
Toward a Unified Artificial Intelligence

Pei Wang
Department of Computer and Information Sciences

Temple University
pei.wang@temple.edu

http://www.cis.temple.edu/∼pwang/

Abstract

To integrate existing AI techniques into a consistent sys-
tem, an intelligent core is needed, which is general and
flexible, and can use the other techniques as tools to
solve concrete problems. Such a system, NARS, is in-
troduced. It is a general-purpose reasoning system de-
veloped to be adaptive and capable of working with in-
sufficient knowledge and resources. Compared to tra-
ditional reasoning system, NARS is different in all ma-
jor components (language, semantics, inference rules,
memory structure, and control mechanism).

Intelligence as a whole
Artificial intelligence started as an attempt to build a
general-purpose thinking machine with human-level intel-
ligence. In the past decades, there were projects aimed at
algorithms and architectures capturing the essence of intelli-
gence, such as General Problem Solver (Newell and Simon,
1976) and The Fifth Generation Computer Project (Feigen-
baum and McCorduck, 1983). After initial excitement, how-
ever, all these projects failed to meet the goal, though they
contributed to the AI research here or there.

The lesson many people learned from this history is that
there is no such a thing called “intelligence”, and it is just
a convenient way to address a collection of cognitive ca-
pacities and functions of the human mind. Consequently,
the majority of the AI community have turned to various
concrete problems. Many achievements have been made on
these subfields, but are we really approaching the “thinking
machine” dream? It is true that a complicated problem has
to be cut into pieces to be solved one by one, but if everyone
cuts the problem in his/her own way, and only works in a
small piece obtained in this manner, we have no reason to
believe that the solutions can later be put together to form a
solution to the original problem (Brooks, 1991).

People who still associate themselves to the original AI
dream find the current situation disappointing. As Minsky
said: (Stork, 1997)

The bottom line is that we really haven’t progressed
too far toward a truly intelligent machine. We have col-
lections of dumb specialists in small domains; the true
majesty of general intelligence still awaits our attack.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We have got to get back to the deepest questions of AI
and general intelligence and quit wasting time on little
projects that don’t contribute to the main goal.

Piaget said: (Piaget, 1963)

Intelligence in action is, in effect, irreducible to every-
thing that is not itself and, moreover, it appears as a to-
tal system of which one cannot conceive one part with-
out bringing in all of it.

This opinion does not deny that intelligence includes
many distinguishable functions carried out by distinct mech-
anisms, but it stresses the close relations among the func-
tions and processes, which produce intelligence as a whole.

Technically, it is not difficult to build hybrid systems us-
ing multiple AI techniques, by letting several modules (each
is based on a different technique) cooperate in the system’s
activities. However, there are deep issues in this approach.
Since different AI techniques are usually developed accord-
ing to very different theoretical assumptions, there is no
guarantee that they can correctly work together. It is easy
to pass data from one module to another one, but if the two
modules interpret the data differently, the system’s integrity
can be damaged. Furthermore, if different techniques are
applicable to the same type of problems, the system needs a
mechanism to decide which technique to use for a new prob-
lem, or how to reach a consensus from the results obtained
from different techniques.

If the existing domain-specific AI techniques are seen as
tools, each of which is designed to solve a special prob-
lem, then to get a general-purpose intelligent system, it is
not enough to put these tools into a toolbox. What we need
here is ahand. To build an integrated system that is self-
consistent, it is crucial to build the system around a general
and flexiblecore, as the hand that uses the tools coming in
different forms and shapes.

The situation here is also similar to the programs in a
computer system, where one program, the operating system,
occupies a special position. While the other programs are
developed in various ways to solve specific problems out-
side, an operating system is consistently developed to solve
the problem of the system itself, by managing the processes
and the resources of the system. What we need now is like
an “intelligent operating system” that knows how to run the
various AI programs.



It is important to understand that such an “intelligent
core” should be designed and evaluated in a way that is fun-
damentally different from that of the “intelligent tools”, be-
cause it faces a different problem. An operating system usu-
ally does not solve any problem that are solved by the appli-
cation programs, and a hand is usually not as good as a spe-
cially designed tool in solving a specific problem. A system
with “general intelligence” does not necessary work better
than a non-intelligent one on a concrete problem. Actually
the situation is usually the opposite: for anygivenproblem,
it is always possible to design a tool that works better than
our hands. However, with their generality, flexibility, and
efficiency, our hands are more valuable than any tools.

If that is the case, then what is the standard of a good
intelligent core? It should had the following properties:

• It should be based on a theory that is consistent with the
research results of artificial intelligence, psychology, phi-
losophy, linguistics, neuroscience, and so on.

• It should use a technique that is general enough to cover
many cognitive facilities, and can be efficiently imple-
mented in existing hardware and software.

• It should be able to use various kinds of tools that are not
developed as parts of the system.

In the following, such a system is introduced.

Theoretical foundation
The system to be discussed in this paper is NARS (Non-
Axiomatic Reasoning System). This system is designed ac-
cording to the belief thatintelligence is the capacity of a
system to adapt to its environment while operating with in-
sufficient knowledge and resources(Wang, 1995).

