
October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Chapter 5

Recommendation Based on Personal
Preference

Pei Wang

Department of Computer and Information Sciences
Temple University, Philadelphia, PA 19122, USA

E-mail: pei.wang@temple.edu

This chapter first defines a recommendation process, which helps the
user to select products from a large number of candidates according to per-
sonal preference. Though both conventional database and fuzzy database
have been used for this task, none of the two provide a proper solution. A
new approach is introduced, which is easy to design and maintain, and pro-
vides well justified results. The central idea of this approach is to interpret
user preference as consisting of multiple criteria, each of which is relative to
available data. The procedure introduced here forms a membership func-
tion at run-time according to user request and available data, then use it
to rank the candidates.

5.1 The problem

In web-based e-commerce and on-line shopping, people often meet the “se-
lection problem”, that is, the user is looking for a product of a certain
type, with flexibility or uncertainty in the details of the request. Typically,
the user has certain “constraints” that must be satisfied, as well as certain
“preference” that are desired, but not specified in absolute terms.

For example, if the user is looking for a home computer, then most
requests are in the form of preference: almost everyone prefers a fast CPU,
a large hard drive, a cheap price, and so on, but few of the requests really
has a fixed range. If the user is search for a flight, then the departure and
arrival airports may be determined, while the other parts of the request

1

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

2 Computational Web Intelligence: Intelligent Technology for Web Applications

(such as departure date and time, arrival time, number of transfers, and so
on) may be flexible to different degrees.

In this situation, if there are M products satisfying the constraints,
and all of them are displayed to the user, then often it is too much
information, and the user gets little help in using the preferences to
get a final decision. For this situation, a “recommendation system”
(also called “recommender system”) is desired [Jameson et. al., (2002);
Kautz, (1998)]. Briefly speaking, the function of a recommendation system
is to reduce the size of the displayed list from M to N (which is a much
smaller number), under the condition that the user’s preference is respected
in the process.

Obviously, we do not want N to be too large, otherwise the recommen-
dation system does not help much. On the other side, we do not want N to
be too small — if N is one, then the “recommendation system” is actually
making decision for the user. This is not desired, under the assumption
that not all the relevant factors about the final decision can be included
in the constraints and preferences, therefore the user still want to compare
the top candidates, and to make the final decision, by taking all relevant
factors into consideration. This is exactly what we usually expect when
asking friends or experts for “recommendations” — we hope them to re-
duce the number of candidates to a manageable level, without making the
final decisions for us.

Of course, the desired N may be different from situation to situation,
and from user to user, but in general, we can take a default value in the
range between five and ten. Such a choice is consistent with the psycholog-
ical research on human memory (the well known “7± 2” phenomenon), as
well as the common practice of picking the “top ten” in various categories.

If we can assume that the user only need one product from the M can-
didates (which is usually true), and that given sufficient time for analysis,
comparison, and actual evaluation, the user would select product Pi, then
a “good” recommendation system should almost always provides a top-N
list containing Pi in it. With the help of such a system, the user’s decision-
making process is simplified, but still get (usually) the same result.

According to the above definition of the problem, there are still several
ways of making recommendations, which have been explored to various
degrees [Jameson et. al., (2002); Kautz, (1998)]. For example, recommen-
dation can be made according to a top-N list determined by the voting
of domain experts or users for each category. Such votes can be collected
explicitly or implicitly, such as through a “collaborative filtering”. Or, rec-
ommendations can be made according to the similarity among users and
similarity among products. For example, according to the selections the
users have made before, they are classified into several groups, and the

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Recommendation Based On Personal Preference 3

preference of each group is determined by statistics. When a new user is
classified into a certain group, recommendations are made according to the
preference of the members of the same group.

What we study in this chapter is a special situation, where we assume
that there is no historical information available (such as votes, comments,
reviews, past selections, and so on), and the recommendation is only based
on the constraints and preferences provided by the current user. Since
these requirements are highly personal and change from case to case, there
is no way to anticipate them, and to determine a top-N list for every case
in advance. Instead, the recommendation has to be formed at run-time
according to user’s requests.

Formally, the problem is defined as the following. DB is a database (or
an information system of another type) that contains descriptions about
products of certain category. Each product di is specified as a vector di =
< di1, di2, · · · , dit >, in which each dij is the value of the product on an
attribute Aj .

