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Abstract

We hypothesizehat a form of kernel-residentaccess-
contml-based integrity protection can gain widespead
acceptancen Commecial Off-The-Shel{COTS) environ-
mentsprovidedthat it couplessomeusefulprotectionwith
a high degree of compatibilitywith existing softwae, con-
figurations,and practices. To testthis hypothesisywe have
developeda highly-compatiblefree open-souce prototype
called LOMAC, andreleasedt onthe Internet. LOMAC is
a dynamicallyloadableextensionfor COTS Linux kernels
thatprovidesintegrity protectionbasedon LowWater-Mark
accesscontiol. We presenta classificationof existing ac-
ceszontol modelswvith regard to compatibility concluding
thatmodelssimilar to Low Water-Mark are especiallywell-
suitedto high-compatibilitysolutions.\We alsodescribeour
practical strategiesfor dealingwith the patholaggical cases
in the Low Water-Mark models behavior which includea
smallextensionof themodel,andan unusualapplicationof
its concepts.

1 Intr oduction

In recentyears, mary commercialorganizationspro-
viding CommercialOff-The-Shelf (COTS) software have
rushedto integrate Internet-relatedunctionality into their
products,knowing that the new functionality will distin-
guish them from their competition, helping themto gain
commercialadvantage. This integration hasincreasedhe
scopeof the global securitythreatby exposinglarge num-
bersof previously isolatedsingle-usemorkstationsto at-
tacksby maliciouscodeandusersvia the Internet. In the
raceto be first with new applicationfunctionality, there
is little time for security concerns. Consequentlypublic
forums suchas BugTraq are rife with reportsof security
problemsin deployed COTS softwarethat leave the integ-
rity of processeanddatavulnerableto attack. To counter
this increasedhreat,thereis a needto apply integrity pro-
tectiontechnologiedo existing COTS systems.However,
suchapplicationis not easy Integrity protectiontechnolo-
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gieswhich requireusersto replacetheir investmenin cur-
rently deployed COTS software, or interferewith applica-
tion functionalityareunlikely to bewidely adoptedregard-
lessof the protectionthey provide. Applicabletechnologies
mustenhancetatherthanreplace gxisting COTS software.
Fortunately several suchtechnologiesexist, and have
metwith succesascommercialproducts.Thesetechnolo-
giesincludefirewalls, virus scannersandintrusion detec-
tion systemsWe hypothesizehatintegrity protectiontech-
nology basedon kernel-residenaccessontrol canalsobe
appliedasanenhancemertb existing COTS systemspro-
vided that, like the successfutechnologiesabove, it pro-
videsat leastsomeuseful protectionat a nearzerocostin
compatibility. To testthis hypothesiswe haveimplemented
aform of Low WaterMark accesgontrol[5] in afreeopen-
sourceprototypefor COTS Linux systems. We call this
prototypeLOMAC, anacrorym derivedfrom “Low Water
Mark” and“AccessControl”. We are providing LOMAC
to potentialadoptersia the Internetandmeasuringts rate
of acceptanceLOMAC is designedo meetthe following
specificCompatibility Goalsto the greatesextentpossible:

1. LOMAC shouldbe compatiblewith the existing de-
ployed COTS operatingsystemkernelsand applica-
tions. This goal implies that LOMAC shouldnot re-
quire the replacemenbr source-codenodificationof
ary existing softwarein orderto operate.

2. LOMAC should not require ary changesto pre-
existing kernelor applicationconfigurations.

3. LOMAC shouldnotcaus€ailuresin previously work-
ing applications.

4. LOMAC's existenceshouldbe largely invisible to the
user except at the momentswhen specific integrity
threatsoccur This goal implies that the usershould
not berequiredto learnany new behaiorsin orderto
work in aLOMA C-enhance@rnvironment.

5. LOMAC shouldprovide someusefulprotectionin its
default configuration.This goalimpliesthatLOMAC



must offer a useful default “one size fits all” integ-

rity policy for thoseadopterawho do not wish to ex-

pendthe effort requiredto learnaboutand configure
LOMAC. We referto this policy asLOMAC's Default
Policy.

We defineTotal Compatibility Costasthe costincurred
by failing to meettheseCompatibility Goals. Although a
zero Total Compatibility Costis probablynot achievable,
basedon the commercialsuccesf the integrity protec-
tion technologiedisted above, we believe that a solution
bearingasmallbut nearzeroTotal CompatibilityCost,cou-
pledwith someusefulprotectionbenefit,canstill bewidely
adoptedn COTS environments.We candeterminethe ex-
tentto which LOMAC meetsmostof thesegoalsby exam-
ining the structureandbehavior of the prototypeitself. Un-
fortunately we cannoteffectively measureompliancewith
thethird goal,becauseoingsowouldrequireusto examine
all of theapplicationprogramsexistingin agivenLOMAC-
enhancecervironment,searchingor potentialfailures. In
the generalcase the numberof applicationprogramss far
too greatto make suchan analysispractical. However, we
cancharacterizéhe costassociateavith LOMAC usingthe
the notion of Partial Compatibility Cost, which we define
asthe samemetric as Total Compatibility Cost excluding
the troublesomethird goal. We supplementhis character
ization with experimentalevidenceconcerningLOMAC's
avoidanceof applicationfailures,and argue that a proper
analysids possiblein thespecialcaseof LOMA C’s Default
Policy.

Ourexperiments ongoing.However, this papempresents
the two primary resultsderived from its early stages.The
first result concernsour analysisof potentially applicable
accesscontrol models, which suggestghat somemodels
possesaspecificproperty(definedbelown) thatmakesthem
easierto apply to a COTS ervironmentswith low Partial
Compatibility Costthanothers. Surprisingly the classof
modelswith this propertyincludesexampleswhich have
seldombeenimplemented suchas Low WaterMark and
ChineseWall, and excludesexamplesthat have receved
greaterattention, such as Ring Integrity, Strict Integrity,
Clark-Wilson, Type Enforcement,and Domain and Type
Enforcemen{DTE). The secondresultconcernghe well-
known pathologicalcaseinherentin the Low WaterMark
model’s behaior which, if left unaddressed;ould cause
applicationfailures and unacceptablyncreaseLOMAC's
Total Compatibility Cost. Although we cannotentirely re-
move the pathologicalcasewithout alsoremoving the pro-
tective propertiesof the model, we have developedtech-
niguesto avoid it in COTS UNIX ervironments. These
techniquesnclude a small extensionof the formal model,
andan unusualmappingof its conceptdo the UNIX oper
ating systemabstractionsOur experienceandour prelimi-
nary usability analysisindicatethatit is possibleto accom-

plish meaningfulwork on LOMA C-enhance€OTS Linux
systemswith nearzerocostaccordingo our Compatibility
Goals.

In section2, we begin by presentingour analysisof ac-
cesscontrol modelsthat are applicableto the COTS ervi-
ronment,andarguethatsomeclasseof modelsenableow
Partial Compatibility Cost solutionsmore easily than oth-
ers. This argumentjustifies our choiceof the Low Water
Mark modelasthe basisfor LOMAC. In section3, we de-
scribethe LOMAC architectureand its tradeofs between
low Partial Compatibility Costandquality of integrity pro-
tection.We concludethat, despitethe extremenatureof the
tradeofs, alow Partial Compatibility Costarchitecturecan
still provide usefulintegrity protection.In sectiord4, we de-
scribehow LOMAC appliesthe Low WaterMark model's
conceptsto the Linux kernels abstractionsand how this
mappingresultsin usefulintegrity protection. We explain
how the Low WaterMark model'sbehaior makesit unnec-
essanfor LOMACto beawareof mary installation-specific
details, suchasthe assignmenbf dutiesamongusers,or
the purposesf individual daemons.This freedomallows
LOMAC to provide a “one-size-fits-all’Default Policy that
allowsit to enforceusefulintegrity protectiorwithoutbeing
configured. Section5 discussesiow the Low WaterMark
modelcanincreaselotal Compatibility Costby causingap-
plication failures,and presentour unusualapplicationof
model conceptsand our model extensionfor overcoming
this problemin the COTS UNIX environment.In sectiong,
we comparethe LOMAC experimentto relatedwork, em-
phasizingin particularthe differencebetweenLOMAC’s
goalsandthe goalsof trustedoperatingsystems.We con-
cludewith ananalysisof the quality of LOMAC's integrity
protectionin section7, and discussa stratgly to measure
Total Compatibility Costin the specialcaseof LOMAC's
Default Policy.