NARS communicates with its environment in a formal
language. The stream of input sentences, representing tasks
the system needs to carry out, is the system’sexperience.
The stream of output sentences, representing results of the
task-processing activity, is the system’sbehavior. The sys-
tem works by carrying out inference activities. In each infer-
ence step, a formal rule is applied to derive conclusions from
premises. The memory and control mechanism manages the
resources of the system, by distributing the available time-
space resources among inference activities.

To adapt means that the system learns from its experi-
ences, that is, when processing the tasks, the system behaves
in such a way that as if its future experience will be similar
to the past experience.

Insufficient knowledge and resourcesmeans that the sys-
tem works under the following restrictions:

finite: The system has a constant information-processing
capacity.

real-time: All tasks have time requirements attached.

open: No constraint is put on the content of a task that the
system may be given, as long as it is expressible in the
formal language.

Psychologists Medin and Ross told us, “Much of intelli-
gent behavior can be understood in terms of strategies for

coping with too little information and too many possibili-
ties” (Medin and Ross, 1992). Such an idea is not too novel
to AI. Actually, several subfields in AI directly deal with
“too little information and too many possibilities”, like in
heuristic search, reasoning under uncertainty, and machine
learning. However, each of the previous approaches usu-
ally focuses only on one issue, while NARS is an attempt to
address all of these issues. “Insufficient knowledge and re-
sources”, defined as above, is a more severe restriction than
similar ones like “bounded rationality”, “incomplete and un-
certain knowledge”, and “limited resources”.

The framework of a reasoning system is chosen for this
project, mainly because of the following reasons:

• It is a general-purpose system. Working in such a frame-
work keeps us from being bothered by domain-specific
properties, and also prevents us from cheating by using
domain-specific tricks.

• It uses a rich formal language, especially compared to the
“language” used in multiple-dimensional space, where a
huge number of dimensions are needed to represent a
moderately complicated situation.

• Since the activities of a reasoning system consists of in-
dividual inference steps, it allows more flexibility, es-
pecially compared to the algorithm-governed processes,
where the linkage from one step to the next is fixed, and
if a process stops in the middle, no valid result can be got.

• Compared with cognitive activities like low-level percep-
tion and motor control, reasoning is at a more abstract
level, and is one of the cognitive skills that collectively
make human beings so qualitatively different from other
animals.

• As will be displayed by this paper, the notion of “reason-
ing” can be extended to cover many cognitive functions,
including learning, searching, categorizing, planning, de-
cision making, and so on.

Limited by the paper length, NARS is only briefly de-
scribed here. For related publications and a prototype of the
system (a Java applet), please visit the author’s homepage.

The core logic
The core logic of NARS has been described in detail in
(Wang, 1994; Wang, 1995).

NARS uses a categorical language that is based on an
inheritancerelation, “→”. The relation, in its ideal form,
is a reflexive and transitive binary relation defined between
terms, where a term can be thought as the name of a con-
cept. For example, “raven→ bird” is an inheritance state-
ment with “raven” as subject termand “bird” as predicate
term. Intuitively, it says that the subject is aspecialization
of the predicate, and the predicate is ageneralizationof the
subject. This statement roughly corresponds to the English
sentence “Raven is a kind of bird”.

Based on the inheritance relation, theextensionand in-
tensionof a term are defined as the set of terms that are its
specializations and generalizations, respectively. That is, for
a given termT , its extensionTE is the set{x | x→ T}, and
its intensionT I is the set{x | T →x}.



Given the reflexivity and transitivity of the inheritance re-
lation, it can be proved that for any termsS andP , “S→P ”
is true if and only ifSE is included inPE , andP I is in-
cluded inSI . Therefore, “There is an inheritance relation
from S to P ” is equivalent to “P inherits the extension ofS,
andS inherits the intension ofP ”.

When considering “imperfect” inheritance statements, the
above result naturally gives us the definition of (positive and
negative) evidence. For a given statement “S → P ”, if a
termM in bothSE andPE , or in bothP I andSI , then it
is a piece of positive evidence for the statement, because as
far asM is concerned, the stated inheritance is true; ifM in
SE but not inPE , or in P I but not inSI , then it is a piece
of negative evidence for the statement, because as far asM
is concerned, the stated inheritance is false; ifM is neither
in SE nor in P I , it is not evidence for the statement, and
whether it is also inPE or SI does not matter.

Let us usew+, w−, andw for the amount of positive,
negative, and total evidence, respectively, then we have

w+ = |SE ∩ PE |+ |P I ∩ SI |
w− = |SE − PE |+ |P I − SI |
w = w+ + w−

= |SE |+ |P I |

Finally, the truth value of a statement is defined as a pair
of numbers<f, c>. Heref is called thefrequencyof the
statement, andf = w+/w. The second componentc is
called theconfidenceof the statement, andc = w/(w + k),
wherek is a system parameter with 1 as the default value.
For a more detailed discussion on truth value and its relation
with probability, see (Wang, 2001b).

