials across multiple rounds. The best known attacks on up to
31 rounds of Skipjack are truncated differential attacks by Biham et al. [1] and
Knudsen et al. [6]. They found differentials either by tracing through by hand
an unrolled diagram of Skipjack rounds, or by having a computer search for
differentials across a similar form cipher with fewer bits per word — e.g., a 32-bit
cipher with 8-bit words. However, Granboulan [4] found several errors in the
probability calculations of [6].

We here apply the Markov techniques of [7] to systematically and efficiently
calculate correct probabilities for all the truncated differentials of Skipjack,
under the assumption that the G boxes are random permutations. We verify
Granboulan’s corrected differential probabilities. We verify the 24-round impos-
sible differential (i.e., a differential with p = 0) used in the attack of [1], and
find three mistaken differentials they state but do not use in their attack. We
also describe several new “distinguishers”, for instance a 30-round truncated
differential. We show that there are no good truncated differentials for the full
32 rounds of Skipjack. Additionally, we estimate the best distinguishing advan-
tage gained by considering multiple differentials, instead of just a single one. We
prove that an attacker with one random truncated differential from each of 2'28
independently-keyed encryption oracles has advantage of less than 1.0003 x 2717
in distinguishing whether the oracles are random permutations or the Skipjack
algorithm. Since no attack on Skipjack can obtain more than 264(264 — 1)/2
plaintext pairs, this provides heuristic evidence that Skipjack may be secure
against truncated differential distinguishing attacks.



The contributions of this paper are twofold. First, we carefully develop a
framework for the analysis of truncated differential attacks, and we introduce
new mathematical tools for precisely characterizing the strength of a cipher
against truncated differential attacks. Notably, we give methods for calculating
the exact probability of truncated differentials (many trails), in contrast to many
previous works which only looked at truncated differential characteristics (a
single trail), and we show how to bound the distinguishing advantage of any
truncated differential attack, even one that uses several truncated differentials
simultaneously. Second, we apply these methods to Skipjack, and we characterize
its strength against truncated differential cryptanalysis. We hope that these
investigations will yield new insight into the structure of Skipjack and more
generally into the analysis of security against truncated differential attacks.

In Sect. 2 we define Markov ciphers, for which round applications correspond
to a Markov process. In Sect. 3, we introduce our methods and use them to com-
pute truncated differentials for a simple two-word Skipjack variant. In Sect. 4,
we compute truncated differentials for a three-word Skipjack variant and give a
criterion for weak key classes. In Sect. 5, we give the Markov transition matri-
ces for full, four-word Skipjack’s A and B rounds. We correct some differential
probability calculations. In Sect. 6, we bound the advantage an attacker gains
from using multiple (independent) differentials. Finally, in Sect. 7 we list the
best truncated differentials for Skipjack. We also show that it is unlikely that
there exist any weak key classes for which a truncated differential attack would
be significantly improved.

2 Markov Ciphers

Let A be a collection of nonempty, pairwise-disjoint subsets of I" x I" covering
I'xT.For f:T =T, define f:'xI' = I'xI'by f(zx,y) = (f(x), f(y)). If F
is a random distribution over functions I' — I', we call F Markov with respect
to A, or A-Markov, if for all A, A’ € A, for f sampled according to F' and §
uniformly distributed in A such that f(8) € A’, f(6) is uniformly distributed in
A'. That is, using € to mean sampling according to the uniform distribution,
Pr[f(0) = (z,9)|0 €r A, f(8) € A'] is independent of (z,y) € A”.

For F', GG distributions over functions I — I', we define the distribution Go F’
as given by that of g o f, where g, f are sampled from G, F, respectively. Then
for F, G independent A-Markov function distributions, the distribution G o F' is

also A-Markov, and for A, A", A" € A, Prgor[(§o f)(d) € A", f(d) € A'|6 €r
Al =Prg[g(d') € A"|§" €r A" - Prr[f(6) € A'|d €r A].

We can associate to any A-Markov distribution F' a corresponding transition
matrix [F] with a row and a column for each A € A, defined by [F]ara =
Prp[f(8) € A'|§ €r A]. Then the above property implies [G o F] = [G][F], i.e.,
functional composition corresponds to matrix multiplication.

When I' is the set of texts, an iterated round block cipher is a A-Markov
cipher if its round functions are independent A-Markov function distributions,
where the probability is taken over the round key. For example, if its rounds



were keyed independently, DES would be a Markov cipher with respect to the
exor operation @, i.e., with respect to A consisting of sets {(z,y)|z ®y = 2} for
every z [7], [2].