2 Modelsand Partial Compatibility Cost

Therearemary accesgontrolmodelscapableof provid-
ing integrity protectionin COTS ervironments. However,
somemodelsare more suitablethan othersbecausethey
possesspecificpropertieswhich help to minimize Partial
Compatibility Cost. In this section we definetheseproper
ties andusethemto classify the populationof modelsac-
cordingto their effect on Partial Compatibility Cost. Based
onthisanalysisandour experiencewith theLOMA C proto-
type, we concludethat the models most suitablefor the
COTS environmentare thosewhich are capableof revis-
ing the privilegesthey award to a given subjectbasedon
the objectsthe subjectobsenes during its runtime. This
classincludesthe ChineseWall [7] and Low WaterMark
models[5]. Out of the universeof modelscapableof pro-
viding integrity protection,we focus our analysison the
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Figure 1. Venn diagrams describing the relationships between models with numbered examples.

setof modelswhich include subjects objects,and Access
Matricesamongtheir fundamentaktonceptd14, 15|. Fig-
ure 1A containsa Venndiagramrepresentinghis setasa
circle marked AMM for AccessMatrix Models. We chose
this setbecauseasshavn by theindex in figure 1C, it con-
tainsmary (thoughnotall) well-known examplesf models
which provide usefulintegrity protection. Theseexamples
includetheRing Integrity, Strict Integrity, Low WaterMark
[5], Chinesewall [7], Clark-Wilson [8], Type Enforcement
[6], andDTE [3] models. It alsoincludesthe Role-Based
AccessControlmodelin the casewherethe model’s fourth
ruleis appliedto definean AccessMatrix [9].

All of the AccessMatrix Modelsassigna particularset
of privilegesto eachsubject- eachsubjects“privilegeset”.
The diagrampartitionsthe AMM setinto two halves. One
half is markedNPRfor “No Privilege Revision”. This half
containsall modelsin which a subjects privilege setdoes
not changeonce assigned. The other half is marked PR
for “Privilege Revision”. This half containsthe restof the
AMM models,in which a subjectmay be assigned new
privilegesetwhenit performscertainoperationsThemem-
bersof the PR setcanbe further subdvided accordingto
which of the threefundamentaloperationsof the Access
Matrix Models: invoke, obsene, or modify, promptsthem
to revise a subjects privilege set assignment. Figure 1B
containsa Venndiagramshawing this further classification
of the PRmodels.The PR modelswhich mayrevisea sub-
ject’s privilege setassignmentvhenthat subjectperforms
anlnvoke operation(aprogramexecutionor proceduresall)
arecontainedn thesetlabelledPRI, for “Privilege Revision
onlnvoke’ ThePRmodelswhichreassigmrivilegesetsin
responsdo Obsenre (read)and Modify (write) operations
arecontainedn the setslabelledPRO andPRM, for “Priv-
ilege Revisionon Obsene” and“on Modify,” respectiely.

When appliedto a COTS environment, the most dis-

criminating characteristioof an AMM model with regard
to Partial Compatibility Costis themethodit usesto choose
which privilege setto assignto a given subject. Otheris-
sueswhich affect Partial Compatibility Cost, suchas the
methodusedto divide existing objectsinto integrity classes,
areequallydifficult amongall the AMM models.Notethat
we definethe PRI, PRO and PRM propertiesin termsof
the operationswhich prompta PR modelto revise a sub-
ject’s privilege setassignmenat a givenpointin time. Our
definitiondoesnot limit the criteria on which a modelcan
baseits privilege setchoiceonceit is promptedto choose.
Although all the example PRI modelsshownn in figure 1B
choosébasedin part)ontheidentity of invokedprocedures
or programsandall theexamplePRO modelschoosebased
on the integrity level of obsered objects, our definition
doesnotrequirethis limited behavior. For example,we ad-
mit the possibility of a PRM modelwhich, whenprompted
to choosea new privilege setby a subjects modify oper
ation, canconsiderthe subjects obsenation or invocation
historybeforechoosing.

Theobsene operatioris theonly oneof thefundamental
threewhich allows a subjectto decreaséts own level of
integrity by importing datafrom a lowerintegrity object
into itself. The AccessMatrix Models provide integrity
protectionby preventing subjectsfrom transferringdata
from low-integrity objects(via obsere operationsjo high-
integrity objects(via modify operations).They accomplish
this provision by assigningthosesubjectswhich mustob-
sene low-integrity objects(dueto the functionality needs
of theirapplication)privilegesetswhichdonotpermitthem
to modify higherintegrity objects. They may assignprivi-
lege setspermittingthe modificationof higherlevel objects
tothosesubjectavhichrefrainfrom observingow-integrity
objects.The properchoiceof privilege setfor a givensub-
jectis, consequentlydependenbn theintegrity level of the
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Figure 2. The UNIX login process tree

objectsthe subjectmustobsene.

The PRO modelsusea simple approachto choosethe
appropriateprivilege setto assignto a givensubject.When
a subjectis created,a PRO modelwill assignit aninitial
privilege set. As describedin section4, the Low Water
Mark PRO modelinitially assignghe mostpermissve priv-
ilegesetto thefirst subjectandsubsequentlietsevery new
subjectinherit its creators privilege setasits own initial
privilege set. When a given subjectdecreaseds level of
integrity by observinganobject,a PRO modelcanassignit
anew, morerestrictive privilege setreflectingthe subjects
lossof integrity. The PRO modelsrequireno knowledgeof
the algorithmsof applicationsor of the dutiesof usersin
orderto choosewhich privilege setto assignto a subject.
They simply reactto eachsubjects obsenations, as they
occut

The PRI modelsuse a more complicatedapproachto
choosingappropriateprivilege setsfor subjects.PRI mod-
elsmayalsoassigraninitial privilegesetto eachsubjectas
describedabove. However, ratherthanrevising their choice
when a subjectperformsan obsene operation,they may
revisetheir choicewhena subjectperformsaninvoke oper

ation, suchasexecutinga programor calling a procedure.

Reactingto invoke ratherthan obsene operationscompli-
catesthe task of choosinga privilege set, sincethe invoke
operationis not the fundamentabperationwhich actually
allows a subjectto decreasés own integrity. A PRImodel
mustusethe identity of the programa subjectchoosedo

executeto predictwhich objectsthe subjectwill obserein

the future, and choosewhich privilege setto assignto the
subjectbasednthis prediction. The properchoicemaynot
be clearwhen a given programcan be usedto accesob-
jectsof varying integrity level. SomePRI modelssupple-
mentprogramidentity with additionalcriteriato avoid such
ambiguoussituations.The more numeroughe criteria, the
fewer ambiguoussituationswill occur The Clark-Wilson
PRI model,for example,makesit choicebasedon boththe
identity of the programandof the usercontrolling the sub-
ject. The DTE PRI model choosedasedon the identity
of the programthe subjectwishesto execute,andalsothe
identitiesof the programghe subjectandits ancestorhiave

executedn thepast.

In generalregardlesof the numberof additionalcrite-
ria, ambiguoussituationscan never be entirely prevented.
The COTS UNIX login processtree provides a pertinent
example. Figure 2 containsa diagramof this procesdree,
dividedinto threesequentiakteps.Eachsquarein the dia-
gramrepresentasubjectequialentto ajob containingone
processn termsof UNIX abstractionsThefirst stepin the
diagramshaowvs a UNIX kernelsinitial subjectwhich exe-
cutestheinit program.The initial subjectcreatesonenew
subjecfor everyhardwareterminalline. Thediagramssec-
ondstepshowvs oneof thesenew subjectswhich beginsby
executingthe getty program. Whena userattemptsto log
in via its hardware terminalline, the subjectexecutesthe
login programto handleauthenticationandthenexecutes
the users interactive shell if the authenticatioris success-
ful. At the users commandthe interactve shell createsa
new subjectto executethe emacseditorapplicationin step
three.

Ambiguity mayoccurwhenther oot (administratoruser
logsin. Theroot usermay commandhe subjectexecuting
emacsto obsene a low-integrity object. In this case,the
properprivilege setfor the emacssubjectis onethat pro-
hibits modificationof high-integrity objects. On the other
hand,the root usermay avoid low-integrity objects,com-
mandingthe emacs subjectto obsene and modify only
high-integrity objects. In this case the privilege setwhich
prohibitsmodificationof high-integrity objectswould bein-
appropriate.In this ambiguoussituation,therearetwo po-
tentially appropriateorivilegesetsfor oneuser enteringthe
systemfrom onehardwareterminalline, with oneexecution
history, executingone program. The appropriatechoiceis
notapparentintil afterthe subjectexecuteghe emacspro-
gramandobsenesobjectsat which pointit is too latefor a
PRImodelis to reassigrits privilegeset.

