
LOMA C: Low Water-Mark Integrity Protection for COTS Envir onments

TimothyFraser NAI Labs
tfraser@nai.com 3060WashingtonRoad

Glenwood,MD 21738,USA

Presentedat the2000IEEESymposiumon SecurityandPrivacy c
�

2000IEEE.Personaluseof thismaterial

is permitted.However, permissionto reprint/republishthismaterialfor advertisingor promotionalpurposes

or for creatingnew collectiveworksfor resaleor redistributionto serversor lists,or to reuseany copyrighted

componentof thiswork in otherworksmustbeobtainedfrom theIEEE.

Abstract

We hypothesizethat a form of kernel-residentaccess-
control-based integrity protection can gain widespread
acceptancein Commercial Off-The-Shelf(COTS)environ-
mentsprovidedthat it couplessomeusefulprotectionwith
a high degreeof compatibilitywith existing software, con-
figurations,andpractices.To testthis hypothesis,wehave
developeda highly-compatiblefreeopen-sourceprototype
calledLOMAC, andreleasedit on theInternet.LOMAC is
a dynamicallyloadableextensionfor COTSLinux kernels
thatprovidesintegrity protectionbasedonLowWater-Mark
accesscontrol. We presenta classificationof existing ac-
cesscontrol modelswith regard tocompatibility, concluding
thatmodelssimilar to LowWater-Mark areespeciallywell-
suitedto high-compatibilitysolutions.Wealsodescribeour
practical strategiesfor dealingwith thepathological cases
in the Low Water-Mark model’s behavior, which includea
smallextensionof themodel,andanunusualapplicationof
its concepts.

1 Intr oduction

In recentyears, many commercialorganizationspro-
viding CommercialOff-The-Shelf (COTS) software have
rushedto integrateInternet-relatedfunctionality into their
products,knowing that the new functionality will distin-
guish them from their competition,helping them to gain
commercialadvantage.This integrationhasincreasedthe
scopeof theglobal securitythreatby exposinglargenum-
bersof previously isolatedsingle-userworkstationsto at-
tacksby maliciouscodeandusersvia the Internet. In the
race to be first with new applicationfunctionality, there
is little time for securityconcerns. Consequently, public
forums suchas BugTraq are rife with reportsof security
problemsin deployedCOTS softwarethat leave the integ-
rity of processesanddatavulnerableto attack. To counter
this increasedthreat,thereis a needto apply integrity pro-
tectiontechnologiesto existing COTS systems.However,
suchapplicationis not easy. Integrity protectiontechnolo-

gieswhich requireusersto replacetheir investmentin cur-
rently deployedCOTS software,or interferewith applica-
tion functionalityareunlikely to bewidely adopted,regard-
lessof theprotectionthey provide. Applicabletechnologies
mustenhance,ratherthanreplace,existingCOTSsoftware.

Fortunately, several such technologiesexist, and have
metwith successascommercialproducts.Thesetechnolo-
giesincludefirewalls, virus scanners,andintrusiondetec-
tion systems.Wehypothesizethatintegrity protectiontech-
nologybasedon kernel-residentaccesscontrol canalsobe
appliedasanenhancementto existing COTS systems,pro-
vided that, like the successfultechnologiesabove, it pro-
videsat leastsomeusefulprotectionat a near-zerocost in
compatibility. To testthishypothesis,wehaveimplemented
aform of Low Water-Mark accesscontrol[5] in afreeopen-
sourceprototypefor COTS Linux systems. We call this
prototypeLOMAC, anacronym derivedfrom “Low Water-
Mark” and“AccessControl”. We areproviding LOMAC
to potentialadoptersvia theInternetandmeasuringits rate
of acceptance.LOMAC is designedto meetthe following
specificCompatibilityGoalsto thegreatestextentpossible:

1. LOMAC shouldbe compatiblewith the existing de-
ployed COTS operatingsystemkernelsand applica-
tions. This goal implies that LOMAC shouldnot re-
quire the replacementor source-codemodificationof
any existing softwarein orderto operate.

2. LOMAC should not require any changesto pre-
existingkernelor applicationconfigurations.

3. LOMAC shouldnotcausefailuresin previouslywork-
ing applications.

4. LOMAC’s existenceshouldbe largely invisible to the
user except at the momentswhen specific integrity
threatsoccur. This goal implies that the usershould
not berequiredto learnany new behaviors in orderto
work in aLOMAC-enhancedenvironment.

5. LOMAC shouldprovide someusefulprotectionin its
default configuration.This goal implies thatLOMAC

must offer a useful default “one size fits all” integ-
rity policy for thoseadopterswho do not wish to ex-
pendthe effort requiredto learnaboutandconfigure
LOMAC. We referto thispolicy asLOMAC’sDefault
Policy.

We defineTotal CompatibilityCostasthecostincurred
by failing to meettheseCompatibility Goals. Although a
zeroTotal Compatibility Cost is probablynot achievable,
basedon the commercialsuccessof the integrity protec-
tion technologieslisted above, we believe that a solution
bearingasmallbut near-zeroTotalCompatibilityCost,cou-
pledwith someusefulprotectionbenefit,canstill bewidely
adoptedin COTS environments.We candeterminetheex-
tentto which LOMAC meetsmostof thesegoalsby exam-
ining thestructureandbehavior of theprototypeitself. Un-
fortunately, wecannoteffectively measurecompliancewith
thethirdgoal,becausedoingsowouldrequireustoexamine
all of theapplicationprogramsexistingin agivenLOMAC-
enhancedenvironment,searchingfor potentialfailures. In
thegeneralcase,thenumberof applicationprogramsis far
too greatto make suchananalysispractical. However, we
cancharacterizethecostassociatedwith LOMAC usingthe
the notion of Partial Compatibility Cost,which we define
as the samemetric asTotal Compatibility Costexcluding
the troublesomethird goal. We supplementthis character-
ization with experimentalevidenceconcerningLOMAC’s
avoidanceof applicationfailures,andargue that a proper
analysisis possiblein thespecialcaseof LOMAC’sDefault
Policy.

Ourexperimentis ongoing.However, thispaperpresents
the two primary resultsderived from its early stages.The
first result concernsour analysisof potentially applicable
accesscontrol models,which suggeststhat somemodels
possessaspecificproperty(definedbelow) thatmakesthem
easierto apply to a COTS environmentswith low Partial
Compatibility Cost thanothers. Surprisingly, the classof
modelswith this property includesexampleswhich have
seldombeenimplemented,suchas Low Water-Mark and
ChineseWall, and excludesexamplesthat have received
greaterattention,such as Ring Integrity, Strict Integrity,
Clark-Wilson, Type Enforcement,and Domain and Type
Enforcement(DTE). The secondresultconcernsthe well-
known pathologicalcaseinherentin the Low Water-Mark
model’s behavior which, if left unaddressed,could cause
applicationfailuresand unacceptablyincreaseLOMAC’s
Total Compatibility Cost. Althoughwe cannotentirely re-
move thepathologicalcasewithout alsoremoving thepro-
tective propertiesof the model, we have developedtech-
niquesto avoid it in COTS UNIX environments. These
techniquesincludea small extensionof the formal model,
andanunusualmappingof its conceptsto theUNIX oper-
atingsystemabstractions.Our experienceandour prelimi-
naryusabilityanalysisindicatethat it is possibleto accom-

plish meaningfulwork on LOMAC-enhancedCOTS Linux
systems,with near-zerocostaccordingto ourCompatibility
Goals.

In section2, we begin by presentingour analysisof ac-
cesscontrol modelsthat areapplicableto the COTS envi-
ronment,andarguethatsomeclassesof modelsenablelow
Partial Compatibility Costsolutionsmoreeasily thanoth-
ers. This argumentjustifiesour choiceof the Low Water-
Mark modelasthebasisfor LOMAC. In section3, we de-
scribethe LOMAC architectureand its tradeoffs between
low Partial CompatibilityCostandquality of integrity pro-
tection.We concludethat,despitetheextremenatureof the
tradeoffs, a low Partial CompatibilityCostarchitecturecan
still provideusefulintegrity protection.In section4, wede-
scribehow LOMAC appliesthe Low Water-Mark model’s
conceptsto the Linux kernel’s abstractions,and how this
mappingresultsin useful integrity protection. We explain
how theLow Water-Mark model’sbehavior makesit unnec-
essaryfor LOMACtobeawareof many installation-specific
details,suchas the assignmentof dutiesamongusers,or
the purposesof individual daemons.This freedomallows
LOMAC to providea “one-size-fits-all”DefaultPolicy that
allowsit to enforceusefulintegrity protectionwithoutbeing
configured.Section5 discusseshow the Low Water-Mark
modelcanincreaseTotalCompatibilityCostby causingap-
plication failures,andpresentsour unusualapplicationof
model conceptsand our model extensionfor overcoming
thisproblemin theCOTSUNIX environment.In section6,
we comparethe LOMAC experimentto relatedwork, em-
phasizingin particular the differencebetweenLOMAC’s
goalsandthe goalsof trustedoperatingsystems.We con-
cludewith ananalysisof thequality of LOMAC’s integrity
protectionin section7, anddiscussa strategy to measure
Total Compatibility Cost in the specialcaseof LOMAC’s
DefaultPolicy.

2 Modelsand Partial Compatibility Cost

Therearemany accesscontrolmodelscapableof provid-
ing integrity protectionin COTS environments.However,
somemodelsare more suitablethan othersbecausethey
possessspecificpropertieswhich help to minimize Partial
CompatibilityCost.In this section,we definetheseproper-
ties andusethemto classify the populationof modelsac-
cordingto their effecton Partial CompatibilityCost.Based
onthisanalysisandourexperiencewith theLOMAC proto-
type, we concludethat the modelsmost suitablefor the
COTS environmentare thosewhich are capableof revis-
ing the privilegesthey award to a given subjectbasedon
the objectsthe subjectobserves during its runtime. This
classincludesthe ChineseWall [7] andLow Water-Mark
models[5]. Out of the universeof modelscapableof pro-
viding integrity protection,we focus our analysison the

A. B. C.

INTEGRITY MODELS
(1)

(2)
(3)

NPR

PR

AMM
(4)

(5)
(6)

(7)

(8)

PR: PRI

PRM PRO

(4)

(6)

(7)

(8)

(5)

(1) RBAC without fourth rule

(2) Ring Integrity

(3) Strict Integrity

(4) ChineseWall

(5) Low Water-Mark

(6) Clark-Wilson

(7) TypeEnforcement/DTE

(8) RBAC with fourth rule

Figure 1. Venn diagrams describing the relationships between models with numbered examples.

setof modelswhich includesubjects,objects,andAccess
Matricesamongtheir fundamentalconcepts[14, 15]. Fig-
ure 1A containsa Venndiagramrepresentingthis setasa
circle markedAMM for AccessMatrix Models. We chose
this setbecause,asshown by theindex in figure1C, it con-
tainsmany (thoughnotall) well-knownexamplesof models
which provide usefulintegrity protection.Theseexamples
includetheRingIntegrity, Strict Integrity, Low Water-Mark
[5], ChineseWall [7], Clark-Wilson [8], TypeEnforcement
[6], andDTE [3] models. It alsoincludesthe Role-Based
AccessControlmodelin thecasewherethemodel’s fourth
rule is appliedto defineanAccessMatrix [9].