3 Two-Word Skipjack Variant

To introduce our techniques, we’ll consider an adaptation of Skipjack into a
two-word cipher with A and B rounds as shown in Fig. 3. As with full Skipjack,
the A round is inverted by the B round with G~! and swapped words. By
analogy with full Skipjack, two-word Skipjack begins with four A rounds, then
has four B rounds, then four more of each of the A and B rounds: SJ»(z) =
B*A'BYA*(z) for z € {0,1}?>". Assume the G boxes are uniformly random
permutations {0,1}" — {0,1}", chosen independently for each round.
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Fig. 3. Our two-word Skipjack variant consists of four A rounds (above), then four B
rounds (below), then four more A rounds and four more B rounds

If « is an arbitrary plaintext, then the encryption SJ2(«) will be drawn uni-
formly at random from {0, 1}?". We ask the following natural question: for any
given 3, what is the distribution of SJ2(8) given SJ2(a)? Since SJ; : {0,1} —
{0,1}2" is a permutation, SJ(a) = SJ2(B) if and only if @ = B. But even for
a # B3, the distribution of SJ2 (&) & SJ2(8) is not uniformly distributed across
the nonzero elements of {0,1}2". If this distribution — of course depending on
the relationship between o and 8 — is sufficiently non-uniform, it may indicate
exploitable weaknesses in the cipher. In practice, a noticeably non-uniform dis-
tribution of 8’s encryption given a’s encryption across fewer than all the rounds
can often give attacks.

To make our calculations, we’ll consider each round separately, and then
combine the rounds using the round-independence assumption. For z € {0,1}?"
we call its first word z; € {0,1}" and its second word x5, so z = (z1,22). Note
A(z) = (G(z1) ® 22,G(z1)) and B(x) = (1 ® 72, G(z1)).

For a pair of words a; and 31, the joint distribution of their images G(a1),
G(B1) through a G box depends only on whether the two words are the same.
Indeed, if a3 = B1 then G(ay) = G(B1) is uniformly distributed across {0,1}™.



If oy # B1 then G(a1) €r {0,1}™ and G(a1) ® G(B1) €r {0,1}" \ {0}. The
minimum amount of information needed to keep track of whether the input
difference to a G box is zero or nonzero is given by the truncated differential
class of the pair «, 8. For two-word Skipjack, there are five truncated differential
classes of text pairs:

[(a,0)] = {(e, B)|a1 & Br, a2 @ B2, (1 @ B1) & (a2 ® B2) # O},
[(a,a)] = {(a, B)|ar ® B1 = az ® B2 # 0},

[(a,0)] = {(a, B)|az @ B2 # 0,a2 ® B2 = 0},

[(0,0)] = {(e, B)le1 @ B1 = 0,2 @ B2 # 0},

[(0,0)] = {(a, B)|a = B} .

We will henceforth omit the brackets around an equivalence class, and write,
e.g., (a,b) for [(a,b)]. Our notation deviates slightly from previous work in that
we require truncated differential classes to be pairwise disjoint. Earlier authors
would typically consider the classes (a,a), (a,0) and (0,b) to be subclasses of
(a,b), whereas in our setting every text pair belongs to exactly one truncated
differential class.

We treat the evolution of a differential across cipher rounds as a Markov pro-
cess on the truncated differential classes. Let § = (as, Bs) € {0,1}2"x{0,1}?" de-
note a pair of texts, and define A : {0,1}?" — {0,1}?" by A(6) = (A(as), A(Bs))-
Then if § € (0,0), A(8) €g (0,0). If § €g (0,a), A(d) €r (a,0). If § € (a,0),
A(%) €r (a,a). If § €r (a,a) or § €r (a,b), then with probability 5-t=,
A(5) €r (a,0), and with probability 1 — 5:*=, A(d) €g (a,b). Figure 4 shows
the matrix [A], as well as [B], which can be calculated similarly.

l—5751-55000 1-57501-5500
0 0 100 1 0 z7#47 00
0 0 010 0 0 0 10
s s 000 0 1 0 00
0 0 001 0 0 0 01

Fig. 4. The transition matrices for two-word A (left) and B (right). The row and
column order is [(a, b)], [(a, a)], [(a,0)], [(0, )], [(0, 0)]

The rounds A, B are Markov with respect to {(a, ), (a, a), (a,0), (0,b), (0,0)},
so we can compute the transition probabilities for any sequence of A and B
rounds simply by multiplying the matrices appropriately. So, for example, the
entry in row (a,a) and column (a,b) of ([B]*[A]*)? gives the probability that a
pair of plaintexts § €g (a,b) is sent by the sixteen rounds of two-word Skipjack
to a pair of ciphertexts in (a,a); and all output differences in (a,a) are equally
likely.

For comparison, a random permutation takes a nonzero difference to a ran-
dom nonzero difference. Since [(0,0)] = 227, |(0,b)| = |(,0)] = |(a,a)] =



231 227 |(a,b)| = 24" —3-237 4+ 2.22" the probability that a nonzero difference
is sent to (a,b) is |(a,b)|/(2*" —22") = £=2, and the probability that a nonzero
difference is sent to, e.g., (a,a) is |(a,a)|/ (24" — 227) = 2,,1+1.

This technique of computing the transition matrix can be applied to any ci-
pher consisting of exors, linear operations, and components that can be modeled
as a random permutation or random function — in particular to Feistel ciphers.
Figure 5 shows the transition matrices between these equivalence classes for a
two-word Feistel network in which the nonlinear function is either a random

function, or a random permutation.