Now we have got the basics of theexperience-grounded
semanticsof NARS. If the experience of the system is a set
of inheritance statements defined above, then for any term
T , we can determine itsmeaning, which is its extension and
intension (according to the experience), and for any inher-
itance statement “S → P ”, we can determine its positive
evidence and negative evidence (by comparing the meaning
of the two terms), then calculate itstruth valueaccording to
the above definition.

This new semantics explicitly defines meaning and truth
value in a language used by a system in terms of the ex-
perience of the system, and is more suitable for an adap-
tive system. NARS does not use model-theoretic seman-
tics, because under the assumption of insufficient knowl-
edge, the system cannot be designed according to the notion
of a “model”, as a consistent and complete description of the
environment.

Of course, the actual experience of NARS is not a set
of binary inheritance statements, nor does the system de-
termine the meaning of a term or the truth value of a state-
ment in the above way. The actual experience of NARS is
a stream ofjudgments, each of which is a statement with a
truth value (represented by the<f, c> pairs). Within the
system, new judgments are derived by the inference rules,
with truth-value functions calculating the truth values of the
conclusions from those of the premises. The purpose of the
above definitions is todefinethe truth value in an idealized

situation, so as to provide a foundation for the inference
rules and the truth-value functions.

NARS uses syllogistic inference rules. A typical syllo-
gistic rule takes two judgments sharing a common term as
premises, and derives a conclusion, which is a judgment be-
tween the two unshared terms. For inference among inheri-
tance judgments, there are three possible combinations if the
two premises share exactly one term:

{M→P <f1, c1>, S→M <f2, c2>} ` S→P <Fded>
{M→P <f1, c1>, M→S <f2, c2>} ` S→P <Find>
{P→M <f1, c1>, S→M <f2, c2>} ` S→P <Fabd>

The three rules above correspond todeduction, induction,
and abduction, respectively, as indicated by the names of
the truth-value functions. In each of these rules, the two
premises come with truth values<f1, c1> and<f2, c2>,
and the truth value of the conclusion,<f, c>, is a function
of them — according to the experience-grounded semantics,
the truth value of the conclusion is evaluated with respect to
the evidence provided by the premises.

These truth-value functions are designed in the following
procedure:
1. Treat all relevant variables as binary variables taking 0

or 1 values, and determine what values the conclusion
should have for each combination of premises, according
to the semantics.

2. Represent the variables of conclusion as Boolean func-
tions of those of the premises, satisfying the above condi-
tions.

3. Extend the Boolean operators into real number functions
defined on [0, 1] in the following way:

not(x) = 1− x
and(x1, ..., xn) = x1 ∗ ... ∗ xn

or(x1, ..., xn) = 1− (1− x1) ∗ ... ∗ (1− xn)

4. Use the extended operators, plus the relationship between
truth value and amount of evidence, to rewrite the func-
tions as among truth values (if necessary).

For the above rules, the resulting functions are:

Fded : f = f1f2 c = f1f2c1c2

Find : f = f1 c = f2c1c2/(f2c1c2 + k)
Fabd : f = f2 c = f1c1c2/(f1c1c2 + k)

When two premises contain the same statement, but
comes from different sections of the experience, the revision
rule is applied to merge the two into a summarized conclu-
sion:

{S→P <f1, c1>, S→P <f2, c2>} ` S→P <Frev>

Frev : f = f1c1/(1−c1)+f2c2/(1−c2)
c1/(1−c1)+c2/(1−c2)

c = c1/(1−c1)+c2/(1−c2)
c1/(1−c1)+c2/(1−c2)+1

The above function is derived from the additivity of the
amount of evidence and the relation between truth value and
amount of evidence.

The revision rule can be used to merge less confident con-
clusions, so as to get more confident conclusions. In this
way, patterns repeatedly appear in the experience can be rec-
ognized and learned.



Compound terms
In the history of logic, there are theterm logic tradi-
tion and thepredicate logic tradition (Bochénski, 1970;
Englebretsen, 1996). The former usescategoricalsentences
(with a subject term and a predicate term) andsyllogistic
rule (where premises must have a shared term), exemplified
by Aristotle’s Syllogistic (Aristotle, 1989). The latter uses
functionalsentences (with a predicate and an argument list)
andtruth-functionalrules (where only the truth values of the
premises matter), exemplified by first-order predicate logic
(Frege, 1970; Whitehead and Russell, 1910).

From the previous description, we can see that NARS uses
a kind of term logic. To address the traditional criticism on
the poor expressive power of term logic, in NARS the logic
allows “compound term”, i.e., terms built by term operators
from other terms.

First, two kinds ofsetare defined. Ift1, · · · , tn (n ≥ 1)
are different terms, anextensional set{t1, · · · , tn} is a
compound term witht1, · · · , tn as elements, and aninten-
sional set[t1, · · · , tn] is a compound term witht1, · · · , tn
asattributes.

