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Summary

Last year at ISC: A privacy homomorphism was
proposed, namely, an encryption algorithm E such that
Ek(a)+Ek(b) = Ek(a+b) and Ek(a)×Ek(b) = Ek(a×b).

In this talk: The ISC’02 proposal is insecure.
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Warning!

Caution: My paper in the ISC’03 proceedings has a
serious flaw (found by Dr. Koji Chida).

The flaw has been repaired. An erratum and a corrected

revision of my paper are available.
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Part I: Puzzles

“Riddle me this.” —The Riddler
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Puzzle #1: Guess the Divisor

Secret: A positive integer m′ ∈ N.
Given: Two positive integers x1,x2 ∈ N,

where x1,x2 are random integer multiples of m′.
Goal: Find m′, with high probability.

Solution: Compute gcd(x1,x2). Guess that
m′ = gcd(x1,x2).

Success probability = 6/π2 ≈ 0.608.
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Puzzle #2: Find the Divisor

Secret: m′ ∈ N.
Given: x1, . . . ,xn ∈ N, random integer multiples of m′.
Goal: Find m′, with near-certainty.

Solution 1: Compute gcd(x1,x2), gcd(x3,x4), . . . ,
gcd(xn−1,xn). Take a majority vote.

Solution 2: Compute gcd(x1,x2, . . . ,xn).

Success probability ≈ 1−2−O(n).
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Puzzle #3: Find the Modulus

Secret: m′ ∈ N.
Given: f1(X), . . . , fn(X) ∈ Z[X ], where fi(1) ≡ 0 (mod m′).
Goal: Find m′.

Solution: Let xi = fi(1). These are integer multiples of
m′. Apply Puzzle #2.

Success probability ≈ 1.
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Puzzle #4: Find the Modulus, Again

Secrets: m′ ∈ N, α ∈ Z/m′
Z.

Given: f1(X), . . . , fn(X) ∈ Z[X ], where fi(α) ≡ 0 (mod m′).
Goal: Find m′.

Solution: Let xi = Res( f2i−1, f2i). These are integer
multiples of m′. Apply Puzzle #2.

• Res( f ,g), the resultant of f (X) and g(X), is an integer,
and it can be efficiently computed.

• If f (X) and g(X) share a common root, then Res( f ,g) = 0.
If f (X) and g(X) share a common root modulo m′, then
Res( f ,g) ≡ 0 (mod m′).
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Puzzle #5: Find the Common Root

Secret: α ∈ Z/m′
Z.

Given: m′ ∈ N; f1(X), . . . , fn(X) ∈ Z[X ],
where fi(α) ≡ 0 (mod m′) and deg fi ≤ n.

Goal: Find α.

Solution: Consider this system of equations:

f1(α) ≡ 0 (mod m′)
...

fn(α) ≡ 0 (mod m′).

Notice: Each equation is linear in α,α2, . . . ,αn.
So, apply Gaussian elimination over Z/m′

Z.
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Part II: Cryptanalysis

“If it’s provably secure, it’s probably not.”
—Lars Knudsen
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The ISC’02 privacy homomorphism
Key generation:

Public: m ∈ N.
Private: a divisor m′ ∈ N of m; r ∈ (Z/mZ)∗.

Encryption:
Plaintext: a ∈ Z/m′

Z.

Ciphertext: q(X) ∈ (Z/mZ)[X ], formed as q(X)
def
= p(rX)

where p(X) is a random polynomial s.t.
p(1) ≡ a (mod m′).

Decryption:
Ciphertext: q(X) ∈ (Z/mZ)[X ].
Message: q(r−1) mod m′.
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Phase 1: Find m′

Secrets: m′ ∈ N; r ∈ Z/mZ.
Given: m ∈ N; and, n known-plaintext pairs (ai,qi(X))

where qi(r
−1) ≡ ai (mod m′).

Goal: Find m′.

Attack: Define fi(X)
def
= qi(X)−ai.

Notice that, modulo m′, the fi share a common root, r−1.

Apply Puzzle #4. This reveals m′.
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Phase 2: Find r mod m′

Secret: r ∈ Z/m′
Z.

Given: m′,m ∈ N; f1(X), . . . , fn(X)

where fi(r
−1) ≡ 0 (mod m′).

Goal: Find r mod m′.

Attack: Apply Puzzle #5. This reveals r mod m′.
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How much progress have we made?

The secret key was m′ and r ∈ Z/mZ.
We’ve learned m′ and r mod m′.

Question: What about the rest of r?

Answer: The rest of r doesn’t matter, and is never used
during decryption.
(Corollary: The scheme has many equivalent keys.)

Conclusion: The scheme is broken.
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Provably secure?

In ISC’02, the following was proven:
Theorem 1. (Under appropriate conditions:) No attacker
can learn the secret key of the ISC’02 scheme.

. . . Paradox!

Or, is it?

Resolution of the paradox: Equivalent keys.
Part of the key is never used. The attacker cannot learn
this part of the key, but he doesn’t need to.

The importance of proper definitions.
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Provably secure?

In ISC’02, the following was proven:
Theorem 3. (Under appropriate conditions:) No attacker
can learn the secret key of the ISC’02 scheme.

. . . Paradox!

Or, is it?

Resolution of the paradox: Equivalent keys.
Part of the key is never used. The attacker cannot learn
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Summary

The ISC’02 scheme is insecure.
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