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Abstract

With conflicting evidence, a reasoning system derives
uncertain conclusions. If the system is open to new
evidence, it faces additionally a higher-order uncer-
tainty, because the first-order uncertainty evaluations
are uncertain themselves — they can be changed by
future evidence. A new measurement, confidence, is
introduced for this higher-order uncertainty. It is de-
fined in terms of the amount of available evidence,
and interpreted and processed as the relative stabil-
ity of the first-order uncertainty evaluation. Its rela-
tion with other approaches of “reasoning with uncer-
tainty” is also discussed.

Keywords. confidence, evidence, frequency interval,
revision, inference, deduction, induction, abduction.

1 Introduction

In this paper, we discuss the representation and pro-
cessing of uncertainty in an adaptive reasoning sys-
tem, whose knowledge and resources are insufficient
with respect to the questions to be answered.

NARS (for Non-Axiomatic Reasoning System, see [26]
for details) is a reasoning system that accepts knowl-
edge and questions from its user in a formal lan-
guage, and answers the questions according to avail-
able knowledge. No restriction is imposed on the con-
tents of the knowledge and questions the system may
encounter, as long as they are expressible in the for-
mal language. Therefore, new knowledge may come
from time to time, and may conflict with previous
knowledge. Also, questions may go beyond the sys-
tem’s current knowledge scope.

We want the system to be adaptive, that is, to be-
have according to its experience (available knowl-
edge/evidence). In such a situation, the system’s an-
swers are usually uncertain, since the input knowledge
is not necessarily conflict-free, and the system needs
to make plausible inferences when the available knowl-

edge is insufficient to answer a question with absolute
certainty. As a result, for a given question, NARS
usually cannot find a unique “correct” or “optimal”
answer, but only a “reasonable” answer that is best
supported by its experience, and can be found or con-
structed under the current time-space constraint.

In the following sections, we explain why in NARS
the representation of uncertainty needs two num-
bers. A new measurement, confidence, is introduced,
and some operations on this measurement are dis-
cussed. Finally, this approach is compared with other
probability-based measurements of higher-order un-
certainty.

Since a comprehensive introduction to NARS is far
beyond the capacity of this paper, we will focus on the
confidence issue, and for the other aspects of the sys-
tem (such as knowledge representation language, se-
mantics, inference rules, truth value functions, mem-
ory management, inference control, and so on), we
only mention the directly relevant parts. Papers and
an on-line demonstration of NARS are available at
the author’s web-page.

2 Evidence and Confidence

In NARS, the basic form of knowledge is an inher-
itance relation between two terms, “S C P”. Intu-
itively, it indicates that S is a specialization of P, and
P is a generalization of S. It roughly corresponds to
“S'is a kind of P” in English.

In its ideal form, Inheritance is reflexive and tran-
sitive. In NARS, the extension and intension of a
term T are defined as sets of terms: Er = {z | z C
T} and Iy = {z | T C z}. Intuitively, they include all
known specialization (instances) and generalizations
(properties) of T, respectively.

It can be proven that (S C P) <= (Es C Ep) <
(Ip C Ig), where the first relation is an Inheritance
relation between two terms, while the last two are



subset relations between two sets (extensions and in-
tensions of terms). Therefore, S C P indicates that
S inherits the intension of P, and P inherits the ex-
tension of S.

Given the assumption of insufficient knowledge and
the requirement of being adaptive, the uncertainty of
S C P is defined according to available evidence in
the system. For a statement S C P and a term M, if
M is in the extensions of both S and P, it is positive
evidence for the statement; if it is in the extensions of
S but not the extension of P, it is negative evidence.
Symmetrically, if M is in the intensions of both P and
S, it is positive evidence for the statement; if it is in
the intension of P but not the intension of S, it is
negative evidence. Therefore, the amount of positive
evidence is w = |Es N Ep| + |Ip N Ig|, the amount
of negative evidence is w~ = |Es — Ep| + |Ip — Ig],
and the amount of all evidence is w = wT +w™ =
|Es|+ |Ip|.