Three variants of the inheritance relation are defined as
the following:

• Thesimilarity relation “↔” is symmetric inheritance, i.e.,
“S↔P ” if and only if “ S→P ” and “P →S”.

• The instancerelation “◦→” is equivalent to an inheritance
relation where the subject term is an extensional set with
a single element, i.e., “S◦→P ” if and only if “ {S}→P ”.

• Thepropertyrelation “→◦” is equivalent to an inheritance
relation where the predicate term is an intensional set with
a single attribute, i.e., “S→◦P ” if and only if “ S→ [P ]”.
If T1 andT2 are different terms, no matter whether they

are sets or not, the following compound terms can be defined
with them as components:

• (T1 ∩ T2) is theirextensional intersection, with extension
TE

1 ∩ TE
2 and intensionT I

1 ∪ T I
2 .

• (T1 ∪ T2) is their intentional intersection, with intension
T I

1 ∩ T I
2 and extensionTE

1 ∪ TE
2 .

• (T1 − T2) is their extensional difference, with extension
TE

1 − TE
2 and intensionT I

1 .

• (T1 	 T2) is their intentional difference, with intension
T I

1 − T I
2 and extensionTE

1 .

The first two operators can be extended to apply on more
than two components.

In NARS, only the inheritance relation and its variants are
defined as logic constants that are directly recognized by the
inference rules. All other relations are converted into inher-
itance relations with compound terms. For example, a rela-
tion R among three termsT1, T2, andT3 can be equivalently
rewritten as one of the following inheritance statements:

• (× T1 T2 T3) → R

• T1 → (⊥ R � T2 T3)
• T2 → (⊥ R T1 � T3)
• T3 → (⊥ R T1 T2 �)

For each type of statements introduced above, its truth
value is defined similarly to that of the inheritance statement.
All the inference rules defined in the core logic can be used
on statements with compound terms, and there are additional
rules to handle the structure of the compounds.

Higher-order inference
The inference discussed so far is “first-order”, in the sense
that a statement represents a relation between two terms,
while a term cannot be a statement. If a statement can be
used as a term, the system will have “higher-order” state-
ments, that is, “statements about statements”. The inference
on these statements are higher-order inference.

For example, “Bird is a kind of animal” is represented
by statement “bird → animal”, and “Tom knows that bird
is a kind of animal” is represented by statement “(bird →
animal)◦→ (⊥ know {Tom} �)”, where the subject is a
“higher-order term”, i.e., a statement.

Compound higher-order terms are also defined: ifT1

andT2 are different higher-order terms, so do theirnega-
tions(¬T1 and¬T2), disjunction(T1 ∨T2), andconjunction
(T1 ∧ T2).

“Higher-order relations” are the ones whose subject term
and predicate term are both statements. In NARS, there are
two of them defined as logic constants:

• implication, “⇒”, which intuitively corresponds to “if-
then”;

• equivalence, “⇔”, which intuitively corresponds to “if-
and-only-if”.

Higher-order inference in NARS is defined as partially
isomorphic to first-order inference. The corresponding
notions are listed in the same row of the following table:

first-order higher-order
inheritance implication
similarity equivalence
subject antecedent
predicate consequent
extension sufficient condition
intension necessary condition
extensional intersection conjunction
intensional intersection disjunction

According to this isomorphism, many first-order infer-
ence rules get their higher-order counterparts. For example,
NARS has the following rules for (higher-order) deduction,
induction, and abduction, respectively:

{M⇒P <f1, c1>, S⇒M <f2, c2>} ` S⇒P <Fded>
{M⇒P <f1, c1>, M⇒S <f2, c2>} ` S⇒P <Find>
{P ⇒M <f1, c1>, S⇒M <f2, c2>} ` S⇒P <Fabd>

These rules use the same truth-value functions as defined in
first-order inference, though their meanings are different.

There are certain notions in higher-order inference that
have no counterpart in first order inference. For instance, by
treating a judgment “S <f, c>” as indicating that the state-
mentS is implied by the (implicitly represented) available
evidence, we get another set of rules (see (Wang, 2001a) for



details):

{M⇒P <f1, c1>, M <f2, c2>} ` P <Fded>
{P <f1, c1>, S <f2, c2>} ` S⇒P <Find>

{P ⇒M <f1, c1>, M <f2, c2>} ` P <Fabd>

In NARS, an “event” is defined as a statement whose truth
value holds in a certain period of time. As a result, its truth
value is time dependent, and the system can describe its tem-
poral relations with other events.

In NAL, time is represented indirectly, through events and
their temporal relations. Intuitively, an event happens in a
time interval, and temporal inference rules can be defined on
these intervals (Allen, 1984). However, in NARS each event
is represented by a term, whose corresponding time interval
is not necessarily specified. In this way, NARS assumes less
information. When the duration of an event is irrelevant or
unknown, it can be treated as a point in the stream of time.