All of the AccessMatrix Modelsassigna particularset
of privilegesto eachsubject- eachsubject’s “privilegeset”.
ThediagrampartitionstheAMM setinto two halves. One
half is markedNPRfor “No PrivilegeRevision”. This half
containsall modelsin which a subject’s privilegesetdoes
not changeonceassigned. The other half is marked PR
for “PrivilegeRevision”. This half containsthe restof the
AMM models,in which a subjectmay be assigneda new
privilegesetwhenit performscertainoperations.Themem-
bersof the PR setcanbe further subdivided accordingto
which of the threefundamentaloperationsof the Access
Matrix Models: invoke, observe, or modify, promptsthem
to revise a subject’s privilege set assignment.Figure 1B
containsa Venndiagramshowing this furtherclassification
of thePRmodels.ThePRmodelswhich mayrevisea sub-
ject’s privilege setassignmentwhenthat subjectperforms
anInvokeoperation(aprogramexecutionor procedurecall)
arecontainedin thesetlabelledPRI,for “PrivilegeRevision
onInvoke.” ThePRmodelswhichreassignprivilegesetsin
responseto Observe (read)andModify (write) operations
arecontainedin thesetslabelledPRO andPRM, for “Priv-
ilegeRevisionon Observe” and“on Modify,” respectively.

When applied to a COTS environment, the most dis-

criminating characteristicof an AMM model with regard
to PartialCompatibilityCostis themethodit usesto choose
which privilege set to assignto a given subject. Other is-
sueswhich affect Partial Compatibility Cost, suchas the
methodusedto divideexistingobjectsinto integrity classes,
areequallydifficult amongall theAMM models.Notethat
we definethe PRI, PRO and PRM propertiesin termsof
the operationswhich prompta PR model to revise a sub-
ject’s privilegesetassignmentat a givenpoint in time. Our
definitiondoesnot limit thecriteria on which a modelcan
baseits privilegesetchoiceonceit is promptedto choose.
Although all the examplePRI modelsshown in figure 1B
choosebased(in part)ontheidentityof invokedprocedures
or programs,andall theexamplePRO modelschoosebased
on the integrity level of observed objects,our definition
doesnot requirethis limited behavior. For example,we ad-
mit thepossibilityof a PRM modelwhich,whenprompted
to choosea new privilege setby a subject’s modify oper-
ation, canconsiderthe subject’s observation or invocation
historybeforechoosing.

Theobserveoperationis theonly oneof thefundamental
threewhich allows a subjectto decreaseits own level of
integrity by importing data from a lower-integrity object
into itself. The AccessMatrix Models provide integrity
protection by preventing subjectsfrom transferringdata
from low-integrity objects(via observeoperations)to high-
integrity objects(via modify operations).They accomplish
this provision by assigningthosesubjectswhich mustob-
serve low-integrity objects(dueto the functionality needs
of theirapplication)privilegesetswhichdonotpermitthem
to modify higher-integrity objects.They mayassignprivi-
legesetspermittingthemodificationof higher-level objects
to thosesubjectswhichrefrainfrom observinglow-integrity
objects.Theproperchoiceof privilegesetfor a givensub-
ject is, consequently, dependenton theintegrity level of the

exec: getty
exec: login
exec: shell

1.

2.

3.

exec: init

exec:
 emacs

fork, setpgrp

fork, setpgrp

Figure 2. The UNIX login process tree

objectsthesubjectmustobserve.

The PRO modelsusea simple approachto choosethe
appropriateprivilegesetto assignto a givensubject.When
a subjectis created,a PRO modelwill assignit an initial
privilege set. As describedin section4, the Low Water-
Mark PRO modelinitially assignsthemostpermissivepriv-
ilegesetto thefirst subject,andsubsequentlyletseverynew
subjectinherit its creator’s privilege set as its own initial
privilege set. Whena given subjectdecreasesits level of
integrity by observinganobject,aPRO modelcanassignit
a new, morerestrictive privilegesetreflectingthesubject’s
lossof integrity. ThePRO modelsrequireno knowledgeof
the algorithmsof applicationsor of the dutiesof usersin
order to choosewhich privilege set to assignto a subject.
They simply react to eachsubject’s observations,as they
occur.

The PRI modelsusea more complicatedapproachto
choosingappropriateprivilegesetsfor subjects.PRI mod-
elsmayalsoassignaninitial privilegesetto eachsubject,as
describedabove. However, ratherthanrevising their choice
when a subjectperformsan observe operation,they may
revisetheirchoicewhenasubjectperformsaninvokeoper-
ation,suchasexecutinga programor calling a procedure.
Reactingto invoke ratherthanobserve operationscompli-
catesthe taskof choosinga privilegeset,sincethe invoke
operationis not the fundamentaloperationwhich actually
allowsa subjectto decreaseits own integrity. A PRI model
mustusethe identity of the programa subjectchoosesto
executeto predictwhich objectsthesubjectwill observe in
the future, andchoosewhich privilegeset to assignto the
subjectbasedonthisprediction.Theproperchoicemaynot
be clearwhena given programcanbe usedto accessob-
jectsof varying integrity level. SomePRI modelssupple-
mentprogramidentitywith additionalcriteriato avoid such
ambiguoussituations.Themorenumerousthecriteria, the
fewer ambiguoussituationswill occur. The Clark-Wilson
PRI model,for example,makesit choicebasedon boththe
identity of theprogramandof theusercontrollingthesub-
ject. The DTE PRI model choosesbasedon the identity
of the programthe subjectwishesto execute,andalsothe
identitiesof theprogramsthesubjectandits ancestorshave

executedin thepast.

In general,regardlessof thenumberof additionalcrite-
ria, ambiguoussituationscannever be entirely prevented.
The COTS UNIX login processtree provides a pertinent
example. Figure2 containsa diagramof this processtree,
divided into threesequentialsteps.Eachsquarein thedia-
gramrepresentsasubject,equivalentto ajob containingone
processin termsof UNIX abstractions.Thefirst stepin the
diagramshows a UNIX kernel’s initial subject,which exe-
cutesthe init program.The initial subjectcreatesonenew
subjectfor everyhardwareterminalline. Thediagram’ssec-
ondstepshowsoneof thesenew subjects,which beginsby
executingthe getty program.Whena userattemptsto log
in via its hardware terminal line, the subjectexecutesthe
login programto handleauthentication,andthenexecutes
the user’s interactive shell if the authenticationis success-
ful. At the user’s command,the interactive shell createsa
new subjectto executetheemacseditorapplicationin step
three.

Ambiguity mayoccurwhentheroot (administrator)user
logsin. Theroot usermaycommandthesubjectexecuting
emacsto observe a low-integrity object. In this case,the
properprivilege set for the emacssubjectis onethat pro-
hibits modificationof high-integrity objects. On the other
hand,the root usermay avoid low-integrity objects,com-
mandingthe emacssubject to observe and modify only
high-integrity objects. In this case,theprivilegesetwhich
prohibitsmodificationof high-integrity objectswouldbein-
appropriate.In this ambiguoussituation,therearetwo po-
tentiallyappropriateprivilegesetsfor oneuser, enteringthe
systemfrom onehardwareterminalline,with oneexecution
history, executingoneprogram. The appropriatechoiceis
not apparentuntil afterthesubjectexecutestheemacspro-
gramandobservesobjects,atwhichpoint it is too latefor a
PRI modelis to reassignits privilegeset.

Therearetwo possiblemethodsof resolvingtheseam-
biguoussituations:manual,andautomatic.Both methods
incur Partial CompatibilityCost. A manualsolutionmight
force a user to choosethe appropriateprivilege set for a
given subjectvia a menu. Adding this featureto a COTS
environmentwouldrequirethemodificationor replacement
of existingsoftware.An automaticsolutionmightmakeas-
sumptionsabouttheconfigurationof thesystemor thebe-
havior of its users. For example,it might assumethat all
subjectsoperatingonbehalfof auserwith aparticulariden-
tity, ataparticularterminal,or from agivennetwork address
deserveaparticularprivilegeset.Theseautomaticsolutions
mayalsoinvolvesomePartialCompatibilityCostif existing
userbehaviorsor configurationsmustadaptto avoid contra-
dicting their assumptions.ThePRI model’sneedto predict
a subject’s future observation behavior at the time it per-
formsaninvoke operationcanleadto ambiguityin certain
situations.In thesesituations,all of theavailablesolutions

mayinvolvesomePartialCompatibilityCost.In contrastto
thePRImodels,thePRO modelsreactto asubject’sobserve
operationsdirectly; they donot suffer from theproblemsof
predictionandambiguity. Consequently, the PRO models
arecapableof providing low Partial CompatibilityCostso-
lutionsin morecasesthanthePRI models.

The NPR models,which cannotrevise their privilege
set assignmentsat all, must predict a subject’s future ob-
servation behavior at the time the subjectis created. The
criteria on which the NPR modelsmay basetheir predic-
tionsarefewer thanthoseavailableto thePRI models.The
NPR modelsmustchoosethe appropriateprivilegeset for
a givensubjectbeforeit hasindicatedwhich programit in-
tendsto invoke. Consequently, programidentity is not an
availablecriterion.With fewercriteriaavailable,ambiguity,
and its potential for increasedPartial Compatibility Cost,
will occurin morecaseswith theNPRmodelsthanwith the
PRI models.Consequently, theNPRmodelsarecapableof
providing low PartialCompatibilityCostsolutionsin fewer
casesthanthePRO andPRI models.