Therearetwo possiblemethodsof resolvingtheseam-
biguoussituations: manual,and automatic. Both methods
incur Partial Compatibility Cost. A manualsolutionmight
force a userto choosethe appropriateprivilege setfor a
given subjectvia a menu. Adding this featureto a COTS
ervironmentwould requirethe modificationor replacement
of existing software.An automaticsolutionmight make as-
sumptionsaboutthe configurationof the systemor the be-
havior of its users. For example,it might assumethat all
subjectoperatingon behalfof auserwith a particulariden-
tity, ataparticularterminal,or from agivennetwork address
desereaparticularprivilegeset. Theseautomaticsolutions
mayalsoinvolve somePartial Compatibility Costif existing
userbehaiors or configurationsnustadaptto avoid contra-
dicting their assumptionsThe PRI model’s needto predict
a subjects future obsenation behaior at the time it per
formsaninvoke operationcanleadto ambiguityin certain
situations.In thesesituationsall of the availablesolutions



mayinvolve somePartial Compatibility Cost.In contrasto

thePRImodelsthePRO modelsreactto asubjectsobsene
operationglirectly; they do not suffer from the problemsof

predictionand ambiguity Consequentlythe PRO models
arecapableof providing low Partial Compatibility Costso-
lutionsin morecaseghanthe PRI models.

The NPR models, which cannotrevise their privilege
setassignmentst all, must predicta subjects future ob-
senation behaior at the time the subjectis created. The
criteria on which the NPR modelsmay basetheir predic-
tionsarefewer thanthoseavailableto the PRI models.The
NPR modelsmustchoosethe appropriateprivilege set for
agivensubjectbeforeit hasindicatedwhich programit in-
tendsto invoke. Consequentlyprogramidentity is not an
availablecriterion. With fewer criteriaavailable,ambiguity,
andits potentialfor increasedPartial Compatibility Cost,
will occurin morecasesith theNPRmodelsthanwith the
PRImodels.Consequentlythe NPR modelsare capableof
providing low Partial Compatibility Costsolutionsin fewer
caseghanthe PRO andPRImodels.

The only classof modelsnot addressedbove is PRM.
In somecasesa pure PRM model can be equivalentto a
PRO modelin Partial Compatibility Cost. First, it must
considera subjects obsenation historywhenit revisesthe
subjects privilege setassignmentn responsedo a modify
operation.Secondjt musttreatinvoke operationsasit does
modify operations.This secondcondition preventsa sub-
jectfrom makingdangerousnvocationsafterit hasmadea
corruptingobsenation, but beforeit promptsthe modelto
reviseits privilege setassignmenby performinga modify
operation.However, the effort requiredto maintainan ob-
senation historyfor eachsubjectmay exceedthe effort re-
quiredto implementPRO functionality in additionto PRM
functionality. The ChineséNall model,for example,avoids
the maintenancef obsere history by respondingo both
modify andobsene operationsmakingit amemberof both
thePRO andPRMsets.Consequentlywe considethe PRO
modelsto be an easierouteto a low Partial Compatibility
Costsolutionthana purely PRM model.

The obsenation-sensitie property of the PRO models
allows themto provide low Partial Compatibility Costso-
lutions in more situationsthanthe PRI and NPR models.
Consequentlythe PRO modelsarethe mostapplicableAc-
cessMatrix Modelsto the COTS ervironmentin termsof
Partial Compatibility Cost. We chosethe Low WaterMark
PRO modelfor LOMAC over the ChineseWall modelbe-
causd_ow WaterMark never preventsa subjectfrom read-
ing an object. We perceved this behavior to be usefulin
a COTS UNIX ernvironmentwheremary objects,suchas
programbinaries,arepresentedo low-integrity subjectsn
aread-onlyfashion.

3 Prototypearchitecture

In orderto be suitablefor our experiment,the LOMAC
prototypeis designedto minimize Partial Compatibility
Costfirst, andto provide usefulintegrity protectionsecond.
Thisorderingreversesheprioritiesof severalpasteffortsto
apply kernel-residenaiccessontrol [12, 20, 26], andcon-
sequentlyL OMA C cannotexploit someof themoreexpen-
sive techniquesdemonstratedy thesepastefforts to im-
prove the quality of its protection.However, LOMAC's ar
chitectureembodieshepropertradeofstotestourhypothe-
sisconcerningcompatibilityandacceptanceThe LOMAC
architecturaisesa combinationof two familiar techniques:
the useof a LoadableKernelModule (LKM) to extendan
existing COTS operatingsystem,andthe useof Interposi-
tion atthesystemcall interfaceto modify the operatingsys-
tem’'sbehaior [10, 11, 22]. Both of thesetechniquesring
benefitsthat help to minimize Partial Compatibility Cost,
anddrawbacksthat decreasehe quality of protection. We
discusgheoverallimpactof eachtechniqueseparately

Most COTS operatingsystemssupportLKM or LKM-
like functionality, including Linux, Solaris, Windows NT,
and the majority of the BSD-derved operatingsystems.
The useof an LKM allows us to avoid the unacceptable
Partial Compatibility Cost of replacingexisting deployed
COTS operatingsystemdy retainingandenhancinghem,
instead.As an LKM, LOMAC is compiledinto a relocat-
ableobjectfile, andthendynamicallyloadedinto the ker-
nel's addresspaceduring bootstrap.Unfortunately LKM
functionalityis not sufficient to implementa properRefer
enceMonitor [1]. Although LKM functionality allows us
to loadLOMAC into the kernel’s addresspacewhereit is
protectedrom tamperingby userspaceprogramsit is not
protectedirom tamperingby otherLKMs or by the kernel
itself. Researchnto safermeansof kernelextensionis on-
going[4, 23, 28]; however, we mustmake dowith theLKM
functionality availablein our COTS ernvironment. Conse-
guently LOMAC offers a lower quality of protectionthan
would be providedby atamperproofreferencemonitor.

Onceloadedinto the kernel's addressspace,LOMAC
useslnterpositionto interceptcalls to the security-rel@ant
portion of the kernel’s systemcall vector LOMAC must
interceptthesecalls in orderto make and enforceaccess
control decisions. Like the use of the LKM, the use of
Interpositionallows us to minimize Partial Compatibility
Costby extendingexisting deployed COTS operatingsys-
temsinsteadof replacingthem.However, Interpositionalso
hasits drawvbacks[11, 29]. To supportits decision-making,
LOMAC mustassociatesecurity attributeswith mary ex-
isting kernel abstractions.Since LOMAC interfaceswith
the kernel by Interposition,avoiding modificationsto the
kernel’s sourcecode, the kernel's existing datastructures
do not provide storagefor theseattributes. Consequently



LOMAC is forced to implementits own additional data
structureso manageheseattributes.Thisadditionalimple-

mentatiormakesLOMA C largerandmorecomplex thanan
equialentReferenceMonitor that interfaceswith the ker-

nelthroughdirectmodificationsof thekernel’s sourcecode.
LOMAC's correctnesss thereforemore difficult to verify

with formal methods,againresultingin a lower quality of

protection. However, the conditionsof our experimentde-
mandcompatibility first, and quality of protectionsecond.
Consequentll OMAC’suseof anLKM andInterposition
is justifiedin this case.

4 Practical integrity protection

The LOMAC prototypeimplementsa form of access
control basedon a slightly extendedversion of the Low
WaterMark model[5]. We describethe basicoperationof
the modelinformally here,andleave the moreformal dis-
cussionof the modeland our extensionto section5. The
model definesthe conceptsof subject, object, and level.
Subjectsareactive entitiesthatexecuteprograms LOMAC
applieshemodel'ssubjecttonceptotheLinux job abstrac-
tion. Objectsarepassie entitiesthatcontaindata. LOMAC
appliesthe model’s objectconcepto the Linux file, named
pipe, and soclet abstractions.Levels arelabelsindicating
arelative level of integrity. LOMAC representsevelswith
positiveintegers;level 2 indicatesagreatelmamountof integ-
rity thanlevel 1. LOMAC assignsa level to eachexisting
object,effectively partitioningall objectsinto classedased
on their level of integrity. Onceassignedan object’s level
never changes. LOMAC providesintegrity protectionby
preventingthe movementof potentiallycorruptecdatafrom
lower-level to higherlevel objectsby restrictingthe behar-
ior of subjects.

At configurationtime, eachLOMA C installationcande-
fine its own policy. A policy specifieshe numberof levels
in use,andthe mappingbetweenexisting objectsand lev-
els. For thoseinstallationswhich cannotafford to spendef-
fort onconfigurationL OMA CimplementsasimpleDefault
Policy thatprovidesa basiclevel of integrity protectionap-
propriatefor all ervironments.This Default Policy contains
only two levels: level 1 for low integrity objects,suchas
downloadedinternetcontent,andlevel 2 for high integrity
objects suchasthesystembinariesinstalledfrom theLinux
CD-ROM distribution. The Default Policy assigndevelsto
existing objectsby following a seriesof simplerules. Our
currentprototypeusesthe following threerules: First, all
objectsexisting immediatelyafter the operatingsystemis
installedreceve level 2. Secondthe userobjectscreated
subsequentlyeceve level 1. Third, all hardware devices
allowing accesgo the system,suchasthe consoleand se-
rial linesfor terminals,receve level 2, exceptfor Network
Interface Cards(NICs), which receve level 1. From that

point, all new objectscreatedduring systemrun-time in-
heritthelevel of the subjectwhich created¢hem.