The simplest temporal order between two eventsE1 and
E2 can be one of the following three cases: (1)E1 hap-
pens beforeE2, (2)E1 happens afterE2, and (3)E1 andE2

happen at the same time. Obviously, the first two cases cor-
respond to the same temporal relation. Therefore, the primi-
tive temporal relations in NARS are “before-after” (which is
irreflexive, antisymmetric, and transitive) and “at-the-same-
time” (which is reflexive, symmetric, and transitive). They
correspond to the “before” and “equal” discussed in (Allen,
1984), respectively.

Since “E1 happens beforeE2” and “E1 andE2 happen at
the same time” both assumes “E1 andE2 happen (at some
time)”, they are treated as “E1 ∧ E2” plus temporal infor-
mation. Therefore, we can treat the two temporal relations
as variants of the statement operator “conjunction” (“ ∧”)
— “sequential conjunction” (“,”) and “ parallel conjunction”
(“;”). Consequently, “(E1, E2)” means “E1 happens before
E2”, and “(E1;E2)” means “E1 andE2 happen at the same
time”. Obviously, “(E2;E1)” is the same as “(E1;E2)”, but
“(E1, E2)” and “(E2, E1)” are usually different. As before,
these operators can take more than two arguments. These
two operators allow NARS to represent complicated events
by dividing them into sub-events recursively, them specify-
ing temporal relations among them.

Similarly, there are the temporal variants ofimplication
and equivalence. For an implication statement “S ⇒ T ”
between eventsS andT , three different temporal relations
can be distinguished:

1. If S happens beforeT , the statement is called “predictive
implication”, and is rewritten as “S /⇒ T ”, whereS is
called asufficient preconditionof T , andT a necessary
postconditionof S.

2. If S happens afterT , the statement is called “retrospective
implication”, and is rewritten as “S \⇒ T ”, whereS is
called asufficient postconditionof T , andT a necessary
preconditionof S.

3. If S happens at the same time asT , the statement is called
“concurrent implication”, and is rewritten as “S |⇒ T ”,
whereS is called asufficient co-conditionof T , andT a
necessary co-conditionof S.

The same can be done for the “equivalence” relation.
The rules for temporal inference are variants of the rules

defined previously. The only additional capacity of these
rules is to keep the available temporal information. Since
the logical factor and the temporal factor are independent
of each other in the rules, these variants can be obtained by
processing the two factors separately, then combining then
in the conclusion.

In NARS, “operation” is a special kind of event, which
can be carried out by the system itself. Therefore it is system
dependent — the operations of a system will be observed as
events by other systems.

Statement “(× {A} {B} {C}) → R” intuitively corre-
sponds to “There is a relationR among (individuals)A, B,
andC”. If R is an event, it becomes “An eventR happens
amongA, B, andC”. If R is an operation, it becomes “To
carry outR amongA, B, andC”. We can also say that an
operation is a statement under procedural interpretation, as
in logic programming.

All the inference rules defined on statements in general
can be applied to events; all the inference rules defined on
events in general can be applied to operations.

Task and belief
Every sentence in NARS introduced so far is a judgment,
that is, a statement with a truth value. Beside it, the for-
mal language used in NARS has two more types of sen-
tence: “question” and “goal”. Aquestionis either a state-
ment whose truth value needs to be evaluated (a “yes/no”
question), or a statement containing a variable to be instanti-
ated (a “what” question). Agoal is a statement whose truth-
fulness needs to be established by the system through the
execution of some operations.

Each input sentence of the system is treated as atask to
be processed:

judgment. An input judgment is a piece of new knowledge
to be absorbed. To process such a task not only means to
turn it into a belief of the system and add it into memory,
but also means to use it and the existing beliefs to derive
new beliefs.

question. An input question is a user query to be answered.
To process such a task means to find a belief that answers
the question as well as possible.

goal. An input goal is a user command to be followed, or a
statement to be realized. To process such a task means to
check if the statement is already true, and if not, to execute
some operations to make the statement true.

Therefore, no matter which type a task belongs to, to process
it means to interact it with the beliefs of the system, which is
a collection of judgments, obtained or derived from the past
experience of the system.

In each inference step, a task interact with a belief. If
the task is a judgment, then a previously mentioned infer-
ence rule may be used, to derive a new judgment. This is
called “forward inference”. If the task is a question or a goal,
“backward inference” happens as the following: A question
Q and a judgmentJ will give rise to a new questionQ′ if



and only if an answer forQ can be derived from an answer
for Q′ andJ , by applying a forward inference rule; a goalG
and a judgmentJ will give rise to a new goalG′ if and only
if the achieving ofG can be derived from the achieving of
G′ andJ , by applying a forward inference rule. Therefore,
backward inference is the reverse of forward inference, with
the same rules.