1—121"1—12%1—12%00 1—12% - = —12%00
= & 5= 00 =~ 0 = 00
0 0 0 10 0 0 0 10
3w o aw 00 L L 0 00
0 0 0 01 0 0 0 01

Fig. 5. The transition matrix for a two-word Feistel cipher (z1,x2) — (F(z1) ®x2, x1),
for F': {0,1}" — {0,1}" a random function (left), and for F is a random permutation
(right). Once again, the row and column order is (a, b), (a, a), (a, 0), (0, 5), (0, 0)

4 Three-Word Skipjack Variant

We adapt Skipjack into a three-word cipher with A and B rounds as shown in
Fig. 6. Similarly to full Skipjack, the A round is inverted by the B round with
G~! and swapped words w; and ws. By analogy with full Skipjack, three-word
Skipjack begins with six A rounds, then has six B rounds, then six more of each
of the A and B rounds: SJ3(z) = BSASB®A%(z) for z € {0,1}3". Assume the
G boxes are uniformly random permutations {0,1}" — {0,1}", chosen indepen-
dently for each round.
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Fig. 6. Our three-word Skipjack variant consists of six A rounds (above), then six B
rounds (below), then six more A rounds and six more B rounds




As for two-word Skipjack, to compute long enough differentials we can re-
strict our attention to sixteen truncated differential classes, corresponding to the
sixteen linear subspaces of GF(2)3:

(a,b,c),
(0,b,¢),(a,0,c¢), (a,b,0),(a,a,c),(a,b,a), (a,b,b), (a,b,a®b),
(a,0,0),(0,b,0), (0,0,c¢), (a,a,0), (a,0,a),(0,b,b), (a,a,a),
(0,0,0) .

This notation captures exactly which exor relationships between the words hold.
For example, (a, b, a®b) contains all plaintext pairs of the form ((a:l ,X2,%3), (1D
a,z2® b, 23 @ (a/ b)) with z € {0,1}*" and o', ¥, a’ ® b’ # 0. Every pair of
texts in {0,1}°" belongs to exactly one truncated differential equivalence class.
The equivalence class (a, b,c) contains 237(2" — 1)(2" — 2)(2" — 4) text pairs,
the next seven classes each contain 237(2" — 1)(2" — 2) text pairs, the next four
classes each contain 237(2" — 1) pairs, and |(0,0,0)| = 23" of course.

It is an easy exercise to compute the matrices [A], [B] as for two-word
Skipjack, so we’ll compute them in a slightly different manner here. Define
Gs : {0,113 = {0,1}*" by Gs3(z1,22,23) = (G(z1),x2,23). We'll compute
[G3]. Then, since wordwise permutations and exors just permute the differential
classes and A, B just differ from G3 by wordwise permutations and xors, [G3]
differs from [A], [B] only by left- and right-multiplication by some permutation
matrices.

Consider for example a text pair in (a,a,a). If G5 fixes the difference in the
first word, then G5 will map the text pair into another pair in (a, a, a); otherwise
it will be sent to (a,b,b). Hence the total number of text pairs mapped from
(a,a,a) to (a,a,a) is exactly 2270, where 0 = |{(z,y) € {0,1}" x {0,1}"|G(z) ®
G(y) = z @ y}| denotes the number of exor differences fixed by G (the factor of
22" comes in because it doesn’t matter what the last two words of the texts are,
as long as their differences are correct). The total number of text pairs mapped
from (a,a,a) to (a,b,b) is 237(2" — 1) — 227 = 227(27(2" — 1) — @). Similar
arguments show that the number of text pairs mapped from any of (0,b,b),
(a,0,a), or (a,a,0) to themselves is also 2270.

Consider next a text pair in (a,a,c). G3 maps the text pair to another in
(a,a,c) if and only if the difference in the first words is fixed, so the number of
text pairs mapped from (a,a,c) to itself is exactly 22"(2" — 2)6; the factor of
2™ — 2 comes in because the difference in the third words can be anything except
0 or the difference in the first words. If, however, the difference in the first words
is not fixed, then we can choose the third words so that their difference is the
difference in the first words after applying Gs. Hence exactly 22(27(2" —1) — )
text pairs are mapped from (a,a,c) to (a,b,a), and, similarly, the same number
is mapped to (a,b,a @ b). All the remaining pairs are mapped to (a, b, c).

With similar arguments, we compute for any pair of truncated differential
classes the exact number of difference pairs mapped between them, depending
only on §. By dividing through by the size of the source truncated differential
classes, we get the matrix [G3] conditional on 6, shown in Fig. 7.



1 0 0 0 r3 r3 0 r3 0000 0000
0 1 0 0 0 0 0 0 0000 0000
0 0 7o 0 0 0 0 0 000074000
0 0 0 ro 0 0 0 0 00074 0000

21,,__62 0 0 0 [ 21[_92 0 21n—_62 0000 0000

21,,:620 0 0 217292 [ 0 %0000 0000
0 0 0 0 0 0 0 0000 00740

21,,__‘92 0 o0 0 21n__62 21n__92 0 § 0000 0000
0 0 O 0 0 0 0 0 1000 0000
0 0 O 0 0 0 0 0 0100 0000
0 0 0 0_ 0 0 0 0 0010 0000
0 0 o 21,,__02 0 0 0 0 0006 0000
0 021[_92 0 0 0 0 0 0000 §000
0 0 0 0 0 0 0 0 0000 0100
0 0 0 0 0 0 21n__‘92 0 0000 0060
0 0 0 0 0 0 0 0 0000 0001