Potentially corrupteddata can move upward in level
whena subjectobsenes(readsfrom) a low-levelled object
andsubsequentlynodifies(writesto) a higherlevelled ob-
ject. In orderto preventthis kind of upward movement,
LOMAC assignsan initial level to eachsubjectuponcre-
ation. Unlike objectlevels,subjectievelscandecreasever
time. Whenerer a subjectobsenesan objectwith a level
lower thanits own, LOMAC “demotes”the subject,reduc-
ing its level to matchthe objects. A subjectis never “pro-
moted”- its level canneverincreaseA subjectslevel deter
minesits privileges- while LOMAC allows ary subjectto
obseneary object,it preventssubjectsfrom modifying ob-
jectswhoselevelsarehigherthantheir own. Theactof ob-
servinga lower-levelled objectrendersa subjectincapable
of spreadingcorruptionby modifying a higherlevelled ob-
ject.

LOMAC's demotionbehavior provides usefulintegrity
protection againstviruses, Trojan horses,and usersin-
tentuponmisuse. For example,the Default Policy causes
LOMAC to assignlevel 1 to objectsdownloadedfrom the
Internet. If a particulardownloadedobjectcontainednter-
pretablecontentimplementinga Trojan Horse, it mightuse
a stack-smashingttackto take control of a subjectwhich
obsened (readand executed)it. Without LOMAC, if the
interpretingsubjecthadroot (administrator)privileges,the
Trojan Horse would would be capableof inserting back-
doorsinto the systemby modifying systembinary objects.
However, with LOMAC andthe Default Policy, the act of
observingthe downloadedobject demoteshe interpreting
subjectto the objects level, 1. Despiteits root privileges,
thelevel 1 interpretingsubjectwould be incapableof mod-
ifying systembinaryobjectswhich exist atlevel 2.

As statedabove, a LOMAC subjectis equivalentto a
UNIX job. A job containsone or more cooperatingpro-
cesses.The processs the abstractionwhich actually exe-
cutesprogramsin mary COTS UNIX systemsandis ar
guablya moreintuitive equivalentfor the subjectconcept
than is the job. However, LOMAC's subject-jobequiv-
alencebrings specific Compatibility Cost benefits,as de-
scribedin section5, andconsequentlys moreappropriate.
In LOMAC-enhancedinux systemsexisting subjectscre-
atenew subjectwiathesetpgrp systencall. TheLinux ker-
nel createghe first subjectto executebootstrapprograms.
Subsequentlythis subjectcreatesothersto executeother
systemprogramsanddaemongseners). Thesesubjectsjn
turn, createa third generationof subjectsto executeuser
programs.LOMAC usesa simpleschemeo determinethe
which initial level to assignto eachsubject. LOMAC as-
signsthefirst subjecthe highestievel definedby the policy.
Subsequently OMAC allows eachnew subjectto inherit
thelevel of its creator As the systemruns,LOMAC's de-
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motionbehaior ensureghat subjectghatdealwith poten-
tially dangeroudow-integrity objectsexecutewith appro-
priatelyrestrictedprivileges.

We can exploit this subjectlevel assignmenbehaior
to provide subjectsexecutingdaemonsvhich sene remote
clients with privileges proportionalto the local systems
faith in the remoteclients’ good intentions. We can also
exploit this behaior to automaticallyassignappropriately
restrictedprivilegesto subjectsoperatingon behalf of lo-
cal usershasedon the dutiesthe individual usersmustper
form. As shawn in figure 3, we accomplishthis privilege
assignmenthroughthe familiar techniqueof associating
levelswith the hardwaredevicesthroughwhich local users
andremoteclientsaccesghe system. The figure contains
a diagramof a small Linux sener usedin early LOMAC
testing. The sener is protectecby LOMAC's Default Pol-
icy. Thediagramrepresentshe systemasa circle split into
a halves, one for level 2 andthe other for level 1. Each
half hastwo breaksin the circle’s perimeterrepresenting
hardware devices providing entry into the system. In the
level 2 half, thereis a consoledevice (ttyl) and a NIC
acting as one endpointof a point-to-pointlink for remote
managemenfethl). Physicalaccesdo the consoleandthe
remotemanagemensystemis restrictedto administratve
usersonly. In thelevel 1 half, thereis aserialline connected
to adumbterminal(ttys0), anda secondNIC connectedo
the Internet(eth0). The terminalandthe Internetare not
subjectto physicalaccesgestrictions. LOMAC depends
solely uponthe restrictionson physicalaccesgo thesede-
vicesto authenticateisersandremoteclients. This minimal
dependencshieldsLOMAC from weaknesses a COTS
systems existing authenticatiormechanismssuchasa re-
liance on weak passverds or the continuity of hijack-able
network sessions.LOMAC doesnot treatthesehardware
devicesstrictly asobjects:it doesnot restrictthe ability of
subjectsto modify (write to) them. However, whena sub-
ject obsenes (readsfrom) one of thesedevices, LOMAC
assumeshe device hasthe level indicatedby the diagram
for demotionpurposes.

As statedabove, underthe Default Policy LOMAC as-
signslevel 2 to theinitial subjectandall of thenew subjects
it creatednherit this level. LOMAC demotedevel-2 sub-

jectswhich readfrom level 1 devicessuchasttySO0 or ethO
to level 1. Whenasubjectreadsts first login from tty SO or
its first remoteclient requestrom eth0, LOMAC demotes
it to level 1 - anappropriatdevel for subjectsoperatingon
behalfof potentiallymalicioususers.By associatindevel 2
with ttyl andethl, LOMAC allows subjectsoperatingon
behalfof administratve usersto remainat the highestlevel
of privilege, unlesstheir dutiesspecificallyrequirethemto
obsenrelevel-1objects.By exploiting the Low WaterMark
model’s demotionbehaior in this manney LOMAC en-
suresthatall usersanddaemon®peratewith appropriately
restrictedprivilegeswithout foreknovledgeof the dutiesof
eachuser or the purposeof eachdaemon.As describedn
section2, this potentialfor automaticappropriatdevel as-
signmenimakesit easyto applytheLow WaterMark model
to COTS UNIX systemsatlow Partial Compatibility Cost.

In certainsituations,a given procescanmove itself or
anothemprocesgrom onesubject-jobto another If left un-
addresseahis movementetweersubject-jobgouldcould
allow processego carry potentially corrupteddata from
lower to higherlevels. LOMAC addressethis problemby
enforcingthreeadditionalsafgguardsconcerninghebehar-
ior of processesFirst, LOMAC restrictsthe useof certain
security-criticalsystemcalls (mostnotably the systemcall
to trigger reboot) to processesesidingin subject-jobsat
the policy’s highestlevel. SecondLOMAC preventspro-
cessedrom sendingsignals(UNIX softwareinterrupts)to,
or changingthe processgroupsof, other processesesid-
ing in subject-jobsat levels higherthantheir own. Third,
LOMAC prohibitsaprocesgrom moving from onesubject-
job to anothersubject-jobat a higherlevel underary cir-
cumstancesThe first two safegguardshelpto preventpro-
cessegesidingin lower-level subject-jobsfrom interfer
ing with the executionof processesgesidingin highekrlevel
ones.Thethird preventsthetransferof corrupteddatafrom
lower to higherlevels. Thesesafgyuardsarenot partof the
Low WaterMark model;themodelis unavareof processes.
Thesesafeguardsare constraintsderived from our partic-
ular applicationof the Low WaterMark modelto COTS
Linux systemssimilar to the constraints'subjectarejobs”
and“objectsarefiles, namedpipes,andsoclkets” described
above.

Unfortunately along with the protection benefitsde-
scribedabove, theuseof LOMAC bringsaninherentCom-
patibility Cost. Like mary other accesscontrol schemes
(includingthosediscussedh section?), Low WaterMark is
pessimistic.It preventsdatamovementghatrepresenpo-
tential integrity threats- somepreventedmaovementsmay,
in reality, have beenharmlessin a LOMAC-protectedsys-
tem, userswho habitually move datain dangerousvays
(perhapsby insertingdataarriving in low-integrity email
attachmentsénto high-integrity local documentsymay find
themselesforcedto changetheir behaior. Suchbehaior



changesncreasePartial Compatibility Cost. In section?,
we argue that using LOMAC with the Default Policy re-
guiresminimal behaior changes.