If a question has the form of “? ◦→ P ”, the system is
asked to find a term that is a typical instance ofP , accord-
ing to existing beliefs. Ideally, the best answer would be pro-
vided by a belief “S ◦→ P < 1, 1 >”. But this is impossi-
ble, because a confidence value can never reach 1 in NARS.
Suppose the competing answers are “S1 ◦→ P <f1, c1 >”
and “S2 ◦→ P < f2, c2 >”, the system will choose the
conclusion that has higherexpectationvalue (Wang, 1994;
Wang, 1995), defined as

e = c(f − 0.5) + 0.5
Since the system usually has multiple goals at a given

time, and they may conflict with each other, in NARS each
goal has a “utility” value, indicating its “degree of desire”.
To relate utility values to truth values, a virtual statementD
is introduced for “desired state”, and the utility of a goalG is
defined as the truth value of the statement “G⇒D”, that is,
the degree that the desired state is implied by the achieving
of this goal. In this way, the functions needed to calculate
utility values can be obtained from the truth-value functions.

In NARS, “decision making” happens when the system
needs to decide whether to actually pursue a goal. If the goal
directly corresponds to an operation of the system, then the
decision is whether to execute it. This definition of decision
making in NARS is different from that in traditional decision
theory (Savage, 1954), in the following aspects:
• A goal is not a state of the world, but a statement in the

system.

• The utility value of a statement may change over time
when new information is taken into consideration.

• The likelihood of an operation to achieve a goal is not
specified as a probability, but as a truth value defined
above.

• The decision is on whether to pursue a goal, but not on
which goal is the best one in a complete set of mutually-
exclusive goals.
The decision depends on the expected utility value of the

goal. Clearly, if more negative evidence than positive evi-
dence is found when evaluating whether a goal is desired,
the goal should not be pursued.

The above description shows that, instead of distinguish-
ing “intention” and “desire” (Cohen and Levesque, 1990;
Rao and Georgeff, 1995), in NARS the commitment to each
goal is a matter of degree, partially indicated by the utility
value of the goal. This kind of commitment is related to the
system’s beliefs, and is adjusted constantly according to the
experience of the system, as part of the inference activity.

Memory and control
Since in NARS no belief is absolutely true, the system will
try to use as many beliefs as possible to process a task, so as

to provide a better (more confident) solution. Due to insuffi-
cient resources, the system cannot use all relevant beliefs for
each task. Since new tasks come from time to time, and the
system generates derived tasks constantly, at any moment
the system typically has a large amount of tasks to process.

For this situation, it is too rigid to set up a static stan-
dard for a satisfying solution (Strosnider and Paul, 1994),
because no matter how careful the standard is determined,
sometimes it will be too high, and sometimes too low, given
the ever changing resources demand of the existing tasks.
What NARS does is to try to find the best solution given the
current knowledge and resources restriction, similar to what
an “anytime algorithm” does (Dean and Boddy, 1988).

NARS distributesits processing power among the tasks
in a time-sharing manner, meaning that the processor time
is cut into fixed-size slices, and in each slice a single task
is processed. Because NARS is a reasoning system, its pro-
cessing of a task divides naturally into inference steps, one
per time-slice.

In each inference step, a task is chosen probabilistically,
and the probability for a task to be chosen is proportional to
its priority value, a real number in [0, 1]. As a result, priority
determines the processing speed of a task. At a given mo-
ment, if the priority of taskt1 is u1 and the priority of taskt2
is u2, then the amounts of time resources the two tasks will
receive in the near future keep the ratiou1 : u2. Priority is
therefore a relative rather than an absolute quantity. Know-
ing thatu1 = 0.4 tells us nothing about when taskt1 will be
finished or how much time the system will spend on it. Ift1
is the only task in the system, it will get all of the processing
time. If there is another taskt2 with u2 = 0.8, the system
will spend twice as much time ont2 as ont1.

If the priority values of all tasks remain constant, then a
task that arises later will get less time than a task that arises
earlier, even if the two have the same priority value. A natu-
ral solution to this problem is to introduce an “aging” factor
for the priority of tasks, so that all priority values gradually
decay. In NARS, a real number in (0, 1), calleddurabil-
ity, is attached to each priority value. If at a given moment
a task has priority valueu and durability factord, then af-
ter a certain amount of time has passed, the priority of the
task will beud. Therefore, durability is a relative measure-
ment, too. If at a certain momentd1 = 0.4, d2 = 0.8, and
u1 = u2 = 1, we know that at this moment the two tasks
will get the same amount of time resources, but whenu1 has
decreased to 0.4,u2 will only have decreased to 0.8, so the
latter will then be receiving twice as much processing time
as the former.

By assigning different priority and durability values to
tasks, the user can put various types of time pressure on the
system. For example, we can inform the system that some
tasks need to be processed immediately but that they have lit-
tle long-term importance (by giving them high priority and
low durability), and that some other tasks are not urgent, but
should be processed for a longer time (by giving them low
priority and high durability).

To support priority-biased resource allocation, a data
structure called “bag” is used in NARS. A bag can contain
certain type of items with a constant capacity, and maintain a



priority distribution among the items. There are three major
operations defined on bag:

• Put an item into the bag, and if the bag is already full,
remove an item with the lowest priority.

• Take an item out of the bag by priority, that is, the proba-
bility for an item to be selected is proportional to its pri-
ority value.

• Take an item out of the bag by key (i.e., its unique identi-
fier).

Each of the operations takes about constant time to finish,
independent of the number of items in the bag.