Fig. 7. [G3] conditional on the number 8 of pairs in {0,1}" x {0,1}" whose exor
difference is fixed by G (0 < 6 < 22™). For convenience, in this figure we define § =
gn/ 2_n1 and the remainders r1, 72, 73,74 are such that the columns sum to one. The row
and column order is (a, b, c), (0,b,¢), (a, 0, c), (a,b,0), (a,a,c),(a,b,a),(a,b,b), (a,b,a ®
b), (a’ 07 0)7 (07 b7 0)’ (07 0) c)7 (a7 a7 0)’ (a, 07 a)7 (07 b7 b), (a7 a7 a)7 (O, 07 0)

The expected value of 8 is 27; this follows since, for example, the probability
that a difference in (a,a,a) is mapped to (a,a,a) is 55 = % Round
functions distributed so that 6 is significantly above or below its mean spread
the differential classes less uniformly. Knowing [G3] conditioned on 6 lets us
compute exactly what cipher weaknesses this may imply. Letting n; = |{z €
{0,1}"|G(z) = = @ d}|, for i € {0,1}", we see that 6/2 = 37,14 11a (). Some
intensive calculation using indicator variables and taking advantage of the many
L ) This is a tight enough

73 )"
distribution that weak key classes seem unlikely when the G boxes are random
permutations; we’ll examine this further for the actual G boxes of full Skipjack
in Sect. 7.2.

symmetries among the n; gives Var[f] = 27! (1 +

5 Four-Word Skipjack

Recall the specification of full four-word Skipjack from Fig. 1. Assume the G
boxes are uniformly random permutations {0,1}™ — {0,1}", chosen indepen-
dently for each round; we’ll consider the actual 16-bit G boxes in Sect. 7.2.

Corresponding to the 67 linear subspaces of GF(2)*, we consider 67 different
truncated differential classes for four n-bit words, listed in Fig. 8. A truncated
differential represents the set of pairs in {0,1}" x {0,1}*" where the wordwise
exor differences satisfy a given pattern. For example, the class (0,b,¢,b @ c)
contains (w,w & (0,,¢/,b' @ ¢')) for all w € {0,1}*" and all ¥',¢' € {0,1}"
with b',¢' # 0 and b’ # . Every pair of texts belongs to exactly one truncated
differential class.



(a,b,¢,d);

(0,b,¢,d),(a,0,¢,d),(a,b,0,d), (a,b,c,0), (a,a,c,d),(a,b,a,d), (a,b, c,a),(a,b,b,d), (a,b,c,b),
(a,b,¢,¢), (a,b,a ®b,d), (a,b,c,a ®b), (a,b,c,ad c),(a,b,c,b D c),(a,b,c,a®bdc);
(0,0,¢,d),(0,b,0,d),(0,b,¢c,0),(a,0,0,d), (a,0,c0), (a,b,0,0),

(a,a,a,d), (a,a,c,a),(a,b,a,a), (a,b,b,b),(a,a,0,d), (a,a,c,0),(a,0,a,d), (a,b,a,0),
(a,0,c,a),(a,b,0,a),(0,b,b,d), (a,b,b,0), (0,b, ¢, b), (a,b,0,b),(0,b, ¢, ), (a,0,¢,c),
(0,b,¢,b®c),(a,0,c,a ® c),(a,b,0,a ®b),(a,b,a db,0), (a,a,c,c),(a,b,a,b), (a,b,b,a);
(a,a,c,a®c),(a,b,a,a ®b),(a,b,a®db,a),(a,b,ba®b),(a,b,a®b,b),(a,adcc,c),
(0,0,0,d),(0,0,¢,0),(0,b,0,0), (a,0,0,0), (0,b,b,b), (a,0,a, a), (a,a,0,a), (a,a,a,0),
(a,a,0,0),(a,0,a,0),(a,0,0,a),(0,b,b,0), (0,b,0,b), (0,0, ¢,c), (a,a,a,a);
(0,0,0,0)

Fig. 8. There are 67 different truncated differential classes for four n-bit words, listed
here in the basis order we use for our transition matrices. There are 2*"(2" — 1)(2™ —
2)(2"™ —4)(2" — 8) ordered difference pairs of the first type, 2*"(2" —1)(2" —2)(2" — 4)
of each of the next 15 types, 2™ (2" —1)(2" —2) of each of the next 35 types, 2" (2" —1)
of each of the next 15 types, and, of course, 2*" trivial difference pairs

Figure 9 shows the truncated differential transition matrices [A] and [B]
for the A and B rounds, computed as in Sect. 4. The entry in column j and
row % is the probability that a truncated differential of type j, as ordered in
Fig. 8, is brought to one of type i. For example, the entry in the eighth row
and first column indicates that with probability 57— a difference in (a, b, ¢, d)
is taken to (a,b,c,a). The columns sum to one, and the random distribution is
an eigenvector.