5 Applying the Low Water-Mark model

TheLow WaterMark modelhasseerrelatively little ap-
plicationin the past. This factis probablydue largely to
the existenceof a pathologicalcaseinherentin its demo-
tion behavior [5, 6]. This pathologicalcase which we call
the Self-Revocation Problem,can causefailuresin appli-
cation functionality Consequentlyif left unaddressedt
canincreasehe Total Compatibility Costof LOMAC. The
Self-RevocationProblemdescribeghe situationwherethe
Low WaterMark model's demotionbehaior unexpectedly
revokesa subjects right to modify anobject. For example,
this situationcanoccurwhena subjectat a high level cre-
atesan object, and subsequentlybsenes anotherobject,
whichis atalow level. Accordingto the Low WaterMark
model,this obsenationdemoteghesubjecto thesamdow
level. Consequentlythe subject,now atalow level, cannot
modify the objectit createdwhich remainsatahighlevel.

It is importantto note that this is the properbehaior
from the standpointof protection. By readingthe low-
levelled object, the subjectmay have infecteditself with
maliciouscode- it mustbe preventedfrom spreadingthe
infectionto higherlevelsby writing to the objectit created.
However, from the standpointof applicationfunctionality,
this behavior is troublesome.Due to the capability-based
natureof UNIX file descriptors,most UNIX application
programsexpectto runin anernvironmentwheremediation
is doneonce,whenthey acquirethe capabilityto accessan
object[21]. They do not, in general,expectthe accesgo
be subsequentlyevoked. However, this revocationis ex-
actly whatoccursin the Self-RevocationProblem,andit is
reasonabldo expectmost UNIX applicationprogramsto
respondo this unexpectedeventby misbehaing or failing
entirely[25].

We mustaddressheSelf-RevocationProblemin orderto
reduceLOMAC'’s Total Compatibility Cost. As described
in sectionl, measuringhe applicationfailureaspecbf To-
tal CompatibilityCostin thegenerataseis difficult, atbest.
Our experiencewith the LOMAC prototypeindicatesthat
mostinstanceof the Self-RevocationProblemoccurdur-
ing Inter-Proces€ommunicatior(IPC) involving unnamed
pipesand sharedmemoryabstractions.Consequentlywe
have focusedour efforts on avoiding the Self-Revocation
Problemin thesetwo cases Althoughthe impracticality of
measuringrotal Compatibility Costpreventsusfrom claim-
ing thatour solutionsprovide asuficiently problem-freeen-
vironmentin thegenerakase section7 describes& method
throughwhich we could eventually measurehe effective-
nessof our approachin the specialcaseof LOMAC's De-

fault Policy.

Unfortunately sincethe Self-Re/ocationProblemis an
inherentaspecbf theLow WaterMark model’s properpro-
tection behaior, it cannotbe entirely removed from the
formal modelwithout removing the protectionbehavior, as
well. In lieu of removing it entirely, we mustendeaor to
reducethe numberof situationsin which it will causeap-
plicationfailuresin practice. Researchin SecurityAgility
hasdemonstratedhe effectivenessof addingfunctionality
to userspaceapplicationsthat enablesthem to adaptto
privilegerevocationandto continueoperatingn somepar
tial capacityratherthan simply failing altogetherin some
caseqd25]. We have chosento take an alternateapproach,
in orderto avoid increasingPartial Compatibility Costby
modifying or replacingexisting applications.As described
in sectior4, we have choserto employ anunusualmapping
betweerthe Low WaterMark model’s conceptsandtheac-
tual operatingsystemabstractionsn orderto reduceoccur
rencesof the Self-RevocationProblemin shell pipelines.
We have also extendedthe formal modelslightly to avoid
the Self-Revocation Problemduring IPC basedon shared
memoryabstractions.

Early versionsof the LOMAC prototypewere plagued
with application functionality failures due to the Self-
RevocationProblemduringtheexecutionof shellpipelines.
The early prototypesmappedthe conceptsof the standard
Low WaterMark modelto the operatingsystemabstrac-
tionsprovidedby the Linux kernelin a naive fashion.This
naive mappingfollowed a traditional patternsuccessfully
demonstratedby previous applicationsof several access
control modelswithout Self-RevocationProblemsto oper
ating systemg2, 3]. The naive mappingconsidereceach
processa subject, and eachinode (the operatingsystem
abstractiorfor files, soclets, unnamedpipes,and FIFOS)
an object. The vulnerability of shell pipelinesto the Self-
RevocationProblemunderthis naive mappingis illustrated
by the examplediagrammedn figure4.

Stepl of thediagramshaows theinitial stateof a typical
shell pipeline. It containstwo subjects:the Linux ps and
grep utility applications,connectedy one object: an un-
namedpipe. Both subjectsandthe objectsareinitially at
level 2. TheLinux ps utility applicationreadsinformation
from the /proc filesystem. As shawvn in step2 of the dia-
gram,some/proc filesystementriesareat level 1. Step3
shavsthe consequencesf the ps utility applicationsread:
it is demotedo level 1. Whenit attemptgo passits output
to the grep utility applicationby writing to the unnamed
pipe,its write is denied.As shovn in step4 of thediagram,
theunnamedpiperemainsat level 2, andcannotbe written
to by the demotedps utility application.In practice the ps
utility applicationfails to passits outputto grep, which is
forcedto presentheuserwith ameaninglestack of output.
This misbehaior is an unacceptabléailure of application



Stepl: initial state.
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e
Step2: psreadsfile.
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Step3: demotion.
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Step4: pipewrite denied.
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Figure 4. The Self-Revocation Problem.

functionalityin termsof our Compatibility Goals.

Althoughthis self-revocationbehavior is consistentvith
the formal Low WaterMark model, it is inconsistenwith
our expectationsasa user As auser we considerthe com-
binationof the ps andgrepto beaunit, or “job”, operating
to completeasingletask.A superiorapplicationof theLow
WaterMark model's conceptanight treatthe entirejob as
a single subject,demotingit asa unit upon readingfrom
the /proc filesystem,and avoiding a breakin the pipeline.
While this redefinitionof the meaningof subjectis easily
done,the questionremains:whatto do with unnamedipe
objects?In the exampleof figure 4, little would be gained
by demotingboth ps andgrep asa single subjectat step3
if the unnamedipe objectthatconnectgshemremainsun-
writableatlevel 2.

Oneanswerto this questionmight be to modify the for-
mal model, causingit to adjustthe level of unnamecbipe
objectsto follow subjectdemotion. However, this option
is unattractve, sinceit violatesthe basictenetof the Low
WaterMark modelthat objectlevels never change.Rather
than complicatethe formal model, a bettersolution might
beto modify our applicationof the model’s objectconcept
to the actualoperatingsystemabstractionsThe mostsim-

ple solutionof this kind would be not to considerunnamed
pipesasobjectsatall, andto implementarulein the proto-

type to guarantedhat pipesmay link only processeshat
arepartof the samesubject. We referto this optionasthe

“UnnamedPipe PossessiotiRule”. This option is attrac-
tive, sinceit allows the properoperationof unnamecpipes
by exemptingthemfrom LOMAC's accessontrol, while

simultaneouslynaintainingintegrity protectionby prevent-

ing IPC betweensubjectsusingunnamedpipes. Unfortu-

nately the usageof unnamedpipesby critical UNIX ap-

plications,particularlythe C shell[16], preventsthe useof

suchasimplerule,asshavnin figure5.

Figure 5A containsa simplified diagramof the algo-
rithm usedby the C shell to createa typical job consist-
ing of two fictitious applicationprograms,namedsource
and sink, connectedby an unnamedpipe. At eachstep
in the algorithm, the diagramlists the numberof subjects
and objectspresentaccordingto the naive applicationof
Low WaterMark conceptsdescribedabore. The diagram
alsointroducegheprocesgroupoperatingsystemabstrac-
tion; processepossessinthe sameprocesgroupidentifier
aremembersf the samejob. Stepl shows aninitial state
wherethe shellhascreateda pipe. Step2 and3 shav how
theshellsubsequentlgreateqvia thefork systemcall) the
sink and source processesand givesthema new process
groupidentifieruniqueto their job (via the setpgmp system
call). Step2 is critical to the unnamedpipe-handlingssue.
At this stagein the algorithm, two processesn different
jobs possesshe sameunnamedpipe - a critical item of C
shellfunctionalitythatwould be prohibitedby theUnnamed
PipePossessioRule.