In the simplest form, the user’s request consists of a constraint vector
c = <c1, c2, · · · , ct > and a preference vector p = <p1, p2, · · · , pt >. Each
element of these two vectors is a condition for the corresponding attribute
value.

A condition in constraint, cj , is a binary expression of the form
“X relation v”, where X is a variable representing an attribute value,
v is a constant value of the corresponding attribute, and relation is one of
the following relations: =, 6=, <,≤, >,≥, where the last four are only de-
fined on attributes whose values form a total order (therefore X 6= Y can
always be further specified as X < Y or X > Y). The value of such an
expression is either 1 (for “true”) or 0 (for “false”).

A condition in preference has the same form as a constraint, except
that the relation is “≈”, for “similar to”, and the expression is not binary,
but has a value in a certain range. That is, to what extent a preference
is satisfied is a matter of degree. Without losing generality, we take the
range to be the interval [0, 1]. As a special case, “X ≈ v” has value
1 if and only if “X = v” is true. Therefore, the similarity relation can
be seen as a generalization of the equality relation, from binary to multi-
valued. For attributes whose values form a total order, we define two new
relations: “X �” is defined as “X ≈ vmin”, and “X �” is defined as
“X ≈ vmax”, where “vmin” and “vmax” are the minimum and maximum
value of the corresponding attribute, respectively (they do not need to be
a finite value). Intuitively, these preferences mean “has a small value” and
“has a large value”, respectively.

Therefore, constraints and preferences correspond to different ways to
assign a “score” to a value of a product on an attribute. After applying

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

4 Computational Web Intelligence: Intelligent Technology for Web Applications

on a value dij , a constraint cj provides a score in {0, 1}, a preference pj

provides a score in [0, 1].
Since the variable X in above requirements is just a place holder, it can

be omitted without causing confusion. In the following, therefore, we will
use “relation v” for a constraint, and use “≈ v”, “�”, or “�” for a pref-
erence. There is a special condition “null” for “no constraint/preference”,
which should be ignored in the recommendation procedure.

For example, if each flight (from a city to another in a given date) is
specified only by departure time, arrival time, and prices, then the pref-
erence “leave around 9 AM, arrive early, with a low price” is represented
as “≈ 9, �, �”. Similarly, if each computer is specified only by its CPU
speed, hard-drive size, and price, then the preference “fast and cheap” is
represented as “�, null, �”.

Given these definitions, we can represent a recommendation procedure
for top-N products as the following:

(1) Apply the user constraint c = < c1, c2, · · · , ct > on the database DB.
For each product di = < di1, di2, · · · , dit >, if its value dij satisfies
condition cj for all j = 1 · · · t, then it becomes a candidate for recom-
mendation.

(2) The above step produces a set of candidates of size M . If M ≤ N , then
recommendation is unnecessary, and the procedure ends. Otherwise
the procedure continues.

(3) Apply the user preference p = <p1, p2, · · · , pt > to each product di in
the candidate set, and get a vector of scores <si1, si2, · · · , sit >, where
sij is the return value of applying preference pj to value dij .

(4) Apply a summarizing function f(x) to the score vector of each product
di in the candidate set to get a total score si = f(<si1, si2, · · · , sit >),
which is a numerical value.

(5) Select the top N products according to their total scores, and return
them as the recommendation to the user.

5.2 The existing techniques

Described in this way, recommendation can be seen as selective information
retrieval. Can we just use existing techniques, such as relational database,
to carry out this process?

Obviously, the constraints we defined above are very close to conditions
in database queries. Now the question is: can the preferences defined above
be properly handled as conventional database queries? Obviously, a direct
mapping does not exist, because database queries are based on binary logic,

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Recommendation Based On Personal Preference 5

that is, whether a data item satisfies a condition is a matter of true or false,
not a matter of degree. But how about approximative mapping? Maybe we
can translate a preference into a query condition without losing too much
information.

Such an approximation is possible — actually people are forced to do so
on a daily basis. If a user prefers a flight departing around 9 AM, she often
has to specify her preference as a query condition for a time interval [9-∆,
9+∆], where ∆ is a constant, like 30 minutes or so. If a user prefers a fast
and cheap computer, he has to specify the CPU speed as above a certain
threshold (such as 2 GHz) and the price as below a certain threshold (such
as $1000).