The only classof modelsnot addressedabove is PRM.
In somecases,a purePRM modelcanbe equivalent to a
PRO model in Partial Compatibility Cost. First, it must
considera subject’s observationhistorywhenit revisesthe
subject’s privilege setassignmentin responseto a modify
operation.Second,it musttreatinvokeoperationsasit does
modify operations.This secondconditionpreventsa sub-
ject from makingdangerousinvocationsafterit hasmadea
corruptingobservation,but beforeit promptsthe modelto
revise its privilegesetassignmentby performinga modify
operation.However, the effort requiredto maintainan ob-
servationhistoryfor eachsubjectmayexceedtheeffort re-
quiredto implementPRO functionality in additionto PRM
functionality. TheChineseWall model,for example,avoids
the maintenanceof observe history by respondingto both
modify andobserveoperations,makingit amemberof both
thePRO andPRMsets.Consequently, weconsiderthePRO
modelsto beaneasierrouteto a low Partial Compatibility
CostsolutionthanapurelyPRMmodel.

The observation-sensitive propertyof the PRO models
allows themto provide low Partial Compatibility Costso-
lutions in more situationsthan the PRI andNPR models.
Consequently, thePRO modelsarethemostapplicableAc-
cessMatrix Modelsto the COTS environmentin termsof
Partial CompatibilityCost.We chosetheLow Water-Mark
PRO modelfor LOMAC over the ChineseWall modelbe-
causeLow Water-Mark neverpreventsa subjectfrom read-
ing an object. We perceived this behavior to be useful in
a COTS UNIX environmentwheremany objects,suchas
programbinaries,arepresentedto low-integrity subjectsin
a read-onlyfashion.

3 Prototype architecture

In orderto besuitablefor our experiment,theLOMAC
prototype is designedto minimize Partial Compatibility
Costfirst, andto provideusefulintegrity protectionsecond.
Thisorderingreversestheprioritiesof severalpasteffortsto
applykernel-residentaccesscontrol [12, 20, 26], andcon-
sequently, LOMAC cannotexploit someof themoreexpen-
sive techniquesdemonstratedby thesepastefforts to im-
prove thequality of its protection.However, LOMAC’s ar-
chitectureembodiesthepropertradeoffs to testourhypothe-
sisconcerningcompatibilityandacceptance.TheLOMAC
architectureusesa combinationof two familiar techniques:
the useof a LoadableKernelModule (LKM) to extendan
existing COTS operatingsystem,andthe useof Interposi-
tion at thesystemcall interfaceto modify theoperatingsys-
tem’sbehavior [10, 11, 22]. Both of thesetechniquesbring
benefitsthat help to minimize Partial Compatibility Cost,
anddrawbacksthatdecreasethe quality of protection.We
discusstheoverall impactof eachtechniqueseparately.

Most COTS operatingsystemssupportLKM or LKM-
like functionality, including Linux, Solaris,Windows NT,
and the majority of the BSD-derived operatingsystems.
The useof an LKM allows us to avoid the unacceptable
Partial Compatibility Cost of replacingexisting deployed
COTS operatingsystemsby retainingandenhancingthem,
instead.As an LKM, LOMAC is compiledinto a relocat-
ableobjectfile, andthendynamicallyloadedinto the ker-
nel’s addressspaceduringbootstrap.Unfortunately, LKM
functionality is not sufficient to implementa properRefer-
enceMonitor [1]. Although LKM functionality allows us
to loadLOMAC into thekernel’saddressspace,whereit is
protectedfrom tamperingby user-spaceprograms,it is not
protectedfrom tamperingby otherLKMs or by the kernel
itself. Researchinto safermeansof kernelextensionis on-
going[4, 23, 28]; however, wemustmakedowith theLKM
functionality available in our COTS environment. Conse-
quently, LOMAC offers a lower quality of protectionthan
wouldbeprovidedby a tamper-proof referencemonitor.

Once loadedinto the kernel’s addressspace,LOMAC
usesInterpositionto interceptcalls to the security-relevant
portion of the kernel’s systemcall vector. LOMAC must
interceptthesecalls in order to make and enforceaccess
control decisions. Like the use of the LKM, the useof
Interpositionallows us to minimize Partial Compatibility
Costby extendingexisting deployedCOTS operatingsys-
temsinsteadof replacingthem.However, Interpositionalso
hasits drawbacks[11, 29]. To supportits decision-making,
LOMAC mustassociatesecurityattributeswith many ex-
isting kernel abstractions.SinceLOMAC interfaceswith
the kernel by Interposition,avoiding modificationsto the
kernel’s sourcecode, the kernel’s existing datastructures
do not provide storagefor theseattributes. Consequently,

LOMAC is forced to implement its own additional data
structuresto managetheseattributes.Thisadditionalimple-
mentationmakesLOMAC largerandmorecomplex thanan
equivalentReferenceMonitor that interfaceswith the ker-
nel throughdirectmodificationsof thekernel’ssourcecode.
LOMAC’s correctnessis thereforemoredifficult to verify
with formal methods,againresultingin a lower quality of
protection.However, theconditionsof our experimentde-
mandcompatibility first, andquality of protectionsecond.
Consequently, LOMAC’s useof anLKM andInterposition
is justifiedin this case.

4 Practical integrity protection

The LOMAC prototypeimplementsa form of access
control basedon a slightly extendedversionof the Low
Water-Mark model[5]. We describethebasicoperationof
the model informally here,andleave the moreformal dis-
cussionof the modelandour extensionto section5. The
model definesthe conceptsof subject,object, and level.
Subjectsareactiveentitiesthatexecuteprograms.LOMAC
appliesthemodel’ssubjectconceptto theLinux jobabstrac-
tion. Objectsarepassiveentitiesthatcontaindata.LOMAC
appliesthemodel’sobjectconceptto theLinux file, named
pipe, andsocket abstractions.Levels are labelsindicating
a relative level of integrity. LOMAC representslevelswith
positiveintegers;level2 indicatesagreateramountof integ-
rity thanlevel 1. LOMAC assignsa level to eachexisting
object,effectively partitioningall objectsinto classesbased
on their level of integrity. Onceassigned,anobject’s level
never changes.LOMAC provides integrity protectionby
preventingthemovementof potentiallycorrupteddatafrom
lower-level to higher-level objectsby restrictingthebehav-
ior of subjects.

At configurationtime,eachLOMAC installationcande-
fine its own policy. A policy specifiesthenumberof levels
in use,andthe mappingbetweenexisting objectsandlev-
els.For thoseinstallationswhich cannotafford to spendef-
fort onconfiguration,LOMACimplementsasimpleDefault
Policy thatprovidesa basiclevel of integrity protectionap-
propriatefor all environments.ThisDefaultPolicy contains
only two levels: level 1 for low integrity objects,suchas
downloadedInternetcontent,andlevel 2 for high integrity
objects,suchasthesystembinariesinstalledfrom theLinux
CD-ROM distribution. TheDefault Policy assignslevelsto
existing objectsby following a seriesof simplerules. Our
currentprototypeusesthe following threerules: First, all
objectsexisting immediatelyafter the operatingsystemis
installedreceive level 2. Second,the userobjectscreated
subsequentlyreceive level 1. Third, all hardwaredevices
allowing accessto the system,suchasthe consoleandse-
rial lines for terminals,receive level 2, exceptfor Network
InterfaceCards(NICs), which receive level 1. From that

point, all new objectscreatedduring systemrun-time in-
herit thelevel of thesubjectwhich createdthem.

Potentially corrupteddata can move upward in level
whena subjectobserves(readsfrom) a low-levelledobject
andsubsequentlymodifies(writes to) a higher-levelledob-
ject. In order to prevent this kind of upward movement,
LOMAC assignsan initial level to eachsubjectuponcre-
ation.Unlikeobjectlevels,subjectlevelscandecreaseover
time. Whenever a subjectobservesan objectwith a level
lower thanits own, LOMAC “demotes”thesubject,reduc-
ing its level to matchtheobject’s. A subjectis never “pro-
moted”- its levelcanneverincrease.A subject’sleveldeter-
minesits privileges- while LOMAC allows any subjectto
observeany object,it preventssubjectsfrom modifyingob-
jectswhoselevelsarehigherthantheir own. Theactof ob-
servinga lower-levelledobjectrendersa subjectincapable
of spreadingcorruptionby modifying a higher-levelledob-
ject.

LOMAC’s demotionbehavior providesuseful integrity
protection againstviruses, Trojan horses,and users in-
tent uponmisuse.For example,the Default Policy causes
LOMAC to assignlevel 1 to objectsdownloadedfrom the
Internet.If a particulardownloadedobjectcontainedinter-
pretablecontentimplementinga TrojanHorse,it might use
a stack-smashingattackto take control of a subjectwhich
observed (readandexecuted)it. Without LOMAC, if the
interpretingsubjecthadroot (administrator)privileges,the
Trojan Horsewould would be capableof insertingback-
doorsinto thesystemby modifying systembinaryobjects.
However, with LOMAC andthe Default Policy, the act of
observingthe downloadedobjectdemotesthe interpreting
subjectto the object’s level, 1. Despiteits root privileges,
thelevel 1 interpretingsubjectwould beincapableof mod-
ifying systembinaryobjects,which exist at level 2.

As statedabove, a LOMAC subjectis equivalent to a
UNIX job. A job containsone or more cooperatingpro-
cesses.The processis the abstractionwhich actuallyexe-
cutesprogramsin many COTS UNIX systems,and is ar-
guablya more intuitive equivalentfor the subjectconcept
than is the job. However, LOMAC’s subject-jobequiv-
alencebrings specificCompatibility Cost benefits,as de-
scribedin section5, andconsequentlyis moreappropriate.
In LOMAC-enhancedLinux systems,existingsubjectscre-
atenew subjectsvia thesetpgrp systemcall. TheLinux ker-
nel createsthe first subjectto executebootstrapprograms.
Subsequently, this subjectcreatesothersto executeother
systemprogramsanddaemons(servers).Thesesubjects,in
turn, createa third generationof subjectsto executeuser
programs.LOMAC usesa simpleschemeto determinethe
which initial level to assignto eachsubject. LOMAC as-
signsthefirst subjectthehighestlevel definedby thepolicy.
Subsequently, LOMAC allows eachnew subjectto inherit
the level of its creator. As the systemruns,LOMAC’s de-

eth0

eth1

untrusted
external net

remote
management
link

tty1

ttyS0

/bin, /etc, WWW

downloads, email

Server

1

2

Figure 3. LOMAC’s Default Polic y

motionbehavior ensuresthatsubjectsthatdealwith poten-
tially dangerouslow-integrity objectsexecutewith appro-
priatelyrestrictedprivileges.