Composing these matrices ([B]®[A]®)? gives the truncated differential tran-
sition matrix for the entire 32-round Skipjack cipher. We used Mathematica to
calculate the matrix product to 256 decimal digit precision for n = 16. As a san-
ity check we also verified the twenty-four round impossible differential through
[B]*[A]®[B]®[A]* [1], which in fact continues to give a good, improbable differ-
ential through the last round.

The matrix for the full 32-round Skipjack is too large to show here, but it
appears to be quite close to the matrix obtained from a random permutation, for
which any nonzero differential is sent to a random nonzero differential. To quan-
tify the “closeness” between the two transition distributions, Fig. 10 shows the
columnwise total variation distances. An optimal distinguishing algorithm given
the truncated differential equivalence classes of exactly one pair of plaintexts and
their encryptions has distinguishing advantage less than 1.5 x 277, and is best
for plaintext differences in (0,b,¢,0) or (0,b,b,0) (the 19th and 63rd columns
in the figure). Unfortunately, dependencies invalidate the transition matrices as
soon as more than two encryptions are sent through the same keyed cipher.
(“Impossible” differentials remain valid, however, and for small numbers of dif-
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ferentials the transition probabilities are probably still approximately accurate.)
Our model requires the independence of each differential, equivalent to re-keying
the cipher for every pair of encryptions. We turn now to some statistics in order
to bound an attacker’s advantage using many truncated differentials with this
independence assumption.

-100

-105

Fig. 10. The total variation norm distance, shown here on a log,, scale, between columns
of the Skipjack truncated differential transition matrix and those for a truly random
permutation is always less than 1.5 x 277, The column order is given in Fig. 8

6 Statistical Bounds on Distinguishing Multiple
Multinomial Distributions

Definition 1 (Decision Multiple Multinomial Game). Let SJ be m' differ-
ent multinomial distributions over m categories, with probabilities p?, e ,psfl),

i =1,...,m'. Let R be a multinomial distribution over the same m categories,

with probabilities p1,p2, ..., Pm, E,m:1 p; = 1. With equal probabilities %, take

N; independent samples over the ith multinomial distribution of SJ, or take N

samples over R, i = 1,...,m/; Z:’il N; = N. The results of the samples are
n?),ng’),...,n%), i ng-z) =N, i = 1,...,m', denoted individually S@ or

collectively S. An adversary A has advantage € in this game if A chooses the
correct multiple multinomial distribution when given S with probability at least
l1+e).

2

We note that the problem of distinguishing Skipjack from an ideal cipher,
given the truncated differential classes of many known text pairs, is exactly given
by the Decision Multiple Multinomial Game. The multinomial distributions SJ
for Skipjack are given by pg-z) = Mj;, where M = ([B]®[A]®)? and R is the
multinomial distribution for an ideal cipher. We turn now to the problem of

giving good bounds on the maximum advantage of any attacker at the Decision



Multiple Multinomial Game. This will provide the mathematical tools needed
to analyze cryptanalysis with multiple truncated differentials. Those readers
uninterested in the statistical details may safely skip ahead to Theorem 5 at
the end of this section.

Assume p1,pa,...,pm > 0, pgi),pgi),...,p%) >0,7=1,...,m, so the ratio
%[[%I%l is well-defined. By Neyman’s Lemma, the optimum algorithm for the
decision multiple multinomial game decides SJ if this ratio is greater than one,

and R if the ratio is less than one. Since

Pr[S|SJ
Pr[SJ|S] — 1_ Pr[S$|SJ] Pr[SJ] 11 Pr[[S‘\R]] —1 )
2 = Pu[SISTPi[ST] + Pu[S|RPA{R] 2 2SSy

this is equivalent to deciding based on the sign of Pr[SJ|S] — 1.

Lemma 2. The advantage of an optimal algorithm for the Decision Multiple
Multinomial Game is e = 2Eg [Pr[SJ|S] — §|.

Proof. Let @ = {S : Pr[SJ|S] > 3}.

prob. correctly guesses SJ prob. correctly guesses R
Pr[correct] = Pr[SJ] 2 Pr[S|SJ] xq(S) + Pr[R] Z Pr[S|R] (1 — xq(9)) -
S S

=" Pr[S] (Pr[SJ|SIxq(S) + (1 — Pr[SJIS)(1 — xq(9))) ,
S

since Pr[S] — Pr[S, SJ] = Pr[S, R]. Now Pr[SJ|S] = % + |Pr[SJ|S] — }| when
x@(S) =1 and 1 —Pr[SJ|S] = I + |Pr[ST|S] — 3| when xq(S) =0, so

1
Pr[correct] = » Pr[S] (= +
e

PSIIS] - 3| ) (xa(S) + (1 - xe(S))

; . 3)
— - yEs|P — |
5 T Es r[SJT|S] 2‘
O
Lemma 3. |lnz| > 2 |£—I_}|, with equality only at x = 1.