Since the query language of conventional database only uses binary con-
ditions, what happened above is that preferences are converted into con-
straints, then represented as query conditions. Of course this is an approx-
imation, but is it good enough?

We say that the very idea of “recommendation” is lost in such an approx-
imation, so it is unacceptable as a way to build a recommendation system.
Here the problem is: if preference is treated as constraints, whether a prod-
uct satisfies the user’s request is a matter of true or false, and there is no
way to rank the candidates that satisfying all the conditions. Consequently,
the user simply gets all products that returned by the query, or a random
subset of it as the “top-N” list, which is not really based on user preference.

When the user is forced to specify an interval for each attribute value,
two extreme cases often happen: the query either returns no product or
returns too many. For example, when the user is looking for a “fast and
cheap notebook computer”, if the request is “translated” into query for
“faster than 3 GHz and cheaper than $500”, there may be nothing available,
but if it is treated as a query for “faster than 1 GHz and cheaper than
$3000”, then there may be five hundred of them. If we really want a certain
number (say 5 to 10) of products returned by the query, the conditions in
it should be tuned properly. For example, a query for “faster than 2 GHz
and cheaper than $1250” returns five products, which looks like a good
recommendation — until we think about the following issues.

To translate the preferences into a query which returns data items
around a certain number, the user must be either very familiar with the
distributions of the attribute values, or willing to try many different inter-
vals/thresholds. In the former case, the user is an expert in the domain,
so rarely needs any recommendation at all. In the latter case, the pro-
cess is very time-consuming and often frustrating — many readers of this
book may have such personal experience. Recommendation system cannot
assume either of the two cases, because it is designed exactly to help the
users who neither are experts in the field, nor have the time and patience

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

6 Computational Web Intelligence: Intelligent Technology for Web Applications

to evaluate many possibilities.
Furthermore, even when “faster than 2 GHz and cheaper than $1250”

returns 5 products, the list may exclude some good candidates. For exam-
ple, there may be a product which is a little bit slower than 2 GHz, but
much cheaper than all the five products in the list, or a product which is
a little bit more expensive than $1250, but much faster than the five prod-
ucts in the list. No matter how the query condition is determined, such
possibilities always exist.

This is the case, because binary query cannot handle trade-off among
multiple preferences. When a user preference contains multiple compo-
nents, it is normal, rather than exceptional, for them to conflict with each
other. For example, in almost all shopping situations, users prefer products
which are cheap and with high quality, even when we all know that these
two preferences usually cannot be optimized together. Without a quantita-
tive measurement on “degree of satisfying” or something like that, trade-off
becomes arbitrary.

What it means is that even though database query is still the most often
used technique for the users to request for data items, it does not provide
much help for selective retrieval, because of the binary expressions used in
the query language.

If we want to directly process the preference defined before, we need
conditions that different values satisfy to different degrees. Under this
consideration, the most obvious solution is to apply fuzzy logic [Zadeh,
(1975)] into database query, which leads to the idea of “fuzzy database”
[Yang and Lee-Kwang, (2000); Yang et. al., (2001)].

A recommendation system based on fuzzy logic can be designed ac-
cording to the “recommendation procedure” defined previously, where the
processing of the constraints are just like in conventional database. The
preferences are specified using “linguistic variables”, such as “≈ fast” for
speed, and “≈ cheap” for price. Each linguistic value corresponds to a
fuzzy set, with a membership function to calculate the score for each at-
tribute value. Finally, the total score of a product is the minimum of all the
individual scores, because in fuzzy logic the (default) function for “AND”
(i.e., conjunction of conditions) is “min”.

In this way, we can indeed get a recommendation system satisfying our
previous description, and it no longer suffers from the problem in conven-
tional database discussed above. Since the idea of fuzzy logic has been well
known for many years, and this application is not that difficult, why have
not we seen many such systems?