Becausewe wish to avoid causingfailuresin existing
applicationswe mustrejectthe UnnamedPipe Possession
Rulein favor of a slightly lessrestrictive version- the Un-
namedPipe UsageRule. This rule statesthat the subject-
job containingthe first processto readfrom or write to a
particularunnamedpipe possessei for all time, andsub-
sequenteadsandwritesto this unnamedipe areallowed
only for thatsubject-job This rule hasthe advantagethatit
allows the capabilityto readand/orwrite anunnamedoipe
to bepassedetweerjobsasrequiredby the C shell,which
doesnot readfrom or write to the unnamedpipesit cre-
atesfor otherjobs. It alsopreventssubjectdrom bypassing
the Low WaterMark model’s integrity protectionby pass-
ing databetweersubject-jobssia unnamedipelPC.

Althoughit allowsLOMA C to avoid the Self-Revocation
Problemin shell pipelines,the UnnamedPipe UsageRule
also hasthe potentialto causeapplicationswhich attempt
unnamedpipe IPC acrosgob boundariego fail. Although
thejob concepis meantto encapsulatgroupsof processes
that cooperatevia unnamedpipe IPC, the LOMAC proto-
typewill incur Total Compatibility Costin unusuakrviron-
mentswhich do not usethe job abstractionin this way. A



A: B:
1. | porpl initial state ogrp 1 initial state
1 subject 1 subject
1 object 0 objects
2. pgrp 2
fork,setpgrp
fork sink 1 2 setpgrp
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1 object @ - @ 0 objects
setpgrp
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Figure 5. Simplified Representation of Shell Pipeline Behavior.

moreliberalrule expressedn termsof thepipeusers’levels
insteadof job boundariescould avoid this problem. How-
ever, its enforcementvould requirefar moreadditionaldata
structureghanthe UnnamedPipeUsageRule, which takes
adwantageof the existing job encapsulationBasedon the
quality of protectionconcernsdiscussedn section3, we
have decidedto employ the UnnamedPipe UsageRule in
LOMAC, at leastuntil we encountera discouragingjob-
relatedfailure. Regardlessof the rule we useto handle
unnamedipes,the mappingof the subjectconceptto the
job abstractionis essentialto the avoidanceof the Self-
RevocationProblemin shellpipelines,sinceit ensureghat
all processem agivenjob arealwaysatthesamdevel. The
diagramin figure 5B shavs the sameC shell job-creation
algorithm as figure 5A, exceptthatit picturesonly those
aspectof the algorithmthat are pertinentwhenusingthe
improvedapplicationof the Low WaterMark model’s con-
ceptswith the UnnamedPipe UsageRule. The unnamed
pipeis notshawvn in thediagram sincetheimprovedappli-
cationof modelconceptsdoesnot considerit to be an ob-
ject. Only two subjectsxist attheendof thealgorithm:the
shellandthenew job it hascreated.TheshellpipelineSelf-
RevocationProblemdiagrammedn figure 4 cannotoccur
in theimprovedprototype sincetheentirejob is considered
a single subject,andthe useof unnamedipesis invisible
to the Low WaterMark mechanism.

Although shell pipelinesarethe mostcommonsituation
in which the Self-RevocationProblemcanleadto failures
in applicationfunctionality, it is nottheonly one.IPC done

via sharedmemory abstractionssuch as semaphoresnd
writablesharednemorysegmentsarevulnerableaswell. A

solutionto the Self-RevocationProblemsimilar to the Un-

namedPipeUsageRuleis notpracticalin thecaseof shared
memoryabstractiorlPC. Unlike shell pipelineIPC, shared
memoryabstractionPC cannotbe neatly containednside
anoperatingsystemabstractionsuchasthejob. A rule that
constrainecgsharednemoryabstractionPC to memberof

the samejob would be compatiblewith thoseapplications
which usesharedmemorywithin a single job, perhapsto

simulatemulti-threading. However, it would be incompat-
ible with thoseapplicationswhich usesharedmemoryab-
stractiongo supportlPC betweerclientandsener compo-
nentsexecutingin separatgobs. This potentialfor incom-

patibility would be unacceptablaccordingto our Compat-
ibility Goals.

Consequently the improved version of the LOMAC
prototypeusesa differentstrateyy to supportsharedmem-
ory abstractionPC while maintainingintegrity protection:
it extendsthe Low WaterMark model by introducingthe
notionof a“group”. Thegroupnotionallows the extended
Low WaterMark modelto treatall thosesubjectghatshare
a particularsharedmemoryabstractionas a unit, without
considerationfor the read and write IPC operationsoc-
curring amongthem. Justas the encapsulatiorprovided
by the operatingsystems job abstractionallows the im-
proved LOMA C prototypeto avoid occurrencesf the Self-
Revocation Problemin shell pipelines,the encapsulation
providedby thegroupnotionallowsthe LOMA C prototype



A:

Original Definitions:

S :
0:
I

o~

il :

l

LS

S

|,

theuniversalsetof subjects;

theuniversalsetof objects;

theuniversalsetof integrity levels;

afunctionS U O — I definingtheintegrity level associatedvith eachsubjectandobject;
a reflexive, symmetric,andtransitive relation(a subseiof I x I) thatdefinesthe “less-
than-orequal’relationshipon ;

afunction POWERSET(I) — I returningthe greatestower boundof the specified
subsebf I; moreformally (i1 = min(z) = (i1 € z A Vis € z, i1 leq is));
arelation(asubsebf S x 0) thatdefinesthefactthata subject,s € S, hasobsenedan
object,o € O,s00;

arelation(asubsebf S x O) thatdefinesthe factthata subjects € S, hasmodifiedan
object,o € O, s m o;

arelation(asubsebf S x S) thatdefineghefactthatasubjects; € S, hasinvokedanother
subject,ss € S, s1 i s5. LOMAC interpretsnvocationassignalandsetpgrpoperations.

Original Axioms:

(A1)
(A2)
(A3)

Vs €S, 0€ 0, smo=il(o) leq il(s)
Vsi,82 € S, 51152 = il(s2) leq il(s1)

Vs€S,0€0, soo = il'(s) = min{il(s), il(o) }

(originally A3.1, revised)
(originally A3.2, retained)
(originally A3.3, retained)

B:

Additional Definitions:

a:

[

grou

a reflexive and antisymmetricrelation (a subsetof S x S) that definesthe fact that a
subject,s; € S, hasattachedo a sharedmemoryabstractiorto which anothersubject,
s9 € S is alreadyattacheds; a s»;

areflexive,symmetricandtransitve relation(asubsebf S x S) thatdefineshefactthat
onesubject,s; € S, sharesat leastone sharednemoryabstractionwith anothersubject,
directly orindirectly, so € S, s1 s s2;

afunctionS — POWERSET(S) returningthe setcontainingthe specifiedsubject,
alongwith all thoseothersubjectsthat share directly or indirectly, a sharedmemoryab-
stractionwith the specifiedsubject.More formally: group(s1) = {s2:s2 851}

Table 1. Axioms and Definitions for the Original (A) and Extended (B) Low Water-Mark Models

to avoid occurrencesf the Self-RevocationProblemduring
sharednemoryabstractiodPC.

The group notion also provides a secondary practical
benefit. As describedn section3, LOMAC usesinterposi-
tion attheoperatingsystems systencall interfaceto detect
operationscorrespondingo the Low WaterMark model’s
notionof obsene andmodify. Unfortunatelyin the caseof
sharedmemoryabstractionstheseoperationsare not vis-
ible at the systemcall interface,and consequentlycannot
be detectechy LOMAC. Sincethe groupnotion makesob-
seneandmodify operation®nsharednemoryabstractions
irrelevantto the extendedLow WaterMark model,it obvi-
atesL OMAC’s needto detectthem.

Wewill now presenthegroupextensionin formalterms,
and argue that the extendedLow WaterMark model pro-

videsintegrity protectionat leastas strongasthe original
model.We usea notationsimilar to thatusedin theoriginal
model’s description[5]. Table 1A containsthe definitions
and axiomsfor the original Low WaterMark model. Our
extendedmodelretainsall of these gxceptfor axiom (A1),
which we will reviseto accommodat®eur newv groupcon-
cept. We use— to indicatefunction mapping,and = to
indicateimplication. We useil to indicatea level beforean
event,andil’ to indicatea level after an event. For exam-
ple,in Axiom (A1), il(s) representshelevel of s beforeit
obsenedo, andil'(s) is its level afterit obseredo.

Table 1B containsthe three definitionsrequiredto ex-
tend the Low WaterMark model. Thefirst is the a rela-
tion, which canbe appliedto the operatingsystemservices
which allow a subjectto attach(acquireaccessjo ashared



Figure 6. Information Transfer Path

memoryabstraction.In orderto avoid the Self-Resocation
Problem,we wish to avoid representinghe actualshared
memoryabstractionsisobjects.Consequentlywe describe
a asa relationthat links one subjectto anotherin a shar

ing relationship ratherthanarelationthatlinks a subjectto

somekind of object. Theuseof thea relationis governedby

Axiom (A4), which preventssubjectsat lower levels from

corruptingsubjectsat higher levels by attachingto them.
More precisely:

Axiom (A4) Vs1,s2 € S, 81 a 82 = il(s2) leqil(s1).