Proof. lim,_,; Inz 241 = 2, by PHépital’s rule. Differentiating the ratio gives

the equivalent condition that 1 + In (z+r1 - zlfl) > 0. This simplifies to a sign

condition on z — 2Inx — %, which another differentiation directly proves. O



Proposition 4. The advantage of an optimal algorithm for the Decision Mul-
tiple Multinomial Game is bounded by

1 Pr[S|SJ]

%50 (T )|
1 K3 K3 (] 2 (] K3
Z\IZN(ZG()pJ) Ze()() ) (ZNze()())
+ % \j ZNi (Z egi)zpj - (Z egi)pj)2) + (Z N,-Zeg-i)pj)z , (@)

i=1 Jj=1 Jj=1 i=1 j=1
G .ol
where € =In% pj .

Proof. The bound on the advantage

1
< -E
6_2 S

follows directly from Lemmas 2 and 3. We need to compute the bound on
Eg ‘ln (Pr[S|SJ]) |

Pr[S|R]
Since
Pr[3|SJ] = [] Pr[s?|S7] = H N;! H Py’ i, (6)
=1
m’ ) () ;
Pr[S|R] = [[ Pr[S?|R] = HN,-! H py /i1, (7)
=1 i= j=1

the log of their ratio is

Pr[SIST] TN (i) (i)
Let AS) = Ef L e(’)n(’) and A® = AYD  Take the multinomial probabilities to
be qJ(-i), either pg-) from SJ or p; from R. Then EA®) = N; Py (i) (i) . We

remark that Var(ng-i)) = Niq](- ) (1 - q( ) and Cov(n!’ )’”5;)) —N; q(z)q ,J# k.
For k > 1,

Va.rAsf) = Var(egxng) + 2 Cov(egng, Ag—1) + VarAg_q

k—1 (9)
= e Nige (1 — qi) — 26k Nigi Y €55 + Vardg_y

=1



where we have begun to suppress excessive i superscripts. By induction,

VarA® &
N = Zf QJ 2251619(1](119
¢ j=1 i<k
N e (10)
= &4 (Z em)
Jj=1 j=1

Note that EA = E:il EA® and VarA = ZZI VarA® since Cov(A®, Ay =
0 for i # i' by independence. Now for a random variable X, VarX = EX? —
(EX)? >0, so EX = vVEX?2 — VarX < vVEX?2. Hence,

(11)
= o~ ()2 ( () 4(0) s (1) ()2
= ZlNz(Zle q Z q; ) (Zlszlej qj) .
= J= = 1=

The result follows from averaging the above bound over the q§i) being pgi) from
SJ or p; from R. |

Proposition 4 gives a bound for distinguishing the multiple multinomials
of a block cipher’s truncated differentials from those of a random permutation’s
truncated differentials. From the transition matrix calculated in Sect. 5 we obtain
a bound for Skipjack, with G boxes given by independent random permutations.

Theorem 5. An adversary who sees the truncated differential classes for one
pair of plaintexts and corresponding ciphertexts from each of 2'28 independently
keyed oracle ciphers, such that each input truncated differential class appears
exactly the size of that class times (sizes given in Fig. 8), has advantage less
than 7.63103 x 108 in distinguishing whether the oracle ciphers are truly random
permutations or Skipjack (with G bozes independent random permutations).

7 Truncated Differentials for Full Skipjack

7.1 Best Differentials

Table 1 shows the longest impossible differentials starting at each round from 1
to 16. The longest impossible differential goes through 24 rounds, from rounds



5 to 28, inclusive: (0,5,0,0) -» (a,0,0,0). Biham et al. use this differential to
mount an attack on 31-round Skipjack which is slightly faster than exhaustive
key-search [1]. On the same differential path is one impossible differential from
rounds 5 to 27, (0,b,0,0) - (0,0,0,d), and also four from rounds 5 to 26:

(0) b’ 07 0) et (a7 0’ C) 0)’ (05 b) 0’ 0) et (07 05 C’ O)’
(07 b’ 07 0) - (a7 03 07 O)’ (05 b7 03 0) et (a7 05 a) O) *

While [1] found these latter four impossible differentials, they did not find the im-
possible differential from rounds 5 to 26. Additionally, the impossible differentials
they list from rounds 5 to 27, (0,b,0,0) -» (a,0,0,0) and (0,b,0,0) - (0,b,0,0),
are incorrect, as is another impossible differential they list from rounds 5 to 26,
(0,6,0,0) - (0,b,0,0).

Along the same differential path are several other long impossible differen-
tials, one from rounds 6 to 28 — (0,0, ¢,0) = (a,0,0,0) — four from rounds 7 to
28, and seven from rounds 5 to 25. Other long impossible differentials include
(0,b,0,0) - (a,0,0,0) from rounds 4 to 24, and (0,b,0,0) - (a,0,0,0) from
rounds 9 to 29.

Table 2 shows the best differentials for distinguishing attacks based on an
attacker seeing all 26 possible plaintext encryptions. The distinguishing bound
is from Proposition 4, using just the stated differential (m' = 1, m = 2). We
assume that the G boxes are independent random permutations, and that each
text pair (2128 total) is encrypted independently.

For example, the best differential through all of Skipjack, rounds 1 to 32,
is (a,b,0,d) — (a,b,c,0). An attacker with access to the encryptions of all
264 plaintexts has a distinguishing advantage of at most 7.62980 x 106 from
considering just this differential. By Theorem 5, the distinguishing advantage
an attacker gains from considering all truncated differentials is only 7.63103 x
107%, so most of that advantage is from just this one differential. In general,
it appears that counting other differentials besides the single best one does not
often significantly increase the distinguishing power.