Among all reasons, a major issue is the design and maintenance of the
membership functions. According to the common interpretation of mem-
bership function, it measures a subjective opinion on the “compatibility”

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Recommendation Based On Personal Preference 7

between the linguistic value and numerical values [Zadeh, (1975)]. For ex-
ample, it can be said that “The membership of $1000 to cheap is 0.9”, “The
membership of $1250 to cheap is 0.85”, and so on. Therefore, the designer
of the recommendation system is responsible for specifying membership
functions for every linguistic value.

Furthermore, it is well known that the same linguistic value, such as
“cheap”, corresponds to very different membership functions when used on
different categories. Clearly, what can be labeled as “cheap” can have radi-
cally different prices for categories like notebook computer, super computer,
house, notebook, pencil, and so on. Consequently, a separate membership
function is needed for each linguistic value on each category. Even if that
can be provided, there is still trouble — these functions may need to be
adjusted from time to time. For example, what is considered as “a cheap
notebook computer” two years ago is no longer “cheap” according to the
current situation in the market.

In summery, though it is possible to build a recommendation system us-
ing fuzzy logic, the design and maintenance process is complicated (because
of the relative nature of the membership functions), and the recommenda-
tions are hard to justify (because of the subjective nature of the membership
functions).

All these problem comes from a common root, that is, though fuzzy logic
represents and processes fuzziness in various ways, it does not properly
interpret fuzziness. Since this problem has been analyzed in detail in a
previous publication [Wang, (1996)], we will not repeat the discussion here.
We just want to say that because of this problem, fuzzy logic does not work
well in recommendation systems, except in special situations where only a
few membership functions are needed, and they do not change over time.

5.3 A new approach

The main content of this chapter is to introduce a new approach for rec-
ommendation system design. This approach is similar to the fuzzy-logic
approach discussed above, except that the membership functions are auto-
matically generated from the available data by an algorithm, therefore the
results are well justified, and the design and maintenance of the system is
relatively easy.

This approach of recommendation is a by-product, a practical applica-
tion, of the author’s research on general-purpose intelligent system [Wang,
(1995)]. In the following, we only introduce the aspects of the research
that is directly related to the recommendation procedure. For how this
procedure is related to the big picture of artificial intelligence, please visit

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

8 Computational Web Intelligence: Intelligent Technology for Web Applications

the author’s website at http://www.cis.temple.edu/~pwang/ for related
materials.

Again, here we treat the constraints in the same way as in conventional
database. After the M candidates are returned by the query, the recom-
mendation task is treated as a task of selecting “good” instances of a given
concept among given candidates.

Concretely, a preference vector p = <p1, p2, · · · , pt > defines a concept
Cp, the instance of which is what the user is looking for. For example, “fast
and cheap notebook computers” is such a concept, and “flights (from one
given city to another) leaving around 9 AM (on a certain day) and arrive
as early as possible” is another. Such a concept is defined by the preference
vector, as a set of properties. That is, “fast and cheap notebook computers”
is a subset of notebook computers that have properties as being “fast” and
being “cheap”.

According to the model of categorization used in this approach, in the
recommendation process the concept Cp is defined collectively by all the
given properties, each of which contributes to the meaning of the concept,
and none of which is sufficient or necessary for the membership by itself.
Furthermore, whether an attribute value satisfy a corresponding property
is a matter of degree.

Unlike in fuzzy logic, where degree of membership is a subjective judg-
ment that cannot be further analyzed, in our approach the “score” of each
value for a given preference is the proportion of positive evidence among all
evidence, that is, s = w+/(w+ + w−), where w+ and w− are the amount
of positive and negative evidence, respectively, for the preference to be sat-
isfied by the value.

How is evidence defined and measured? Let us start from a concrete
example. If the price of a notebook computer is $1250, then to what extent
it belongs to the concept of “cheap notebook computers”? According to
our theory [Wang, (1996)], such a question cannot be answered without a
“reference class”, that is, it depends on the answer of another question:
“Compare to what?”. Adjectives like “cheap” get their meaning from re-
lations like “cheaper than”, though the object of the comparison is often
omitted in the expression. In the recommendation process, we assume that
the default objects of comparison are the other candidates. Therefore, we
interpret “cheap” as “cheaper than the other candidates”. Since usually
there are multiple candidates, and some of them may be cheaper, and oth-
ers more expensive, than the product under consideration, whether it is
“cheaper than the other candidates” is usually a matter of degree.