Our useof the a operationis pessimistic:it doesnot dis-

tinguishbetweerharmlesgead-onlyattachmentanddan-
gerousread-writeattachments.As describedn table 1B,

the a relationis antisymmetric. We requirethis property
to distinguishbetweenthe situationss; a s; andss a s;.

In the casewheres; andss have differentlevels, only one
of thesetwo situationsis allowablein a correctsystemac-
cordingto Axiom (A4). However, in ourtheoremswe wish

to usethe group functionto describethe setof all subjects
thatsharememorywith agivensubjectregardles®f which

subjectswereattacherandwhich wereattacheesln order
to supporta succinctdefinition of group, table 1B defines
asecondelation,s, which hasthe symmetricandtransitve
properties. The useof the s relationis governedby Ax-

iom (A5), which stateghatonceonesubijectis attachedo

anotherit becomegpartof alargergroupthatsharesmem-
ory througha graphof directandindirect bidirectionalat-

tachmentsMore precisely:

Axiom (A5) Vs1,s2 € S, 81 a 82 = 518 S2.

Table 1B’s third definitionis for the group relation,which
describegyroupsof subjectshat sharememory definedin
termsof the s relation.

The extendedLow WaterMark model provides integ-
rity protectionby ensuringthat all subjectsin a particular
groupremainat the samelevel. Axiom (A6) ensureghat
higherlevelledsubjectghatjoin alowerlevelledgroupare
demotedo bring theminto compliance More precisely:

Axiom (AB) Vsi,s85 €S, s1a8 =
il'(s1) = min{ il(s1), il(ss) }.

Similarly, the extendedLow WaterMark model ensures
thatall subjectsn a particulargrouparedemotedasa unit
whene&er onememberof the groupobsenesan objectbe-
neaththegroup’slevel. More precisely:

Axiom (A7) Vsy € group(s1),0€ O, s1 00 =
il'(s2) = min{ il(s1), il(o) }.

Axiom (A7) revisesandreplaceghe original Axiom (A1)
in the extendedLow WaterMark Model. The operationof
Axiom (A7) is effectively identicalto that of Axiom (Al),
exceptthat Axiom (A7) demotesa group of subjectsasa
unit whereAxiom (A1) demoteonly asinglesubject.Due
to this similarity, the original Low WaterMark Model re-
mainsas a specialcaseof the extendedLow WaterMark
modelwhereno subjectsharesnemorywith another This
specialcasecanbe describednorepreciselyas:

SpecialCaseProposition (P1) Vs € S,
group(s) = {s}.

Corollary (C1) Thesurvival of the original Low Water
Mark model in the special casewhere Proposition(P1)
is true can be demonstratedy deriving the original Ax-
iom (Al) from its replacemen{A7). In the specialcase
describediy Proposition(P1), all groupscontainonly one
subject.ConsequentlygivenProposition(P1),thetwo sub-
jectsdescribedn Axiom (A7) asss € group(s;) areactu-
ally the samesubjectwhichwe maynames. By replacing
reference$o s; ands, in Axiom (A7) with thesinglerefer
ences, we derive Axiom (Al). Thereforethe demotionbe-
havior of the extendedLow WaterMark modelis identical
to the demotionbehavior of the original Low WaterMark
modelin the specialcasedescribedy Proposition(P1).

We now arguethatthe extendedLow WaterMark pro-
vides at leastas much integrity protectionas the original
Low WaterMark modelby applyingthe sametestapplied
to the extendedmodelaswasappliedto the original in [5].
We definethenotionof informationtransfermpath,andshowv
thatinformationcannotflow from lowerto higherlevelsvia
suchapath.

Thediagramin figure6 presentshestructureof apathin
termsof the extendedLow WaterMark modelconcepts It
shaws a seriesof subjectshumbereds; throughss, trans-
ferring dataserially througha seriesof objects,numbered



A:

Additional Definitions:
hop :
path :

09 path o, = I < 0g,..., 04, ...

a relation (a subsetof O x O) defining individual “hops” in an information transferpath, where
informationis transferedrom oneobject,o; € O, to anotheros € O, 01 hop 0,. More precisely:
Voi,00 € O, 01 hopoy = Js1,80 €S | (81001 A samoy A sy € group(sy) ).
arelation(asubsebf O x O) definingasequencef n + 1 objects< oy, ...,
in aseriesof n hopso; hop 0,41, Where0 < i < n, calledaninformationtransferpath.More precisely:
,0p >€ (0] | VO0§i<n :

04, ---, 0, >€ O connected

0; hop 0i11

B:

Proof:

—~

s1001) N (s2m oy
ﬂ' s2) = min{ il(s1),
il (s2) leg il(o1)
il(02) leg il (s2)
il(02) leg il(o1)
tep5 is thelemma;thelemmais correct.

) A (52 € group(s1) )

l(o1) }

oA wN e

Lemma (L1) A hopdoesnot allow the transferof informationfrom a lower-levelled objectto a higherlevelled
one.More precisely:Yo;,02 € O, 01 hop 02 = il(02) leq il(01).

given

3,4, transitive propertyof leq

1, (A7)
2, definitionof min
1,(A2)

C:

Yoy, 0, € O, 0oy path o, = il(oy,) leg il(0p).
Proof:
1.

Theorem (T1) The extendedLow WaterMark model preventsdatafrom flowing from low-levelled objectsto
higherlevelled objectsthrough an information transferpath, just as the original model does. More precisely:

First, considerthe basecaseof aninformationtransferpathcontainingonly 1 hop (n = 1):

Assumingtheorem(T1) is correctfor the caseof aninformationtransferpathwith j hops(n = j), consideithe

09 hop 01 basecaseassumptiongefinitionof path

2. il(o1) legil(op)  1,(L1)

3.
inductive caseof aninformationtransferpathwith j + 1 hops(n = j + 1):
il(0;) leg il(oo) inductive caseassumption

4. o0; hopojt1 3, definitionof path

5. il(oj+1) legil(o;) 4,(L1)

6. il(oj+1)legil(oo) 3,5, transitve propertyof leg

Step6 indicatesthat, giventhatthe theoremis correctfor a pathwith j hops,it is alsocorrectfor a pathwith j + 1
hops.Accordingto thefirst principle of mathematicainduction,this fact,coupledwith theresultof step2, indicates
thatthetheoremis correctfor all informationtransferpathswith afinite lengthof 1 or morehops.

Table 2. Definitions for Information Transfer Paths (A), Lemma (L1) (B), and Theorem (T1) (C).

0p throughos. Thesubjectsaccomplistthetransferin ase-
ries of threehops,shavn enclosedn dashedoxes. In the
first hop, subjects; obsenesthe objectto its left, acquir
ing information, and subsequentlynodifies the objectto
its right, transferringthe informationfrom oneto the other
This patternis repeatedn the secondandthird hops, ex-
ceptthatin thesecasespnesubjectdoestheobservingand
anothersubjectin its groupdoesthe modifying. In the sec-
ondandthird caseswe assumeéhatthe datais passedrom
the observingsubjectto the modifying subjectvia shared

memoryabstractionPC. In thesecasestheflow within the
groupvia read/writememoryoperationds invisible to the
model. Furthermoreasin the original descriptionof infor-
mationtransferpath,we assumehatthe obsene andmod-
ify operationsareatomic,andoccurserially; in orderfrom
left to right acrossall threehopsin the diagram.

We demonstratéhe integrity protectionprovided by the
extendedLow WaterMark modelby shawving that the ob-
ject at the beginning of the pathis alwaysat leastas high
in level asthe objectatits end. Thatis, thatthe modelpre-



ventsthe spreadof datacorruptionby preventinginforma-
tion from flowing “upstreamfrom objectsat low levelsto
objectsat a higherlevels. Table 2A containsprecisedefi-
nitions of our notionsof hop andpath. Using thesedefini-
tions, we first shov with Lemma(L1) in table 2B thatthe
extended_ow WaterMark preventsupstreanflowsin indi-
vidual hops. Next, with Theorem(T1) in table2C, we use
Lemma(L1) to shav inductively that upstreamflows are
notpossiblein pathsmadeup of oneor morehops.

Corollary (C1) shovs thatthe original Low WaterMark
model’s demotion behaior is a special caseof the ex-
tendedmodel’s behaior. Theorem(T1) demonstratethat
theextended_ow WaterMark modelpreventstheupstream
spreadof corruptionthroughinformationtransferpathsin
the samemannerasthe original Low WaterMark model.
Basedon this evidence,we assertthat the extendedLow
WaterMark modelprovidesat leastasmuchintegrity pro-
tectionastheoriginal.