NARS organizes beliefs and tasks intoconcepts. In the
system, each termT has a corresponding conceptCT , which
contains all the beliefs and tasks in whichT is the sub-
ject term or predicate term. For example, belief “bird →
animal < 1, 0.9 >” is stored within the conceptCbird and
the conceptCanimal. In this way, the memory of NARS can
be seen roughly as a bag of concepts. Each concept is named
by a (simple or compound) term, and contains a bag of be-
liefs and a bag of tasks, all of them are directly about the
term.

NARS runs by repeatedly executing the following work-
ing cycle:

1. Take a concept from the memory by priority.

2. Take a task from the task bag of the concept by priority.

3. Take a belief from the belief bag of the concept by prior-
ity.

4. According to the combination of the task and the belief,
call the applicable inference rules on them to derive new
tasks.

5. Adjust the priority of the involved task, belief, and con-
cept, according to how they behave in this inference step,
then put them back into the corresponding bags.

6. Put the new (input or derived) tasks into the corresponding
bags, and create a belief for each task that is a judgment.
If a new belief provides the best solution so far for a user-
assigned task, report a solution to the user.

In the above step 5, the priority value of each item reflects
the amount of resources the system plans to spend on it in
the near future. It has two factors:

long-term factor: The system gives higher priority to more
important items, evaluated according to its past experi-
ence. Initially, the user can assign priority values to the
input tasks to indicate their relative importance, which in
turn determines the priority value of the concepts and be-
liefs related to it. After each inference step, the involved
items have their priority values adjusted. For example, if
a belief provides a best-so-far solution for a task, then the
priority value of the belief is increased (so that it will be
used more often in the future), and the priority value of
the task is decreased (so that less time will be used on it
in the future).

short-term factor: The system gives higher priority to
more relevant items, evaluated according to its current

context. When a new task is added into the memory, the
directly related concepts areactivated, i.e., their priority
values are increased. On the other hand, the priority val-
ues decay over time, so that if a concept has not been rel-
evant for a while, it becomes less active.

In NARS the processing of tasks are interwoven, even
when they are not directly related to each other in contents.
The starting and ending point of a task processing are not
clearly defined, because the system never waits for new tasks
in a special state, and it never reports a final answer, then
stop working on a task right after it. What it does to a task is
strongly influenced by the existence of other tasks.

NARS runs continuously, and has a “life-time of its own”
(Elgot-Drapkin et al., 1991). When the system is experi-
enced enough, there will be lots of tasks for the system to
process. The system’s behavior will to a certain extent de-
pend onits own tasks, which are more or less independent
of the original tasks assigned by the users, even though his-
torically derived from them. This is thefunctional autonomy
phenomena (Allport, 1937; Minsky, 1985).

NARS processes many tasks in parallel, but with different
speeds. This “controlled concurrency” control mechanism
is similar to Hofstadter’s “parallel terraced scan” strategy
(Hofstadter and FARG, 1995) and the resources allocation
in genetic algorithms. In NARS, how a task is processed de-
pends on the current beliefs, as well as the priority distribu-
tion among concepts, tasks, and beliefs. Since these factors
change constantly, the solution the system finds for a task is
context dependent.

Discussion
The above description shows that the major components of
NARS are fundamentally different from that of conventional
reasoning systems. To discuss these differences in detail is
beyond the scope of this paper. Some of such discussions
can be found in the previous publications on NARS, and
more will come in a book in preparation which covers the
whole NARS project (Wang, 2004).

The only topic to be discussed here are the desired prop-
erties of an intelligent core in an integrated AI system, intro-
duced previously in the paper.

NARS is designed according to a theory of intelligence
that is consistent with many research results of psychol-
ogy, philosophy, and linguistics. Few people doubt that the
human mind is adaptive, and is able to work with insuffi-
cient knowledge and resources. Many hard problems in AI
also need to be solved under this restriction. Actually, for
a given problem, “having sufficient knowledge” means that
we have an algorithm as its solution, and “having sufficient
resources” means that the algorithm can be run in a com-
puter system to solve each instance of the problem in real-
istic situations. If both conditions are satisfied, the problem
can be solved as conventional computer programming. “In-
telligence” is needed only when the above conditions can-
not be satisfied, and traditional theories do not work (be-
cause they all assume the sufficiency of knowledge and/or
resources in this or that way).

This is especially true for an integrated AI system. For



a system equipped with various tools to be called “intelli-
gent”, it must be able to deal with novel problems in real
time, here “novel problems” are exactly those for them the
system’s knowledge is insufficient, and “real time” means
that the system cannot afford the time to explore all possi-
bilities. In such a situation, being intelligent means to use
available knowledge and resources as efficiently as possible
by learning from the past experience of the system.

NARS is general and flexible enough for the unification of
various cognitive facilities. In the system, reasoning, learn-
ing, and categorization are different aspects of the same un-
derlying processes (Wang, 2000; Wang, 2002). With the
addition of procedural interpretation of statements, problem
solving, planning, and decision making are integrated into
the system. Several prototypes of the system have been im-
plemented, and so the basic ideas have been shown to be
feasible.