If there are M candidates that satisfy the constraints, then they are
used to score one another for the preferences. To decide the score for a
$1250 computer to be labeled as “cheap”, the other M − 1 candidates are

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Recommendation Based On Personal Preference 9

compared to it one by one in price, where more expensive ones are counted
as positive evidence, and cheaper ones as negative evidence, for the labeling
(candidates with the same price provide no evidence). The total amount
of evidence is the sum of the amount of positive evidence and the amount
of negative evidence. Therefore, among the M candidates, if there are m1

of them are more expensive than $1250, and m2 of them are cheaper than
$1250, then the score for a $1250 computer to be labeled as “cheap” can
be simply taken as m1/(m1 +m2) [Wang, (1996)]. Especially, the cheapest
candidate gets a score 1.0, and the most expensive one get 0.0, for the given
preference.

The above approach can be applied to a preference as far as the values
of the corresponding attribute form a total order, even if the values are
not numerical. The following is a general definition of evidence in the
recommendation process:

• When a value dij is evaluated according to a preference pj of the form
“≈ v” (“similar to v”), if another value dkj (of another candidate) is
farther away from v than dij is, it is positive evidence; if dkj is closer
to v than dij is, it is negative evidence.

• When a value dij is evaluated according to a preference pj of the form
“�” (“has a small value”), if another value dkj (of another candidate)
is larger than dij , it is positive evidence; if dkj is smaller than dij , it is
negative evidence.

• When a value dij is evaluated according to a preference pj of the form
“�” (“has a large value”), if another value dkj (of another candidate)
is smaller than dij , it is positive evidence; if dkj is larger than dij , it is
negative evidence.

After separating positive and negative evidence from non-evidence among
the other candidates, their number can be used as the above m1 and m2,
respectively, then from them the score of the given value can be calculated
according to the previous formula.

For a given attribute, if its values are not only comparable, but also
numerical, sometimes the distance between values should be taken into
account when scores are calculated. For example, to evaluate the score for
$1250 to be labeled as “cheap”, the existence of a $750 and a $1200, as the
prices of other candidates, are very different. Though both are negative
evidence, the former is clearly a much “stronger” one than the latter. For
this situation, a more meaningful way to calculate the amount of evidence
is to give each piece of evidence a “weight”, which is the difference of that
value and the given value. For the above case, the weights of the two pieces
of evidence are 1250 - 750 = 500 and 1250 - 1200 = 50, respectively. Now
the amount of (positive and negative) evidence m1 and m2 are weighted

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

10 Computational Web Intelligence: Intelligent Technology for Web Applications

sum of pieces of evidence.
For a product di, after its attribute values get their scores as a vector

< si1, si2, · · · , sit > according to a given preference p = < p1, p2, · · · , pt >,
the next step is to combine them into a total score si, which represents
the membership for the product to be an instance of the concept Cp. Here
we treat each preference pi as an independent channel to collect (positive
and negative) evidence for the membership relation. Therefore, evidence
collected in each channel should be pooled together. As a default rule
(assume all the preferences are equally weighted and each score is obtained
from the same number of comparisons), the total score is simply the average
of the individual scores, that is, si = (

∑t
j=1 sij)/t.

Now let us give a complete and general algorithm for the recommenda-
tion procedure described above.

The database DB is a collection of data items, each of which is a vector
di = <di1, di2, · · · , dit >, in which each dij is the value of di on an attribute
Aj . In other words, DB is a matrix, where each row is a data item, and
each column corresponds to an attribute.

A recommendation request r consists of two components, a constraint
vector c = <c1, c2, · · · , ct > and a preference vector p = <p1, p2, · · · , pt >.
Each cj has the form “relationj vj”, where vj is a constant value, and
relationj is one of the following relations: =, 6=, <, ≤, >, ≥. The
evaluation of cj against a value dij should return 1 (true) or 0 (false).
Each pj has the form ‘≈ vj”, “�”, or “�”. The evaluation of pj against a
value dij should return a real number in [0, 1].

For a given DB and a given r, the recommendation procedure, for a
top-N list of data items satisfying r in DB, is the following:

(1) Translate c into a (conventional) database query on DB, and get the
candidate set, which includes all data items in DB satisfying c.