We can exploit this subjectlevel assignmentbehavior
to provide subjectsexecutingdaemonswhich serve remote
clients with privileges proportional to the local system’s
faith in the remoteclients’ good intentions. We can also
exploit this behavior to automaticallyassignappropriately
restrictedprivilegesto subjectsoperatingon behalfof lo-
cal usersbasedon thedutiesthe individual usersmustper-
form. As shown in figure 3, we accomplishthis privilege
assignmentthrough the familiar techniqueof associating
levelswith thehardwaredevicesthroughwhich local users
andremoteclientsaccessthe system.The figure contains
a diagramof a small Linux server usedin early LOMAC
testing.Theserver is protectedby LOMAC’s Default Pol-
icy. Thediagramrepresentsthesystemasa circle split into
a halves, one for level 2 and the other for level 1. Each
half hastwo breaksin the circle’s perimeterrepresenting
hardwaredevices providing entry into the system. In the
level 2 half, there is a consoledevice (tty1) and a NIC
actingasoneendpointof a point-to-pointlink for remote
management(eth1). Physicalaccessto theconsoleandthe
remotemanagementsystemis restrictedto administrative
usersonly. In thelevel 1 half, thereis aserialline connected
to a dumbterminal(ttys0), anda secondNIC connectedto
the Internet(eth0). The terminaland the Internetarenot
subjectto physicalaccessrestrictions. LOMAC depends
solelyupontherestrictionson physicalaccessto thesede-
vicesto authenticateusersandremoteclients.Thisminimal
dependenceshieldsLOMAC from weaknessesin a COTS
system’s existing authenticationmechanisms,suchasa re-
lianceon weakpasswordsor the continuity of hijack-able
network sessions.LOMAC doesnot treat thesehardware
devicesstrictly asobjects:it doesnot restricttheability of
subjectsto modify (write to) them. However, whena sub-
ject observes(readsfrom) oneof thesedevices,LOMAC
assumesthe device hasthe level indicatedby the diagram
for demotionpurposes.

As statedabove, underthe Default Policy LOMAC as-
signslevel2 to theinitial subject,andall of thenew subjects
it createsinherit this level. LOMAC demoteslevel-2 sub-

jectswhich readfrom level 1 devicessuchasttyS0 or eth0
to level 1. Whenasubjectreadsits first login from ttyS0 or
its first remoteclient requestfrom eth0, LOMAC demotes
it to level 1 - anappropriatelevel for subjectsoperatingon
behalfof potentiallymalicioususers.By associatinglevel 2
with tty1 andeth1, LOMAC allows subjectsoperatingon
behalfof administrativeusersto remainat thehighestlevel
of privilege,unlesstheir dutiesspecificallyrequirethemto
observelevel-1objects.By exploiting theLow Water-Mark
model’s demotionbehavior in this manner, LOMAC en-
suresthatall usersanddaemonsoperatewith appropriately
restrictedprivilegeswithout foreknowledgeof thedutiesof
eachuser, or thepurposeof eachdaemon.As describedin
section2, this potentialfor automaticappropriatelevel as-
signmentmakesit easyto applytheLow Water-Mark model
to COTS UNIX systemsat low PartialCompatibilityCost.

In certainsituations,a givenprocesscanmove itself or
anotherprocessfrom onesubject-jobto another. If left un-
addressed,thismovementbetweensubject-jobscouldcould
allow processesto carry potentially corrupteddata from
lower to higherlevels. LOMAC addressesthis problemby
enforcingthreeadditionalsafeguardsconcerningthebehav-
ior of processes.First, LOMAC restrictstheuseof certain
security-criticalsystemcalls (mostnotablythesystemcall
to trigger reboot) to processesresiding in subject-jobsat
the policy’s highestlevel. Second,LOMAC preventspro-
cessesfrom sendingsignals(UNIX softwareinterrupts)to,
or changingthe processgroupsof, other processesresid-
ing in subject-jobsat levels higher thantheir own. Third,
LOMACprohibitsaprocessfrom moving from onesubject-
job to anothersubject-jobat a higher level underany cir-
cumstances.The first two safeguardshelp to prevent pro-
cessesresiding in lower-level subject-jobsfrom interfer-
ing with theexecutionof processesresidingin higher-level
ones.Thethird preventsthetransferof corrupteddatafrom
lower to higherlevels. Thesesafeguardsarenot partof the
Low Water-Mark model;themodelis unawareof processes.
Thesesafeguardsare constraintsderived from our partic-
ular applicationof the Low Water-Mark model to COTS
Linux systems,similar to theconstraints“subjectarejobs”
and“objectsarefiles,namedpipes,andsockets” described
above.

Unfortunately, along with the protection benefitsde-
scribedabove,theuseof LOMAC bringsaninherentCom-
patibility Cost. Like many other accesscontrol schemes
(includingthosediscussedin section2),Low Water-Mark is
pessimistic.It preventsdatamovementsthat representpo-
tential integrity threats- somepreventedmovementsmay,
in reality, havebeenharmless.In a LOMAC-protectedsys-
tem, userswho habitually move data in dangerousways
(perhapsby insertingdataarriving in low-integrity email
attachmentsinto high-integrity local documents)may find
themselvesforcedto changetheir behavior. Suchbehavior

changesincreasePartial Compatibility Cost. In section7,
we argue that using LOMAC with the Default Policy re-
quiresminimal behavior changes.

5 Applying the Low Water-Mark model

TheLow Water-Mark modelhasseenrelatively little ap-
plication in the past. This fact is probablydue largely to
the existenceof a pathologicalcaseinherentin its demo-
tion behavior [5, 6]. This pathologicalcase,which we call
the Self-RevocationProblem,can causefailuresin appli-
cation functionality. Consequently, if left unaddressed,it
canincreasetheTotal CompatibilityCostof LOMAC. The
Self-RevocationProblemdescribesthe situationwherethe
Low Water-Mark model’sdemotionbehavior unexpectedly
revokesa subject’s right to modify anobject.For example,
this situationcanoccurwhena subjectat a high level cre-
atesan object, and subsequentlyobservesanotherobject,
which is at a low level. Accordingto theLow Water-Mark
model,thisobservationdemotesthesubjectto thesamelow
level. Consequently, thesubject,now at a low level, cannot
modify theobjectit created,which remainsat a high level.

It is important to note that this is the properbehavior
from the standpointof protection. By reading the low-
levelled object, the subjectmay have infected itself with
maliciouscode- it mustbe preventedfrom spreadingthe
infectionto higherlevelsby writing to theobjectit created.
However, from the standpointof applicationfunctionality,
this behavior is troublesome.Due to the capability-based
natureof UNIX file descriptors,most UNIX application
programsexpectto run in anenvironmentwheremediation
is doneonce,whenthey acquirethecapabilityto accessan
object [21]. They do not, in general,expect the accessto
be subsequentlyrevoked. However, this revocationis ex-
actly whatoccursin theSelf-RevocationProblem,andit is
reasonableto expect most UNIX applicationprogramsto
respondto this unexpectedeventby misbehaving or failing
entirely[25].

WemustaddresstheSelf-RevocationProblemin orderto
reduceLOMAC’s Total Compatibility Cost. As described
in section1, measuringtheapplicationfailureaspectof To-
talCompatibilityCostin thegeneralcaseis difficult, atbest.
Our experiencewith the LOMAC prototypeindicatesthat
most instancesof the Self-RevocationProblemoccurdur-
ing Inter-ProcessCommunication(IPC)involving unnamed
pipesandsharedmemoryabstractions.Consequently, we
have focusedour efforts on avoiding the Self-Revocation
Problemin thesetwo cases.Althoughtheimpracticalityof
measuringTotalCompatibilityCostpreventsusfrom claim-
ing thatoursolutionsprovideasufficientlyproblem-freeen-
vironmentin thegeneralcase,section7 describesamethod
throughwhich we could eventuallymeasurethe effective-
nessof our approachin the specialcaseof LOMAC’s De-

faultPolicy.

Unfortunately, sincethe Self-RevocationProblemis an
inherentaspectof theLow Water-Mark model’sproperpro-
tection behavior, it cannotbe entirely removed from the
formal modelwithout removing theprotectionbehavior, as
well. In lieu of removing it entirely, we mustendeavor to
reducethe numberof situationsin which it will causeap-
plication failuresin practice. Researchin SecurityAgility
hasdemonstratedthe effectivenessof addingfunctionality
to user-spaceapplicationsthat enablesthem to adapt to
privilegerevocationandto continueoperatingin somepar-
tial capacityratherthansimply failing altogetherin some
cases[25]. We have chosento take an alternateapproach,
in order to avoid increasingPartial Compatibility Costby
modifying or replacingexisting applications.As described
in section4, wehavechosento employ anunusualmapping
betweentheLow Water-Mark model’sconceptsandtheac-
tualoperatingsystemabstractionsin orderto reduceoccur-
rencesof the Self-RevocationProblemin shell pipelines.
We have alsoextendedthe formal modelslightly to avoid
the Self-RevocationProblemduring IPC basedon shared
memoryabstractions.

Early versionsof the LOMAC prototypewereplagued
with application functionality failures due to the Self-
RevocationProblemduringtheexecutionof shellpipelines.
The early prototypesmappedthe conceptsof the standard
Low Water-Mark model to the operatingsystemabstrac-
tionsprovidedby theLinux kernelin a naive fashion.This
naive mappingfollowed a traditional patternsuccessfully
demonstratedby previous applicationsof several access
controlmodelswithout Self-RevocationProblemsto oper-
ating systems[2, 3]. The naive mappingconsideredeach
processa subject,and eachinode (the operatingsystem
abstractionfor files, sockets,unnamedpipes,andFIFOS)
an object. The vulnerability of shell pipelinesto the Self-
RevocationProblemunderthis naivemappingis illustrated
by theexamplediagrammedin figure4.