The differential (0, b, ¢,0) — (a, 0,0, d) through rounds 2 to 31 has probability
about (1 — 2732)2732 compared to a probability of about 2732 for a random
permutation. The 264(216 — 1)(216 — 2) ~ 2% difference pairs of this type can
conceivably distinguish between Skipjack and a random permutation using this
differential, since the difference in the expected number of pairs satisfying the
differential for Skipjack versus for a random permutation is about 232, and the
standard deviation of the number of satisfying pairs is also about v/264 = 232,

7.2 Existence of Weak Key Classes

As shown in Sect. 4, G boxes giving an unusually low or high 8 — the number of
n-bit input pairs whose exor difference is fixed by G — can lead to poor mixing
of the truncated differential classes. Figure 11 shows the distribution of 6 for
the actual 16-bit G boxes of official Skipjack. 6 is quite tightly distributed and
it seems unlikely that there exist any weak keys or key classes for this level of



Table 1. Longest impossible differentials starting at each round from 1 to 16

Start End Impossible differentials

1 14 (0,b,¢,0) » (a,0,0,0),(0,0,0,d) - (a,0,0,0),(0,0,c,0) » (a,0,0,0),
(0,5,0,0) » (a,0,0,0),(0,b,b,0) - (a,0,0,0)

2 14 (0,b,¢,d) -+ (a,0,0,0),(0,0,¢,d) = (a,0,0,0),(0,b,0,d) » (a,0,0,0),
(0,b,¢,0) » (a,0,0,0),(0,b,b,d) » (a,0, 0 0), (0,b,¢,b) -+ (a,0,0,0),
(O,b,C,C)—ﬁ(a,0,0,0),( 7b0b@c) ( 0) ),(0,0,0,d)—ﬁ(a,0,0,0),
(0,0,¢,0) = (a,0,0,0),(0,5,0,0) » (a,0, 070),( a,0,0,0) » (a,0,0,0),
(0,b,b,b) - (a,0,0,0), (O,b, 0) » (a,0,0,0),(0,b,0,b) » (a,0,0,0),
(07 0: ¢, C) - ((I, 07 0: 0)
3 21 (0,5,0,0) -» (a,a,0,0)
4 24 (0,5,0,0) - (a,0,0,0)
5 28 (0,b,0,0) -+ (a,0,0,0)
6 28 (0,0, ¢,0) - (a,0,0,0)
7 28 (0,b,0,d)» (a,0,0,0),(0,0,0,d) » (a,0,0,0),(0,b,0,0) = (a,0,0,0),
(07 b: 07 b) - ((l, 0, 0: 0)
8 28 (a,0,¢,0)-» (a,0,0,0),(0,0,c¢,0) - (a,0,0,0),(0,b,0,0) » (a,0,0,0),
(a,0,0,0) -+ (a,0,0,0),(a,0,a,0) » (a,0,0,0)
9 29 (0,,0,0) - (a,0,0,0)
10 29 (0,0,¢,0) -+ (a,0,0,0)
1 29 (a,a,0,d)» (a,0,0,0),(0,0,0,d) » (a,0,0,0),(a,a,0,a) » (a,0,0,0)
((l, a, 0: 0) - (aa 0) 05 0)
12 30 (a,a,0,0) = (a,0,0,0)
13 30 (0,b,0,0) - (a,0,0,0)
14 30 (anaca 0) - (a/aO:OJO): (aaaa ) ) ((l, O,an)
15 30 (a,a,0,d)» (a,0,0,0),(0,0,0,d) » (a,0,0,0),(0,b,0,0) » (a,0,0,0),

(a7 a) 07 a) - (a7 0’ 07 0), (a) a, 07 0) - (a’ 07 0, 0)
16 30 (a,b,0,0) - (a,0,0,0),(0,0,¢c0) - (a,0,0,0),(0,b,0,0) - (a,0,0,0),
(a,0,0,0) -+ (a,0,0,0), (a,a,0,0) » (a,0,0,0)

Table 2. Best differentials starting from rounds 1-5 (rows) and ending in rounds 28—
32 (columns). Beneath each differential is the full-codebook, distinguishing-advantage
bound, and also one minus the ratio between the differential probability for Skipjack
and that for a random permutation on {0, 1}%*

28 29 30 31 32

1 (a,b,0,d) = (a,0,0,0) (a,b,0,d) — (0,b,¢,0) (a,b,0,d) > (0,0,c,d) (a,b,0,d) = (a,0,0,d) (a,b,0,d) — (a,b,c,0)
.56, 2732 .0020, 278 .0020, 2748 .0020,27*%  7.63-107%,27%4
2 (O,b,c, 0) — (a,0,0,0) (O,b, c, 0) — (O,b, c,O) (O,b, c, 0) — (0,0,c, d) (0, b,c, 0) — (a,0,0,d) (O,b, c, 0) — (a,b, c, O)
16385, 216 .56, 232 56,232 .56, 232 .0020, 248