(2) Assume the size of the candidates set M . If M ≤ N , then recommen-
dation is unnecessary, and the procedure may ends here. Otherwise the
procedure continues.

(3) Apply the user preference p = <p1, p2, · · · , pt > to each data item di,
and get a vector of scores < si1, si2, · · · , sit >, where sij is the return
value of applying preference pj to value dij .

(4) Let the total score of a candidate di to be (
∑t

j=1 sij)/t.
(5) Select the top N data items according to their total scores, and return

them as the recommendation to the user. As options, the total score
of each may be displayed, and they may be sorted according to their
total scores.

In the above step (3), for each value dij and preference pj , the score sij

is the ratio of positive evidence among all evidence, that is, sij = w+/(w++

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Recommendation Based On Personal Preference 11

w−). The (positive and negative) evidence is collected by comparing dij to
each dkj in the candidate set, as the following:

• pj has the form “≈ vj”: dkj is positive evidence if |dkj−vj | > |dij−vj |.
dkj is negative evidence if |dkj − vj | < |dij − vj |. The weight of the
evidence is ||dkj − vj | − |dij − vj ||.

• pj has the form “�”: dkj is positive evidence if dkj > dij . dkj is
negative evidence if dkj < dij . The weight of the evidence is |dkj −dij |.

• pj has the form “�”: dkj is positive evidence if dkj < dij . dkj is
negative evidence if dkj > dij . The weight of the evidence is |dkj−dij |.

The last two cases are the special cases of the first with vj to be vmin and
vmax, respectively.

If the values of each attribute form a total order (so that “>” and “<”
are defined between any pair of them), but the distance between them are
not defined, then the definition of evidence for the first case is modified as
the following: dkj is positive evidence if dkj > dij ≥ vj , or dkj < dij ≤ vj .
dkj is negative evidence if dij > dkj ≥ vj , or dij < dkj ≤ vj . Furthermore,
in all the three cases, each piece of evidence is equally wighted.

5.4 Discussion

The above recommendation procedure is based on the opinion that selection
among candidates are usually carried out according to multiple relatively
defined criteria, and the goal is to achieve an overall optimum, which does
not always coincide with optimum on each criteria. Recommendation helps
selection by reducing the number of candidates that need to be presented
to the user according to given selection criteria.

Most shopping websites still use conventional database query to carry
out the selection process. As a result, non-expert users have to spend lots
of time in fine tuning their query to get a desired number of candidates
for the final comparison and selection. Compared to that process, the
recommendation procedure introduced in this chapter has the following
advantages:

• Both (binary) constraints and (fuzzy) preferences are allowed, where
the former is expressed in absolute term, while the latter in relative
term. This is a more natural way to set selection criteria for most
users, especially for users who are not expert in the field. For them,
what really matters is often the relative value, not the absolute value,
of a data item on an attribute.

• Trade-off and compromise among multiple preference are allowed and

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

12 Computational Web Intelligence: Intelligent Technology for Web Applications

supported. Actually, all difficult selection problems happen in the cases
where different criteria have to be balanced against each other. Using
the concept of evidence (for membership relation), the above algorithm
maps values of different attributes (with different units) into a common
(unit-free) dimension.

• By presenting a top-N list to the user, the selection process is simplified
without losing promising candidates. Still, the user can bring new
factors (that are not in the recommendation request) into account in
the final stage of the selection.

Compared to the similar solution based on fuzzy logic, this recommen-
dation procedure has the following advantages:

• The degree of membership for an instance to belong to a concept is no
longer a subjective opinion, but a measurement justified according to
a theory on cognition and intelligence [Wang, (1995); Wang, (1996)].

• The scores are determined by the available data according to a domain-
independent algorithm. Consequently, there is no need to manually
design and maintain the membership functions. Instead, such functions
are automatically learned from the data, and so are adaptive to the
changes in data.

Because of the adaptive nature of the membership function, the system
treats “cheap computer” and “cheap notebook” with different standards,
simply because the available instances in these two categories have different
price distributions. When a new product with the lowest price is added into
the system, all other products in the same category automatically become
“more expensive”, as the result of comparing to it. This is closer to how
the human mind works in these situations. Also, this “maintenance-free”
solution is easier to be used in practical situations.