Step1 of thediagramshows the initial stateof a typical
shell pipeline. It containstwo subjects:the Linux ps and
grep utility applications,connectedby oneobject: an un-
namedpipe. Both subjectsand the objectsare initially at
level 2. TheLinux ps utility applicationreadsinformation
from the /proc filesystem.As shown in step2 of the dia-
gram,some/proc filesystementriesareat level 1. Step3
shows theconsequencesof thepsutility application’s read:
it is demotedto level 1. Whenit attemptsto passits output
to the grep utility applicationby writing to the unnamed
pipe,its write is denied.As shown in step4 of thediagram,
theunnamedpiperemainsat level 2, andcannotbewritten
to by thedemotedps utility application.In practice,theps
utility applicationfails to passits outputto grep, which is
forcedto presenttheuserwith ameaninglesslackof output.
This misbehavior is an unacceptablefailure of application

Step1: initial state.

ps greppipe

level 2 level 2 level 2

Step2: psreadsfile.

ps grep

r

pipe

/proc/327
level 1

level 2 level 2 level 2

Step3: demotion.

ps greppipe

level 1 level 2 level 2

Step4: pipewrite denied.

ps w greppipe

level 1 level 2 level 2

Figure 4. The Self-Revocation Problem.

functionalityin termsof our CompatibilityGoals.

Althoughthisself-revocationbehavior is consistentwith
the formal Low Water-Mark model, it is inconsistentwith
our expectationsasa user. As a user, we considerthecom-
binationof theps andgrep to bea unit, or “job”, operating
to completeasingletask.A superiorapplicationof theLow
Water-Mark model’s conceptsmight treatthe entirejob as
a single subject,demotingit asa unit upon readingfrom
the /proc filesystem,andavoiding a breakin the pipeline.
While this redefinitionof the meaningof subjectis easily
done,thequestionremains:whatto do with unnamedpipe
objects?In theexampleof figure4, little would begained
by demotingbothps andgrep asa singlesubjectat step3
if theunnamedpipeobjectthatconnectsthemremainsun-
writableat level 2.

Oneanswerto this questionmight beto modify thefor-
mal model,causingit to adjustthe level of unnamedpipe
objectsto follow subjectdemotion. However, this option
is unattractive, sinceit violatesthe basictenetof the Low
Water-Mark modelthatobjectlevelsnever change.Rather
thancomplicatethe formal model,a bettersolutionmight
beto modify our applicationof themodel’s objectconcept
to theactualoperatingsystemabstractions.Themostsim-

ple solutionof this kind would benot to considerunnamed
pipesasobjectsat all, andto implementa rule in theproto-
type to guaranteethat pipesmay link only processesthat
arepartof the samesubject.We refer to this optionasthe
“UnnamedPipe PossessionRule”. This option is attrac-
tive, sinceit allows theproperoperationof unnamedpipes
by exemptingthemfrom LOMAC’s accesscontrol, while
simultaneouslymaintainingintegrity protectionby prevent-
ing IPC betweensubjectsusingunnamedpipes. Unfortu-
nately, the usageof unnamedpipesby critical UNIX ap-
plications,particularlytheC shell [16], preventstheuseof
suchasimplerule,asshown in figure5.

Figure 5A containsa simplified diagramof the algo-
rithm usedby the C shell to createa typical job consist-
ing of two fictitious applicationprograms,namedsource
and sink, connectedby an unnamedpipe. At eachstep
in the algorithm, the diagramlists the numberof subjects
and objectspresentaccordingto the naive applicationof
Low Water-Mark conceptsdescribedabove. The diagram
alsointroducestheprocessgroupoperatingsystemabstrac-
tion; processespossessingthesameprocessgroupidentifier
aremembersof thesamejob. Step1 shows aninitial state
wheretheshellhascreateda pipe. Step2 and3 show how
theshellsubsequentlycreates(via thefork systemcall) the
sink andsource processes,andgivesthema new process
groupidentifieruniqueto their job (via thesetpgrp system
call). Step2 is critical to theunnamedpipe-handlingissue.
At this stagein the algorithm, two processesin different
jobs possessthe sameunnamedpipe - a critical item of C
shellfunctionalitythatwouldbeprohibitedby theUnnamed
PipePossessionRule.

Becausewe wish to avoid causingfailures in existing
applications,we mustrejecttheUnnamedPipePossession
Rule in favor of a slightly lessrestrictive version- theUn-
namedPipeUsageRule. This rule statesthat the subject-
job containingthe first processto readfrom or write to a
particularunnamedpipepossessesit for all time, andsub-
sequentreadsandwrites to this unnamedpipeareallowed
only for thatsubject-job. This rule hastheadvantagethatit
allows thecapabilityto readand/orwrite anunnamedpipe
to bepassedbetweenjobsasrequiredby theC shell,which
doesnot readfrom or write to the unnamedpipesit cre-
atesfor otherjobs. It alsopreventssubjectsfrom bypassing
the Low Water-Mark model’s integrity protectionby pass-
ing databetweensubject-jobsvia unnamedpipeIPC.

Althoughit allowsLOMACto avoid theSelf-Revocation
Problemin shell pipelines,the UnnamedPipeUsageRule
alsohasthe potentialto causeapplicationswhich attempt
unnamedpipe IPC acrossjob boundariesto fail. Although
thejob conceptis meantto encapsulategroupsof processes
that cooperatevia unnamedpipe IPC, the LOMAC proto-
typewill incurTotalCompatibilityCostin unusualenviron-
mentswhich do not usethe job abstractionin this way. A

A: B:

1.

shell

pgrp 1

w

r initial state
1 subject
1 object shell

pgrp 1 initial state
1 subject
0 objects

2.

sink

shell

pgrp 1

pgrp 2

r

w

fork,setpgrp
fork sink
2 subjects
1 object shell

setpgrp
job

pgrp 1 pgrp 2 setpgrp
2 subjects
0 objects

3.

source

sink

shell

pgrp 1

pgrp 2

r

w

pgrp 2

fork,setpgrp

fork source
3 subjects
1 object shell

setpgrp
job

pgrp 1 pgrp 2 setpgrp
2 subjects
0 objects

Figure 5. Simplified Representation of Shell Pipeline Behavior .

moreliberalruleexpressedin termsof thepipeusers’levels
insteadof job boundariescouldavoid this problem. How-
ever, its enforcementwouldrequirefarmoreadditionaldata
structuresthantheUnnamedPipeUsageRule,which takes
advantageof the existing job encapsulation.Basedon the
quality of protectionconcernsdiscussedin section3, we
have decidedto employ the UnnamedPipeUsageRule in
LOMAC, at leastuntil we encountera discouragingjob-
relatedfailure. Regardlessof the rule we use to handle
unnamedpipes,the mappingof the subjectconceptto the
job abstractionis essentialto the avoidanceof the Self-
RevocationProblemin shellpipelines,sinceit ensuresthat
all processesin agivenjob arealwaysatthesamelevel. The
diagramin figure 5B shows the sameC shell job-creation
algorithm as figure 5A, except that it picturesonly those
aspectsof the algorithmthat arepertinentwhenusingthe
improvedapplicationof theLow Water-Mark model’s con-
ceptswith the UnnamedPipeUsageRule. The unnamed
pipeis not shown in thediagram,sincetheimprovedappli-
cationof modelconceptsdoesnot considerit to be an ob-
ject. Only two subjectsexist at theendof thealgorithm:the
shellandthenew job it hascreated.TheshellpipelineSelf-
RevocationProblemdiagrammedin figure 4 cannotoccur
in theimprovedprototype,sincetheentirejob is considered
a singlesubject,andthe useof unnamedpipesis invisible
to theLow Water-Mark mechanism.

Althoughshellpipelinesarethemostcommonsituation
in which the Self-RevocationProblemcanleadto failures
in applicationfunctionality, it is not theonly one.IPCdone

via sharedmemoryabstractionssuch as semaphoresand
writablesharedmemorysegmentsarevulnerableaswell. A
solutionto theSelf-RevocationProblemsimilar to theUn-
namedPipeUsageRuleis notpracticalin thecaseof shared
memoryabstractionIPC. Unlike shellpipelineIPC, shared
memoryabstractionIPC cannotbe neatlycontainedinside
anoperatingsystemabstraction,suchasthejob. A rule that
constrainedsharedmemoryabstractionIPC to membersof
the samejob would be compatiblewith thoseapplications
which usesharedmemorywithin a single job, perhapsto
simulatemulti-threading.However, it would be incompat-
ible with thoseapplicationswhich usesharedmemoryab-
stractionsto supportIPC betweenclient andservercompo-
nentsexecutingin separatejobs. This potentialfor incom-
patibility would beunacceptableaccordingto our Compat-
ibility Goals.

Consequently, the improved version of the LOMAC
prototypeusesa differentstrategy to supportsharedmem-
ory abstractionIPC while maintainingintegrity protection:
it extendsthe Low Water-Mark model by introducingthe
notionof a “group”. Thegroupnotionallows theextended
Low Water-Mark modelto treatall thosesubjectsthatshare
a particularsharedmemoryabstractionas a unit, without
considerationfor the read and write IPC operationsoc-
curring amongthem. Justas the encapsulationprovided
by the operatingsystem’s job abstractionallows the im-
provedLOMAC prototypeto avoid occurrencesof theSelf-
RevocationProblemin shell pipelines,the encapsulation
providedby thegroupnotionallowstheLOMAC prototype

A:
Original Definitions:���

theuniversalsetof subjects;���
theuniversalsetof objects;� �
theuniversalsetof integrity levels;�	� �
afunction

��
���� �
definingtheintegrity level associatedwith eachsubjectandobject;��
 � �

a reflexive, symmetric,andtransitive relation(a subsetof
�����

) thatdefinesthe “less-
than-or-equal”relationshipon I;� ��� � a function � ������������� � �"! � �

returningthe greatestlower boundof the specified
subsetof I; moreformally

� �$#&% � �'� �)(!+* � �$#-, (�.0/ �	12, (43 �$#5�6
 �7�	1 !$!
;8 � a relation(a subsetof

� � �
) thatdefinesthefact thata subject,9 , � , hasobservedan

object, 8 , � , 9 8 8 ;� � a relation(a subsetof
� � �

) thatdefinesthefact thata subject9 , � , hasmodifiedan
object, 8 , � , 9 � 8 ;� �
arelation(asubsetof

� � �
) thatdefinesthefactthatasubject9 # , � , hasinvokedanother

subject,9 1 , � , 9 # � 9 1 . LOMAC interpretsinvocationassignalandsetpgrpoperations.