3 (0,0,¢,d) = (a,0,0,0) (0,0,c,d) — (0,b,¢,0) (0,0,¢c,d) — (0,0,¢,d) (0,0,¢c,d) = (a,0,0,d) (0,0,¢c,d) = (a,b,c,0)
16385, 2716 .56, 2732 .56, 2732 .56, 2732 .0020,2~ 48

4 (a,0,0,d) = (a,0,0,0) (a,0,0,d) = (0,b,¢,0) (a,0,0,d) = (0,0,¢,d) (a,0,0,d) = (a,0,0,d) (a,0,0,d) = (a,b,c,0)
16385, 2716 .56, 2732 .56, 2732 .56, 2732 .0020, 278

5 (0,b,0,0) -+ (a,0,0,0) (0,b,0,0) = (0,b,¢,0) (0,b,0,0) = (0,0,¢,d) (0,b,0,0) = (a,0,0,d) (0,b,0,0) = (a,b,c,0)
00,1 16385,27 ¢  16385,27 1%  16385,2° !¢ 56,2732




attack. With our independence assumptions, a successful attack will not be able
to assume that the G boxes are random permutations, nor that they are random
permutations with a given 6 distribution, but will need to look more closely at
the exact distribution of G-box permutations.
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Fig. 11. The distribution of 6, the number of fixed differences, is tighter for Skipjack’s
true G boxes than for random permutations {0,1}'® — {0, 1}'®. This histogram shows
for each 6 value the number of keys which give that § (always a multiple of 2'%)

7.3 Interpretation

Our calculations were intended to give us insight into the power of truncated
differential attacks on Skipjack. However, to enable explicit calculation, we were
forced to abstract away a few features of Skipjack in our theoretical model. Our
theoretical model is still fairly close to the real Skipjack, but the differences
could potentially affect the correctness of our figures. Consequently, our results
must be interpreted with care.

We will try to enumerate to all potential ways that our abstract model could
fail to accurately represent the behavior of the real Skipjack, and so Theorem 5
could overestimate Skipjack’s security.

1. We only consider standard truncated differential attacks. Obviously, other
attacks — exact differentials, higher-order differentials, integrals, boomerang
attacks, the Yoyo game, and so on — might have lower complexity.

2. We consider only the possibility of building distinguishers, and ignore meth-
ods for guessing key material at the outer rounds. In particular, our model
does not account for the possibility of attacks that guess, say, the 32 key bits
determining the G permutation used in the last round. Consequently, any



attack that succeeds in distinguishing Skipjack for r rounds in our model
can likely be extended to a key-recovery attack on the real Skipjack for
r+r' rounds for some small 7’ (the best attack on Skipjack currently known
achieves ' =7 [1]).

. Our model ignores the Skipjack key schedule. In our model we assume that
round keys are independent, while in the real Skipjack round subkeys have a
simple relationship to each other. For instance, G boxes separated by a mul-
tiple of five rounds are identical. This might make our truncated differential
distinguishing bound too optimistic, and — since the first two round subkeys
match the last two round subkeys — could also aid key-recovery attacks.

. Our model ignores the internal structure of the G box, and simply treats
it as a random permutation. There might plausibly be some way to take
advantage of the internal structure of the G box to build a more efficient
attack. For instance, it is known that there are four differential characteristics
with probability 271042 for the Skipjack G box [3], while for a random
permutation the chances of encountering such characteristics is remote. As
another example, one can see that the parameter 6 for the real Skipjack G
boxes differs what one would expect for a random permutation: the difference
is small but statistically significant (see Fig. 11). It is conceivable that it
might be possible to exploit these or other properties of the real G box
somehow, but we do not see any obvious way to do so. More convincing is
that the strongest existing attacks on Skipjack all treat the G box as though
it were a random permutation, and ignore its internal structure.

. Our model is overly generous with the text pairs given to the attacker. We are
trying to model the case of an attacker who is given the entire codebook for
Skipjack, i.e., the encryption of all 264 possible plaintexts. Such an attacker
can obtain 264 x (264 —1)/2 & 2!27 text pairs, and this is obviously an upper
bound on the number of pairs available to the attacker. If Skipjack is secure
against all truncated differential attacks using 2!27 pairs, then it will also
be secure against all truncated differential attacks using less than the whole
codebook.

For technical reasons, to rigorously analyze the advantage of such an attack,
we needed to assume that each pair behaves independently. This assumption
is embodied by modeling each pair as coming from an independently keyed
instantiation of the cipher. This seems to be a clean way to model the heuris-
tic assumptions made in previous work on truncated differential attacks on
Skipjack. However, this assumption may be too generous to the attacker.
The assumption implies that each of the 2!27 pairs gives new information to
the attacker. However, when we obtain 2!27 text pairs from 2'27 texts, the
pairs definitely do not behave independently, and some are redundant. For
instance, if ¢, ¢/, ¢” represent three ciphertexts with the differences ¢® ¢’ and
¢ @ " both in the truncated class (a,0,0,0), then the difference ¢ & ¢” is
surely in the same class, and hence the third pair gives no new information.



The independence issue may well be the most troubling aspect of our model.
Characterizing the appropriateness of this assumption is an interesting problem
for future research.
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