What we have introduced so far is the core procedure of a recommenda-
tion system, which is simple and domain-independent, and can be extended
and customized for various purposes. When this approach is applied in a
concrete system, there are still many additional issues, which we will only
briefly mention here:

• For certain applications, the preferences on different attributes should
not be treated equally. In such a situation, the final score for a data
item can be changed from the average of the individual scores to the
weighted sum of the individual scores. The weights of the attributes can
either be specified by the user as part of recommendation request, or
take default values determined by the designer according to the nature
of each attribute.

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Recommendation Based On Personal Preference 13

• Some changes should be made in the algorithm to handle incomplete or
uncertain data. For example, such data should make the corresponding
score “weaker” in the recommendation decision. No matter what data
is involved, its net effect should be reflected in the amount of evidence
for the membership function.

• The constraint processing part can be simply replaced by the standard
relational database query mechanism. In this way, the processing of
preference can be designed as a frond-end of database, or even as an
extension of SQL.

• In the previous procedure, we assume that there is a total order among
the values of an attribute. If that is not the case, the recommenda-
tion system still can work after some domain-specific modification. For
example, in a flight reservation system, if the (departure or arrival) air-
port is not part of the constraint, but part of preference, then nearby
airports should be taken into consideration. In this case, the “degree
of similarity” between two airports can be determined by distance, eas-
iness of access, and so in.

• The (preference-based) recommendation technique introduced above
can be combined with other recommendation techniques mentioned at
the beginning of the chapter. For example, expert opinions, peer re-
views, and so on, can all be taken as evidence collected from different
channels for the same membership relation.

• The recommendation system can be connected to an intelligent reason-
ing system, such as the one from which this approach comes [Wang,
(1995)]. Since both systems are based on the same theoretical founda-
tion, the reasoning system can use background knowledge to evaluate
similarity relations between non-numerical values of attributes, then let
the recommendation system use them in the evaluation of scores.

• The recommendation system can be further personalized by remem-
bering and generalizing user preferences from past requests, and using
these learned parameters in future recommendations.

• For advanced users, the system can allow them to override the default
functions used in each stage of the recommendation process (for the cal-
culation of degree of similarity, amount of evidence, individual scores,
total scores, final recommendations, and so on) with their specially
designed functions.

• Since the final result of recommendation is the top-N list, not the ab-
solute values of concrete scores, various approximation algorithms can
be used in each stage of the process, especially for the collection of
evidence. These algorithms can improve the efficiency of the system,
without losing the quality of the result too much.

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

14 Computational Web Intelligence: Intelligent Technology for Web Applications

In general, we believe that the preference-based recommendation tech-
nique defined in this chapter can greatly improve the efficiency of on-line
shopping and other information selection processes, and make the huge
amount of available data more accessible and manageable for common users,
especially the users without expert knowledge.

October 2, 2003 19:23 WSPC/Book Trim Size for 9in x 6in Recommendation

Bibliography

Jameson, A., Konstan, J., and Riedl, J. (2002). AI Techniques for Personalized
Recommendation: Tutorial presented at AAAI.
URL: http://www.dfki.de/~jameson/aaai02-tutorial/

Kautz, H. (editor) (1998). Recommender Systems, AAAI Technical Report.
URL: http://www.aaai.org/Press/Reports/Workshops/ws-98-08.html

Wang, P. (1995). Non-Axiomatic Reasoning System: Exploring the Essence of
Intelligence. PhD thesis, Indiana University.
URL: http://www.cogsci.indiana.edu/farg/peiwang/papers.html

Wang, P. (1996). The interpretation of fuzziness. IEEE Transactions on Systems,
Man, and Cybernetics, 26:321-326.

Yang, J. and Lee-Kwang, H. (2000). Treating Uncertain Knowledge-Based
Databases. Academic Press International Theme Volumes on Knowledge-
Based Systems Techniques and Applications, 1:327-351.

Yang, Q. et. al. (2001). Efficient Processing of Nested Fuzzy SQL Queries in a
Fuzzy Database. IEEE Transactions on Knowledge and Data Engineering,
13:884-901.

Zadeh, L. (1975). The concept of a linguistic variable and its application to ap-
proximate reasoning. Information Sciences, 8:199-249, 8:301-357, 9:43-80.

15