Original Axioms:
(A1)

/ 9 , �:3 8 , �;3 9 8 8 * �'� < � 9 ! % � �'� =>�'� � 9 ! 3 �	� � 8 !@? (originally A3.1, revised)
(A2)

/ 9 , �:3 8 , �;3 9 � 8 * �	� � 8 ! �6
 �&�	� � 9 ! (originally A3.2, retained)
(A3)

/ 9 # 3 9 1A, �:3 9 #B� 9 1 * �'� � 9 1 ! �6
 �&�	� � 9 # ! (originally A3.3, retained)

B:
Additional Definitions:C � a reflexive andantisymmetricrelation (a subsetof

� � �
) that definesthe fact that a

subject, 9 # , � , hasattachedto a sharedmemoryabstractionto which anothersubject,
9 1 , � is alreadyattached,9 # C 9 1 ;

9 � areflexive,symmetric,andtransitiverelation(asubsetof
� � �

) thatdefinesthefactthat
onesubject,9 #D, � , sharesat leastonesharedmemoryabstractionwith anothersubject,
directlyor indirectly, 9 1A, � , 9 # 9 9 1 ;E"FG8GH I � a function

�J� � �����K�A�B���K��� ! returningthe setcontainingthe specifiedsubject,
alongwith all thoseothersubjectsthat share,directly or indirectly, a sharedmemoryab-
stractionwith thespecifiedsubject.More formally: ELFM8GH I � 9 # ! %N= 9 1 � 9 1 9 9 # ?

Table 1. Axioms and Definitions for the Original (A) and Extended (B) Low Water-Mark Models

to avoid occurrencesof theSelf-RevocationProblemduring
sharedmemoryabstractionIPC.

The group notion also provides a secondary, practical
benefit.As describedin section3, LOMAC usesInterposi-
tion at theoperatingsystem’ssystemcall interfaceto detect
operationscorrespondingto the Low Water-Mark model’s
notionof observeandmodify. Unfortunately, in thecaseof
sharedmemoryabstractions,theseoperationsarenot vis-
ible at the systemcall interface,andconsequentlycannot
bedetectedby LOMAC. Sincethegroupnotionmakesob-
serveandmodifyoperationsonsharedmemoryabstractions
irrelevantto theextendedLow Water-Mark model,it obvi-
atesLOMAC’sneedto detectthem.

Wewill now presentthegroupextensionin formalterms,
andargue that the extendedLow Water-Mark model pro-

vides integrity protectionat leastasstrongas the original
model.Weuseanotationsimilar to thatusedin theoriginal
model’s description[5]. Table1A containsthe definitions
andaxiomsfor the original Low Water-Mark model. Our
extendedmodelretainsall of these,exceptfor axiom(A1),
which we will revise to accommodateour new groupcon-
cept. We use

�
to indicatefunction mapping,and

*
to

indicateimplication. We use
�	�

to indicatea level beforean
event,and

�	� <
to indicatea level after an event. For exam-

ple, in Axiom (A1),
�	� � 9 ! representsthe level of 9 beforeit

observed 8 , and
�	� < � 9 ! is its level afterit observed 8 .

Table 1B containsthe threedefinitionsrequiredto ex-
tend the Low Water-Mark model. The first is the C rela-
tion, which canbeappliedto theoperatingsystemservices
which allow a subjectto attach(acquireaccess)to a shared

mo
S1

o

m
S2

S3

o
S4

S5

m

hop 2 hop 3hop 1

O0 O1

O2

O3

Figure 6. Information Transf er Path

memoryabstraction.In orderto avoid theSelf-Revocation
Problem,we wish to avoid representingthe actualshared
memoryabstractionsasobjects.Consequently, wedescribeC asa relation that links onesubjectto anotherin a shar-
ing relationship,ratherthanarelationthatlinks asubjectto
somekind of object.Theuseof the C relationis governedby
Axiom (A4), which preventssubjectsat lower levels from
corruptingsubjectsat higher levels by attachingto them.
Moreprecisely:

Axiom (A4)
/ 9 # 3 9 1A, �:3 9 # C 9 1 * �	� � 9 1 ! �6
 �&�	� � 9 # ! .

Our useof the C operationis pessimistic:it doesnot dis-
tinguishbetweenharmlessread-onlyattachmentsanddan-
gerousread-writeattachments.As describedin table 1B,
the C relation is antisymmetric. We requirethis property
to distinguishbetweenthe situations9 # C 9 1 and 9 1 C 9 # .
In thecasewhere 9 # and 9 1 have differentlevels,only one
of thesetwo situationsis allowablein a correctsystemac-
cordingto Axiom (A4). However, in our theorems,wewish
to usethe E"FM8GH I functionto describethesetof all subjects
thatsharememorywith agivensubject,regardlessof which
subjectswereattachersandwhich wereattachees.In order
to supporta succinctdefinition of E"FM8GH I , table1B defines
asecondrelation, 9 , whichhasthesymmetricandtransitive
properties. The useof the 9 relation is governedby Ax-
iom (A5), which statesthatonceonesubjectis attachedto
another, it becomespartof a largergroupthatsharesmem-
ory througha graphof direct andindirect bidirectionalat-
tachments.Moreprecisely:

Axiom (A5)
/ 9 # 3 9 1A, ��3 9 # C 9 1 * 9 # 9 9 1 .

Table1B’s third definition is for the ELFM8GH I relation,which
describesgroupsof subjectsthatsharememory, definedin
termsof the 9 relation.

The extendedLow Water-Mark model provides integ-
rity protectionby ensuringthat all subjectsin a particular
groupremainat the samelevel. Axiom (A6) ensuresthat
higher-levelledsubjectsthatjoin a lower-levelledgroupare
demotedto bring theminto compliance.Moreprecisely:

Axiom (A6)
/ 9 # 3 9 1 , �:3 9 # C 9 1 *�	� < � 9 # ! % � �'� =>�'� � 9 # ! 3 �	� � 9 1 !O? .

Similarly, the extendedLow Water-Mark model ensures
thatall subjectsin a particulargrouparedemotedasa unit
whenever onememberof thegroupobservesanobjectbe-
neaththegroup’s level. More precisely:

Axiom (A7)
/ 9 1A, E"FM8GH I � 9 # ! 3 8 , �;3 9 # 8 8 *�	� < � 9 1 ! % � �'� =>�	� � 9 # ! 3 �	� � 8 !7? .

Axiom (A7) revisesandreplacesthe original Axiom (A1)
in theextendedLow Water-Mark Model. Theoperationof
Axiom (A7) is effectively identicalto thatof Axiom (A1),
except that Axiom (A7) demotesa groupof subjectsasa
unit whereAxiom (A1) demotesonly a singlesubject.Due
to this similarity, the original Low Water-Mark Model re-
mainsasa specialcaseof the extendedLow Water-Mark
modelwhereno subjectsharesmemorywith another. This
specialcasecanbedescribedmorepreciselyas:

SpecialCaseProposition (P1)
/ 9 , �:3E"FM8GH I � 9 ! %P= 9 ? .

Corollary (C1) Thesurvival of theoriginal Low Water-
Mark model in the special casewhere Proposition(P1)
is true can be demonstratedby deriving the original Ax-
iom (A1) from its replacement(A7). In the specialcase
describedby Proposition(P1),all groupscontainonly one
subject.Consequently, givenProposition(P1),thetwo sub-
jectsdescribedin Axiom (A7) as 9 1 , ELFM8GH I � 9 # ! areactu-
ally thesamesubject,which we mayname9 . By replacing
referencesto 9 # and 9 1 in Axiom (A7) with thesinglerefer-
ence9 , wederiveAxiom (A1). Therefore,thedemotionbe-
havior of theextendedLow Water-Mark modelis identical
to the demotionbehavior of the original Low Water-Mark
modelin thespecialcasedescribedby Proposition(P1).

We now arguethat the extendedLow Water-Mark pro-
vides at leastas much integrity protectionas the original
Low Water-Mark modelby applyingthe sametestapplied
to theextendedmodelaswasappliedto theoriginal in [5].
Wedefinethenotionof informationtransferpath,andshow
thatinformationcannotflow from lower to higherlevelsvia
suchapath.

Thediagramin figure6 presentsthestructureof apathin
termsof theextendedLow Water-Mark modelconcepts.It
shows a seriesof subjects,numbered9 # through 9RQ , trans-
ferring dataserially througha seriesof objects,numbered

A:
Additional Definitions:S 8 I � a relation (a subsetof

� � �
) defining individual “hops” in an information transferpath, where

informationis transferedfrom oneobject, 8 # , � , to another8 1 , � , 8 # S 8 I;8 1 . More precisely:/ 8 # 3 8 1 , �;3 8 # S 8 I;8 1 * T 9 # 3 9 1 , �VU � 9 # 8 8 # . 9 1 � 8 1 . 9 1 , E"FM8GH I � 9 # !�! .IWCLX S � arelation(asubsetof
� � �

) definingasequenceof
�-Y+Z

objects[8G\ 3^]_]`]_3 8Ma 3^]_]`]_3 8Mbdc , � connected
in aseriesof

�
hops8 a S 8 IK8 a_e # , wherefhg � [� , calledaninformationtransferpath.Moreprecisely:8 \ IiCLX S 8 b * T [8 \ 3j]`]_]_3 8 a 3^]_]`]_3 8 b c , �kU7/ 8 \jlia6mib � 8 a S 8 I 8 a_e #

B:
Lemma (L1) A hopdoesnot allow thetransferof informationfrom a lower-levelledobjectto a higher-levelled
one.More precisely:

/ 8 # 3 8 1A, �;3 8 # S 8 I;8 1 * �	� � 8 1 ! �6
 �&�	� � 8 # ! .
Proof:
1.

� 9 # 8 8 # ! .n� 9 1 � 8 1 ! .o� 9 1A, E"FM8GH I � 9 # !5! given
2.

�	� < � 9 1 ! % � �'� =>�	� � 9 # ! 3 �	� � 8 # !@? 1, (A7)
3.

�	� < � 9 1 ! ��
 �7�	� � 8 # ! 2, definitionof � �'�
4.

�	� � 8 1 ! �6
 �7�	� < � 9 1 ! 1, (A2)
5.

�	� � 8 1 ! �6
 �7�	� � 8 # ! 3,4,transitivepropertyof
�6
 �

Step5 is thelemma;thelemmais correct.