Though NARS per se does not include any other AI tech-
niques are components, it can be used as an intelligent core
of an integrated system. A program outside the core will
correspond to an operation that can be invoked by NARS,
and the results of the program will be new tasks for the sys-
tem. Knowledge about the outside programs will be repre-
sented as beliefs on the preconditions and consequences of
the operations, as described previously. This kind of knowl-
edge can be directly provided to the system by the users,
and/or learned by the system from its own experiences. Such
outside program can include domain-specific tools, as well
as general-purpose modules for natural language interface,
sensorimotor mechanism, and so on.

References
Allen, J. F. (1984). Towards a general theory of action and
time. Artificial Intelligence, 23(2):123–154.
Allport, G. (1937). The functional autonomy of motives.
American Journal of Psychology, 50:141–156.
Aristotle (1989).Prior Analytics. Hackett Publishing Com-
pany, Indianapolis, Indiana. Translated by R. Smith.
Bochénski, I. (1970).A History of Formal Logic. Chelsea
Publishing Company, New York. Translated and edited by
I. Thomas.
Brooks, R. (1991). Intelligence without representation.Ar-
tificial Intelligence, 47:139–159.
Cohen, P. and Levesque, H. (1990). Intention is choice with
commitment.Artificial Intelligence, 42:213–261.
Dean, T. and Boddy, M. (1988). An analysis of time-
dependent planning. InProceedings of AAAI-88, pages
49–54.
Elgot-Drapkin, J., Miller, M., and Perlis, D. (1991). Mem-
ory, reason, and time: the step-logic approach. In Cum-
mins, R. and Pollock, J., editors,Philosophy and AI,
chapter 4, pages 79–103. MIT Press, Cambridge, Mas-
sachusetts.
Englebretsen, G. (1996).Something to Reckon with: the
Logic of Terms. Ottawa University Press, Ottawa.
Feigenbaum, E. and McCorduck, P. (1983).The Fifth
Generation : Artificial Intelligence and Japan’s Computer

Challenge to the world. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts.
Frege, G. (1970). Begriffsschrift, a formula language, mod-
eled upon that of arithmetic, for pure thought. In van Hei-
jenoort, J., editor,Frege and G̈odel: Two Fundamental
Texts in Mathematical Logic, pages 1–82. Harvard Univer-
sity Press, Cambridge, Massachusetts.
Hofstadter, D. and FARG (1995).Fluid Concepts and Cre-
ative Analogies: Computer Models of the Fundamental
Mechanisms of Thought. Basic Books, New York.
Medin, D. and Ross, B. (1992).Cognitive Psychology.
Harcourt Brace Jovanovich, Fort Worth.
Minsky, M. (1985).The Society of Mind. Simon and Schus-
ter, New York.
Newell, A. and Simon, H. (1976). Computer science as
empirical inquiry: symbols and search. The Tenth Turing
Lecture. First published inCommunications of the Associ-
ation for Computing Machinery19.
Piaget, J. (1963).The Origins of Intelligence in Children.
W.W. Norton & Company, Inc., New York. Translated by
M. Cook.
Rao, A. S. and Georgeff, M. P. (1995). BDI-agents: from
theory to practice. InProceedings of the First Intl. Confer-
ence on Multiagent Systems, San Francisco.
Savage, L. (1954).The Foundations of Statistics. Wiley,
New York.
Stork, D. (1997). Scientist on the set: An interview with
Marvin Minsky. In Stork, D., editor,HAL’s Legacy: 2001’s
Computer as Dream and Reality, pages 15–30. MIT Press,
Cambridge, Massachusetts.
Strosnider, J. and Paul, C. (1994). A structured view of
real-time problem solving.AI Magazine, 15(2):45–66.
Wang, P. (1994). From inheritance relation to nonaxiomatic
logic. International Journal of Approximate Reasoning,
11(4):281–319.
Wang, P. (1995).Non-Axiomatic Reasoning System: Ex-
ploring the Essence of Intelligence. PhD thesis, Indiana
University.
Wang, P. (2000). The logic of learning. InWorking Notes
of the AAAI workshop on New Research Problems for Ma-
chine Learning, pages 37–40, Austin, Texas.
Wang, P. (2001a). Abduction in non-axiomatic logic. In
Working Notes of the IJCAI workshop on Abductive Rea-
soning, pages 56–63, Seattle, Washington.
Wang, P. (2001b). Confidence as higher-order uncertainty.
In Proceedings of the Second International Symposium
on Imprecise Probabilities and Their Applications, pages
352–361, Ithaca, New York.
Wang, P. (2002). The logic of categorization. InProceed-
ings of the 15th International FLAIRS Conference, Pen-
sacola, Florida.
Wang, P. (2004). Rigid Flexibility — The Logic of Intelli-
gence. Manuscript in preparation.
Whitehead, A. and Russell, B. (1910).Principia mathe-
matica. Cambridge University Press, Cambridge.