6 Relatedwork

LOMAC is not the only experimentthat testsa hy-
pothesisconcerninghe applicability of integrity protection
extensionsto deployed COTS systems. The Janus[13]
and TCP Wrappers[30] projects are both examples of
Interposition-basedaccesscontrol extensionsfor COTS
UNIX ervironmentswhich have a relatively low Partial
CompatibilityCost. TCPWrapperdocusesonaccessnade
by remoteclientsto local services(daemons). Janus,on
the other hand, focuseson mediating systemcalls made
by local processesjust asLOMAC does. Janusis capa-
ble of enforcingpoliciesbasedon a variety of AMM mod-
els, while LOMAC enforcesonly Low WaterMark poli-
cies. However, basedon the performanceesultsof other
kernel-residentnechanismghat Interposetheir control at
the systemcall interface,suchas SLIC [11] and Generic
SoftwareWrapperqd10], we expectthe LOMAC to degrade
applicationperformancdessthanJanuswhich operategn-
tirely in userspace.SLIC andGenericSoftware Wrappers
provide generalizedLKM and Interpositionfunctionality
that could be usedto implementa prototypelike LOMAC.
Their usemight increasePartial Compatibility Cost, how-
ever, sinceanadoptemwouldfirst haveto configuretheSLIC
or GenericSoftwareWrapperssystembeforetakingadwan-
tageof LOMAC’s configuration-freddefault Policy.

Not everyattemptto applykernel-residenaccesgontrol
is an attemptto explore our hypothesisconcerningits ap-
plicability to existing COTS systems.Someprojects,such
asDTE [3], KSOS[20], RSBAC [24], andUCLA Secure
UNIX [26] have appliedkernel-residentaccesscontrol to
the COTS UNIX ervironmentby modifying the operating
systematthe sourcecodelevel, to theextentof introducing
a new architecturen somecases.Unlike LOMAC, these

projectsemphasizéhe provision of high-quality protection
beforethe minimizationof Total Compatibility Cost. Their
approachrequiresthe expensve replacemenbf deployed
COTS operatingsystemsn orderto provide protectionin
productionervironments. The costis reducedsomavhat
by the similarity betweerthe original andmodifiedoperat-
ing systemgrom theperspectie of userspaceapplications.
Also, DTE reduceghis costfurther by retainingthe origi-
nal file systemformat, allowing the useof the unmodified
operatingsystemafter a reboot. However, the costis still
greatethanLOMAC's. In exchangdor thisincreasedost,
theseprojectsgaina higherquality of protectionandassuf
ancethan LOMAC. The LOMAC experiments emphasis
on compatibility beforequality of protectionandassurance
is not a suggestiorthatassurancés not requiredin todays
COTS ernvironments. To the contrary the circumstances
we describedo justify the needfor LOMAC in sectionl
canalsobetakenasargumentdor the needfor greateras-
surancg19]. LOMAC is a meansof testingour hypothe-
sis. Regardlessof the outcomeof our experiment,it will
not provide evidenceagainstthe argumentthat assurance
andhigh-quality protectioncan overcomesignificantTotal
Compatibility Costandgainacceptancen the COTS ervi-
ronmentgivensufiicienttime.

7 Conclusions

The LOMAC projectis an ongoing experimentto test
the hypothesighat a kernel-residenaccessontrol mech-
anismcanbe widely acceptedasan extensionto deployed
COTS systemgrovidedthatit providessomeusefulinteg-
rity protectionat a suficiently low Total Compatibility
Cost. As of this time, the prototypeitself containsonly
enoughfunctionality to prove the viability of our applica-
tion of the Low WaterMark model's conceptdo the COTS
Linux environment. It is not yet matureenoughto deploy
in productionervironments Althoughimplementatiorcon-
tinues,we discusghe quality of protectionand Total Com-
patibility Costof LOMAC asit existstoday As described
in section3, LOMAC's architecturetradesquality of pro-
tectionfor decreaseéartial Compatibility Costthroughits
useof an LKM and Interposition. The choiceof the the
Low WaterMark modeloverthe otherAccessMatrix Mod-
elsdescribedn section2 alsoinvolvessuchatradeof. The
Low WaterMark modelhastwo significantdisadwantages
in termsof protection,whencomparedo modelssuchas
Type EnforcemenandDTE.

First, the Low WaterMark models ability to confine
subjectsaaccordingo the Principleof LeastPrivilegeis lim-
ited [27, 31]. The scenarioin section4 describedhow
LOMAC's Default Policy protectslevel 2 objectsfrom a
compromisedevel 1 subject. It is importantto note, how-
ever, thata compromisedsubjectis all-powerful at its own



level andbelon. The Default Policy providesno protection
for other subjectsand objectsat level 1. This deficieny

couldbeaddressetly theadditionof Integrity Cateyoriesto

complementhe model’s existing level concepf18]. How-

ever, the assignmenof Integrity Categoriesto existing ob-
jectsat configurationtime could requiretoo much knowl-

edgeof the behaior of individual usersanddaemongo be
accomplishecutomaticallyin the Default Policy. The po-
tential of this solutionin thecontext of LOMAC remaingo

beexplored.

Secondthe Low WaterMark model cannotimplement
AssuredPipelines,and mustrely on the executionof for-
mally verified programsto provide integrity protectionin
somesituationg6]. TheDefault Policy avoidsthisreliance,
sinceformally verified programsarescarcan COTS Linux
ervironments. Consequentlyit cannotprotectthe integ-
rity of the systemlog object. The log object mustreside
atlevel 1 sothatall subjectscanwrite their log messages
to it. However, asdescribedabove, level 1 objectsarevul-
nerableto all compromisedsubjects. This deficiengy can
be addressedo someextent throughthe use of Partially
TrustedSubjectd17]. Thesearesubjectswvhich, while ex-
ecutingaformally verifiedprogramreceve alimited setof
additionalprivilegesthat enablethemto performsomeex-
ceptionaltask. By limiting the setof additionalprivileges,
ratherthanallowing the subjectto operatewithout ary re-
strictions.thisapproachimits thenumberof programprop-
ertiesthat mustbe formally verified. We have appliedthis
techniqueto the systemlog objectproblemwith somesuc-
cessHowever, theLow WaterMark model'slimited ability
to enforcethe Principleof LeastPrivilege makesit difficult
to definelimited setsof additionalprivileges,makingit pro-
portionallydifficult to reducetherequiredamountof formal
verificationwork in ameaningfulway.

Despitetheseshortcomings L OMAC managedo pro-
vide someusefulintegrity protectionat a low Partial Com-
patibility Cost, as describedin sections2 and 4. Sec-
tion 5 describesour efforts to avoid runtime situationsin
which LOMA C causesapplicationfailuresby mappingthe
model’s subjectconcepto the Linux job abstractionanda
groupingof subjectshasedon sharednemoryabstractions.
Our experienceto datewith the LOMAC prototypeandits
Default Policy suggestghat LOMAC avoids suchfailures
well enoughto allow productive work andalow Total Com-
patibility Cost.Althoughtheimpracticalityof formally ver-
ifying thefailure-freebehaior of all applicationprograms
will probablyprevent us from ever claiming that low To-
tal Compatibility Costcanbe achievedin the generalcase,
suchaclaimmaybepracticallyverifiablein thespecialcase
of the Default Policy.

As describedn section5, the Self-RevocationProblem
cancausenapplicationto fail only whenLOMA C demotes
the subjectexecutingthe application. Under the Default

Policy, thevastmajority of applicationsxecuteat the low-
estlevel, 1, and are consequentlynot demotableand im-
muneto the Self-RevocationProblem. Applicationswhich
executeat level 2 arefar fewer, andaremainly administra-
tivein nature.An analysiof thesetof administratve appli-
cations,or at leasta minimal essentiabetof theseapplica-
tions,maybetractable COTS UNIX distributionsdesigned
to fit on a single 1.44MB floppy disk, suchas PicoBSD,
containsuchminimal essentiakets. This analysismay al-
low usto characterizé OMAC's Total Compatibility Cost
while enforcingthe Default Policy.

8 Notes

Theauthorwould like to thankLee Badger HongyulLu,
and Wayne Morrison for mary helpful discussions. This
work benefittedgreatly from their review, insight, andad-
vice.

PicoBSDis a versionof FreeBSD,a RegisteredTrade
Mark of FreeBSD,Inc. andWalnut Creek CDROM. So-
larisis a RegisteredTradeMark of SunMicrosystems|nc.
UNIX is a RegisteredTradeMark of the X/OpenCompaly,
Ltd. Windows NT is a RegisteredTradeMark of the Mi-
crosoftCorporation.
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