C:
Theorem (T1) The extendedLow Water-Mark model preventsdata from flowing from low-levelled objectsto
higher-levelled objectsthroughan information transferpath, just as the original model does. More precisely:/ 8G\ 3 8Mb , �;3 8G\:IWCLX S 8Mb * �	� � 8Mb ! ��
 �&�	� � 8G\ ! .
Proof:
1. First,considerthebasecaseof aninformationtransferpathcontainingonly 1 hop(

�p%qZ
):8 \ S 8 I;8 # basecaseassumption,definitionof IWCLX S

2.
�	� � 8 # ! �6
 �7�	� � 8 \ ! 1, (L1)

3. Assumingtheorem(T1) is correctfor thecaseof aninformationtransferpathwith r hops(
�s% r), considerthe

inductivecaseof aninformationtransferpathwith r YtZ hops(
�p% r YtZ):�	� � 8ju ! ��
 �>�'� � 8 \ ! inductivecaseassumption

4. 8ju S 8 I;8ju e # 3, definitionof IiCvX S
5.

�	� � 8ju e # ! ��
 �&�	� � 8ju ! 4, (L1)
6.

�	� � 8ju e # ! ��
 �&�	� � 8 \ ! 3, 5, transitivepropertyof
�6
 �

Step6 indicatesthat,giventhat thetheoremis correctfor a pathwith r hops,it is alsocorrectfor a pathwith r YwZ
hops.Accordingto thefirst principleof mathematicalinduction,this fact,coupledwith theresultof step2, indicates
thatthetheoremis correctfor all informationtransferpathswith a finite lengthof 1 or morehops.

Table 2. Definitions for Information Transf er Paths (A), Lemma (L1) (B), and Theorem (T1) (C).

8 \ through 8Mx . Thesubjectsaccomplishthetransferin ase-
riesof threehops,shown enclosedin dashedboxes. In the
first hop, subject 9 # observesthe object to its left, acquir-
ing information, and subsequentlymodifies the object to
its right, transferringtheinformationfrom oneto theother.
This patternis repeatedin the secondand third hops,ex-
ceptthatin thesecases,onesubjectdoestheobserving,and
anothersubjectin its groupdoesthemodifying. In thesec-
ondandthird cases,weassumethatthedatais passedfrom
the observingsubjectto the modifying subjectvia shared

memoryabstractionIPC.In thesecases,theflow within the
groupvia read/writememoryoperationsis invisible to the
model.Furthermore,asin theoriginal descriptionof infor-
mationtransferpath,we assumethat theobserveandmod-
ify operationsareatomic,andoccurserially, in orderfrom
left to right acrossall threehopsin thediagram.

We demonstratetheintegrity protectionprovidedby the
extendedLow Water-Mark modelby showing that the ob-
ject at the beginning of the pathis alwaysat leastashigh
in level astheobjectat its end.That is, thatthemodelpre-

ventsthe spreadof datacorruptionby preventinginforma-
tion from flowing “upstream”from objectsat low levelsto
objectsat a higher levels. Table2A containsprecisedefi-
nitionsof our notionsof hopandpath. Using thesedefini-
tions,we first show with Lemma(L1) in table2B that the
extendedLow Water-Mark preventsupstreamflowsin indi-
vidual hops.Next, with Theorem(T1) in table2C, we use
Lemma(L1) to show inductively that upstreamflows are
notpossiblein pathsmadeup of oneor morehops.

Corollary(C1) shows that theoriginal Low Water-Mark
model’s demotion behavior is a special caseof the ex-
tendedmodel’s behavior. Theorem(T1) demonstratesthat
theextendedLow Water-Mark modelpreventstheupstream
spreadof corruptionthroughinformationtransferpathsin
the samemanneras the original Low Water-Mark model.
Basedon this evidence,we assertthat the extendedLow
Water-Mark modelprovidesat leastasmuchintegrity pro-
tectionastheoriginal.

6 Relatedwork

LOMAC is not the only experiment that tests a hy-
pothesisconcerningtheapplicabilityof integrity protection
extensionsto deployed COTS systems. The Janus[13]
and TCP Wrappers[30] projects are both examplesof
Interposition-basedaccesscontrol extensionsfor COTS
UNIX environmentswhich have a relatively low Partial
CompatibilityCost.TCPWrappersfocusesonaccessmade
by remoteclients to local services(daemons).Janus,on
the other hand, focuseson mediatingsystemcalls made
by local processes,just as LOMAC does. Janusis capa-
ble of enforcingpoliciesbasedon a varietyof AMM mod-
els, while LOMAC enforcesonly Low Water-Mark poli-
cies. However, basedon the performanceresultsof other
kernel-residentmechanismsthat Interposetheir control at
the systemcall interface,suchas SLIC [11] and Generic
SoftwareWrappers[10], weexpecttheLOMAC to degrade
applicationperformancelessthanJanus,whichoperatesen-
tirely in user-space.SLIC andGenericSoftwareWrappers
provide generalizedLKM and Interpositionfunctionality
thatcouldbeusedto implementa prototypelike LOMAC.
Their usemight increasePartial Compatibility Cost,how-
ever, sinceanadopterwouldfirst haveto configuretheSLIC
or GenericSoftwareWrapperssystembeforetakingadvan-
tageof LOMAC’sconfiguration-freeDefaultPolicy.

Not everyattemptto applykernel-residentaccesscontrol
is an attemptto explore our hypothesisconcerningits ap-
plicability to existing COTS systems.Someprojects,such
asDTE [3], KSOS[20], RSBAC [24], andUCLA Secure
UNIX [26] have appliedkernel-residentaccesscontrol to
the COTS UNIX environmentby modifying the operating
systemat thesourcecodelevel, to theextentof introducing
a new architecturein somecases.Unlike LOMAC, these

projectsemphasizetheprovisionof high-qualityprotection
beforetheminimizationof Total CompatibilityCost.Their
approachrequiresthe expensive replacementof deployed
COTS operatingsystemsin order to provide protectionin
productionenvironments. The cost is reducedsomewhat
by thesimilarity betweentheoriginal andmodifiedoperat-
ing systemsfrom theperspectiveof user-spaceapplications.
Also, DTE reducesthis costfurtherby retainingthe origi-
nal file systemformat, allowing the useof the unmodified
operatingsystemafter a reboot. However, the cost is still
greaterthanLOMAC’s. In exchangefor this increasedcost,
theseprojectsgaina higherquality of protectionandassur-
ancethan LOMAC. The LOMAC experiment’s emphasis
on compatibilitybeforequality of protectionandassurance
is not a suggestionthatassuranceis not requiredin todays
COTS environments. To the contrary, the circumstances
we describedto justify the needfor LOMAC in section1
canalsobe takenasargumentsfor theneedfor greateras-
surance[19]. LOMAC is a meansof testingour hypothe-
sis. Regardlessof the outcomeof our experiment,it will
not provide evidenceagainstthe argumentthat assurance
andhigh-qualityprotectioncanovercomesignificantTotal
CompatibilityCostandgainacceptancein theCOTS envi-
ronmentgivensufficient time.

7 Conclusions

The LOMAC project is an ongoingexperimentto test
the hypothesisthat a kernel-residentaccesscontrol mech-
anismcanbe widely acceptedasan extensionto deployed
COTS systemsprovidedthat it providessomeusefulinteg-
rity protection at a sufficiently low Total Compatibility
Cost. As of this time, the prototypeitself containsonly
enoughfunctionality to prove the viability of our applica-
tion of theLow Water-Mark model’sconceptsto theCOTS
Linux environment. It is not yet matureenoughto deploy
in productionenvironments.Althoughimplementationcon-
tinues,we discussthequality of protectionandTotal Com-
patibility Costof LOMAC asit exists today. As described
in section3, LOMAC’s architecturetradesquality of pro-
tectionfor decreasedPartial CompatibilityCostthroughits
useof an LKM and Interposition. The choiceof the the
Low Water-Mark modelovertheotherAccessMatrix Mod-
elsdescribedin section2 alsoinvolvessucha tradeoff. The
Low Water-Mark modelhastwo significantdisadvantages
in termsof protection,whencomparedto modelssuchas
TypeEnforcementandDTE.

First, the Low Water-Mark model’s ability to confine
subjectsaccordingto thePrincipleof LeastPrivilegeis lim-
ited [27, 31]. The scenarioin section4 describedhow
LOMAC’s Default Policy protectslevel 2 objectsfrom a
compromisedlevel 1 subject. It is importantto note,how-
ever, thata compromisedsubjectis all-powerful at its own

level andbelow. TheDefault Policy providesno protection
for other subjectsand objectsat level 1. This deficiency
couldbeaddressedby theadditionof Integrity Categoriesto
complementthemodel’s existing level concept[18]. How-
ever, theassignmentof Integrity Categoriesto existing ob-
jectsat configurationtime could requiretoo muchknowl-
edgeof thebehavior of individual usersanddaemonsto be
accomplishedautomaticallyin theDefault Policy. Thepo-
tentialof thissolutionin thecontext of LOMAC remainsto
beexplored.

Second,the Low Water-Mark modelcannotimplement
AssuredPipelines,andmust rely on the executionof for-
mally verified programsto provide integrity protectionin
somesituations[6]. TheDefaultPolicy avoidsthisreliance,
sinceformally verifiedprogramsarescarcein COTS Linux
environments. Consequently, it cannotprotect the integ-
rity of the systemlog object. The log objectmust reside
at level 1 so that all subjectscanwrite their log messages
to it. However, asdescribedabove, level 1 objectsarevul-
nerableto all compromisedsubjects. This deficiency can
be addressedto someextent throughthe useof Partially
TrustedSubjects[17]. Thesearesubjectswhich, while ex-
ecutingaformally verifiedprogram,receivea limited setof
additionalprivilegesthatenablethemto performsomeex-
ceptionaltask. By limiting thesetof additionalprivileges,
ratherthanallowing the subjectto operatewithout any re-
strictions,thisapproachlimits thenumberof programprop-
ertiesthatmustbe formally verified. We have appliedthis
techniqueto thesystemlog objectproblemwith somesuc-
cess.However, theLow Water-Mark model’slimited ability
to enforcethePrincipleof LeastPrivilegemakesit difficult
to definelimited setsof additionalprivileges,makingit pro-
portionallydifficult to reducetherequiredamountof formal
verificationwork in a meaningfulway.

Despitetheseshortcomings,LOMAC managesto pro-
vide someusefulintegrity protectionat a low Partial Com-
patibility Cost, as describedin sections2 and 4. Sec-
tion 5 describesour efforts to avoid runtime situationsin
which LOMAC causesapplicationfailuresby mappingthe
model’s subjectconceptto theLinux job abstraction,anda
groupingof subjectsbasedon sharedmemoryabstractions.
Our experienceto datewith theLOMAC prototypeandits
Default Policy suggeststhat LOMAC avoids suchfailures
well enoughto allow productivework andalow TotalCom-
patibility Cost.Althoughtheimpracticalityof formally ver-
ifying the failure-freebehavior of all applicationprograms
will probablyprevent us from ever claiming that low To-
tal CompatibilityCostcanbeachievedin thegeneralcase,
suchaclaimmaybepracticallyverifiablein thespecialcase
of theDefaultPolicy.

As describedin section5, the Self-RevocationProblem
cancauseanapplicationto fail only whenLOMACdemotes
the subjectexecutingthe application. Under the Default

Policy, thevastmajority of applicationsexecuteat thelow-
est level, 1, and are consequentlynot demotableand im-
muneto theSelf-RevocationProblem.Applicationswhich
executeat level 2 arefar fewer, andaremainly administra-
tivein nature.An analysisof thesetof administrativeappli-
cations,or at leasta minimal essentialsetof theseapplica-
tions,maybetractable.COTSUNIX distributionsdesigned
to fit on a single 1.44MB floppy disk, suchas PicoBSD,
containsuchminimal essentialsets.This analysismayal-
low us to characterizeLOMAC’s Total CompatibilityCost
while enforcingtheDefaultPolicy.

8 Notes

Theauthorwould like to thankLeeBadger, HongyuLu,
and WayneMorrison for many helpful discussions.This
work benefittedgreatlyfrom their review, insight, andad-
vice.

PicoBSDis a versionof FreeBSD,a RegisteredTrade
Mark of FreeBSD,Inc. andWalnut CreekCDROM. So-
laris is a RegisteredTradeMark of SunMicrosystems,Inc.
UNIX is aRegisteredTradeMark of theX/OpenCompany,
Ltd. Windows NT is a RegisteredTradeMark of the Mi-
crosoftCorporation.

This is NAI Labsreport#0775.

References

[1] J. P. Anderson. ComputerSecurityTechnologyPlanning
Study. TechnicalReportESD-TR-73-51,USAF Electronic
SystemsDivision,HanscomAir ForceBase,Bedford,Mas-
sachusetts,October1972.

[2] J.Arnold,W. Havener, andJ.Singh.FinalEvaluationReport
TrustedInformationSystems,Inc. TrustedXENIX version
3.0.TechnicalReportCSC-EPL-92/001,NationalComputer
SecurityCenter, Fort George G. Meade,Maryland, April
1992.

[3] L. Badger, D. F. Sterne,D. L. Sherman,andK. M. Walker. A
DomainandTypeEnforcementUNIX Prototype.USENIX
ComputingSystems, 9(1):47–83,Winter1996.

[4] B. N. Bershad,S. Savage,P. Pardyak,E. G. Sirer, M. E.
Fiuczynski,D. Becker, C. Chambers,andS.Eggers.Exten-
sibility, SafetyandPerformancein theSPINOperatingSys-
tem. In Proceedingsof the15thACM Symposiumon Oper-
atingSystemsPrinciples, pages267–284,CopperMountain
Resort,Colorado,December1995.

[5] K. J. Biba. Integrity Considerationsfor SecureComputer
Systems. TechnicalReportESD-TR-76-372,USAF Elec-
tronicSystemsDivision,HanscomAir ForceBase,Bedford,
Massachusetts,April 1977.

[6] W. E. Boebertand R. Y. Kain. A PracticalAlternative
to Hierarchical Integrity Policies. In Proceedingsof the
8th National ComputerSecurityConference, pages18–27,
Gaithersburg, Maryland,September1985.

[7] D. F. C. Brewer andM. J.Nash.TheChineseWall Security
Policy. In Proceedingsof the 1989 IEEE Symposiumon
SecurityandPrivacy, pages206–214,Oakland,California,
May 1989.

[8] D. D. ClarkandD. R.Wilson.A Comparisonof Commercial
andMilitary ComputerSecurityPolicies.In Proceedingsof
the 1987IEEE Symposiumon Securityand Privacy, pages
184–194,Oakland,California,April 1987.

[9] D. FerraioloandR. Kuhn. Role-BasedAccessControls. In
Proceedingsof the15thNationalComputerSecurityConfer-
ence, pages554–563,Baltimore,Maryland,October1992.

[10] T. Fraser, L. Badger, and M. Feldman. HardeningCOTS
Softwarewith GenericSoftwareWrappers.In Proceedings
of the1999IEEESymposiumonSecurityandPrivacy, pages
2–16,Oakland,California,May 1999.

[11] D. P. Ghormley, D. Petrou,S.H. Rodrigues,andT. E.Ander-
son. SLIC: An ExtensibilitySystemfor CommodityOper-
atingSystems.In Proceedingsof theUSENIX1998Annual
Technical Conference, New Orleans,Louisiana,June1998.

[12] B. D. Gold, R. R. Linde, R. J. Peeler, M. Schaefer, J. F.
Scheid,andP. D. Ward. A securityretrofit of VM/370. In
Proceedingsof theNationalComputerConference, Vol. 48,
AFIPSPress, pages335–344,Montvale,New Jersey, 1979.

[13] I. Goldberg, D. Wagner, R. Thomas,andE. Brewer. A Se-
cure Environment for UntrustedHelper Applications. In
Proceedingsof the6th USENIXSecuritySymposium, pages
1–13,SanJose,California,July 1996.

[14] G. S. Grahamand P. J. Denning. Protection- Principles
andPractice.In AFIPSConferenceProceedingsVolume40
SpringJoint ComputerConference, Montvale, New Jersey,
1972.

[15] M. A. Harrison,W. L. Ruzzo,andJ.D. Ullman. Protection
in OperatingSystems.Communicationsof theACM, 19(8),
August1976.

[16] W. Joy. An Introductionto the C shell. In 4.4BSDUser’s
SupplementaryDocuments, chapter4. O’Reilly & Asso-
ciates,Inc., 1994. ComputerScienceDivision, Department
of ElectricalEngineeringandComputerScience,University
of California,Berkeley.

[17] T. M. P. Lee. UsingMandatoryIntegrity to Enforce“Com-
mercial” Security. In Proceedingsof the 1988IEEE Sym-
posiumon Securityand Privacy, pages140–146,Oakland,
California,April 1988.

[18] S. B. Lipner. Non-DiscretionaryControlsfor Commercial
Applications. In Proceedingsof the1982IEEE Symposium
on Securityand Privacy, pages2–10,Oakland,California,
April 1982.

[19] P. A. Loscocco,S.D. Smalley, P. A. Muckelbauer, R.C.Tay-
lor, S. J. Turner, andJ. F. Farrel. The Inevitability of Fail-
ure: The Flawed Assumptionof Securityin ModernCom-
puting Environments. In Proceedingsof the 21stNational
Information SystemsSecurityConference, pages303–314,
Arlington, VA, October1998.

[20] E. J.McCauley andP. J.Drongowski. KSOS– TheDesign
of a SecureOperatingSystem. In Proceedingsof the Na-
tional ComputerConference, Vol. 48, AFIPS Press, pages
345–353,Montvale,New Jersey, 1979.

[21] M. K. McKusick,K. Bostic,M. J.Karels,andJ.S.Quarter-
man.TheDesignandImplementationof the4.4BSDOper-
ating System. AddisonWesley Longman,Inc., 1996.

[22] T. Mitchem, R. Lu, andR. O’Brien. Using KernelHyper-
visors to SecureApplications. In Proceedingsof the 13th
Annual ComputerSecurityApplicationsConference, San
Diego,California,December1997.

[23] G. C. NeculaandP. Lee. SafeKernelExtensionsWithout
Run-Time Checking. In Proceedingsof the 2nd USENIX
Symposiumon Operating SystemDesignand Implementa-
tion, pages229–243,Seattle,Washington,October1996.

[24] A. Ott. Regel-basierteZugriffskontrolle nachdemGener-
alized Framework for AccessControl-Ansatzam Beispiel
Linux. Master’s thesis,UniversitatHamburg, Fachbereich
Informatik,1997.

[25] M. Petkac,L. Badger, andW. Morrison. SecurityAgility
for Dynamic ExecutionEnvironments. In Proceedingsof
theDARPA InformationSurvivabilityConferenceandExpo-
sition, pages377–390,Hilton Head,SC,January2000.

[26] G. J. Popek,M. Kampe,C. S. Kline, A. Stoughton,M. Ur-
ban,andE. J.Walton.UCLA SecureUNIX. In Proceedings
of theNationalComputerConference, Vol. 48,AFIPSPress,
pages355–364,Montvale,New Jersey, 1979.

[27] J. H. SaltzerandM. D. Schroder. The Protectionof Infor-
mationin ComputerSystems.In Proceedingsof the IEEE
Vol. 63(9), pages1278–1308,September1975.

[28] M. I. Seltzer, Y. Endo,C. Small,andK. A. Smith. Dealing
With Disaster:Surviving MisbehavedKernelExtensions.In
Proceedingsof the USENIX2nd Symposiumon Operating
SystemsDesignand Implementation, pages213–227,Seat-
tle, Washington,October1996.

[29] R. Spencer, S. Smalley, P. Loscocco,M. Hibler, D. Ander-
sen,andJ. Lepreau.TheFlaskSecurityArchitecture:Sys-
temSupportfor DiverseSecurityPolicies.In Proceedingsof
the8thUSENIXSecuritySymposium, pages123–139,Wash-
ington,DC, August1999.

[30] W. Venema. TCP Wrapper: Network Monitoring, Access
Control, and Booby Traps. In Proceedingsof the Third
USENIX UNIX SecuritySymposium, pages85–92, Balti-
more,MD, September1992.

[31] K. W. Walker, D. F. Sterne,M. L. Badger, M. J.Petkac,D. L.
Sherman,andK. A. Oostendorp.ConfiningRootPrograms
with DomainandTypeEnforcement.In Proceedingsof the
6thUsenixSecuritySymposium, pages21–36,SanJose,Cal-
ifornia, July1996.