For example, an observed black crow is a piece of
positive evidence for “Crow is a kind of black thing”
(w = w* = 1), and an observed non-black crow is a
piece of negative evidence for it (w = w™ = 1). Here
we assume the observations have no uncertainty.

To measure the amount (or weight) of evidence is
not a new idea at all [10, 15]. For instance, Keynes
said that “As the relevant evidence at our disposal
increases, the magnitude of the probability of the ar-
gument may either decrease or increase, according as
the new knowledge strengthens the unfavorable or the
favorable evidence; but something seems to have in-
creased in either case, — we have a more substantial
basis upon which to rest our conclusion.” [10]

Though we do not always make a judgment by directly
counting pieces of evidence, the concept of amount of
evidence can be used as an idealized meter-stick by
which uncertainty is measured — I can say that my
belief on a sentence is “as strong as I have tested the
sentence w times, and the tests succeeded w™ times,
but failed w™ times”, even though I did not really
test the sentence in this way. For how to apply this
measurement to a formal language, see [25, 26].

Because all the operations in the system are based on
available evidence, wT and w™ contain all the infor-
mation about the uncertainty of the sentence. How-
ever, when represented in this way, the information
is inconvenient for certain purposes. When compar-
ing competing options and deriving new conclusions,
we usually prefer relative measurements to absolute
measurements.

The most often used relative measurement for uncer-
tainty is the frequency, or proportion, of positive ev-

idence among all available evidence. In the follow-
ing, let us define the “frequency” of a sentence as
f = wT /w. If the system has observed 100 crows,
and 95 of them are black, but the remaining 5 are
not, the system sets f = 0.95 for “Crow is a kind of
black thing”.

Although f is a natural and useful measurement, it
is not enough for our current purpose. Intuitively,
we have the feeling that the uncertainty evaluation
f = 0.95 is uncertain itself. For a simple example,
let us consider the following two situations: (1) the
system only knows one crow, and it is black, and (2)
the system knows 10000 crows, and all of them are
black. Though in both situations we have f = 1,
the first case is obviously “more uncertain” than the
second. Because here the uncertainty is about the
sentence “The frequency for crows to be black is 17,
we are facing a higher-order uncertainty, which is the
uncertainty of an evaluation about uncertainty.

As mentioned at the beginning of the paper, in NARS
the uncertainty in a sentence appears as the result of
insufficient knowledge. Specially, the first-order un-
certainty, measured by frequency, is caused by known
negative evidence, and the higher-order uncertainty is
caused by potential negative evidence.

As discussed previously, the most simple and natural
measurement of the higher-order uncertainty is the
amount of evidence, w. However, we have reasons to
introduce a relative measurement, whose advantages
will be apparent later.

Intuitively, we are looking for a function of w, call it ¢
for confidence, that satisfies the following conditions:

1. Confidence c¢ is a continuous and monotonically
increasing function of w. (More evidence, higher
confidence.)

2. When w = 0, ¢ = 0.
confidence is minimum.)

(Without any evidence,

3. When w goes to infinity, ¢ converges to 1. (With
infinite evidence, confidence is maximum.)

There are infinite functions satisfying the above re-
quirements, therefore we need more intuition to pick
up a specific one.

Many functions with value range [0, 1] can be natu-
rally interpreted as a ratio. Following this path, we
might want to define ¢ as the ratio of “the amount
of evidence the system has known” to “the amount
of evidence the system will know”. Obviously, the
first item is w, but for a system that is always open
to new evidence, the second item is infinity, therefore



the ratio is always 0. When compared with an infi-
nite “future,” the difference among the various finite
“past” cannot be perceived. For an adaptive system,
though past experience is never sufficient to predict
future situations, the amount of evidence does matter
for the system’s decision, and the behaviors based on
more evidence should be preferred.

Because confidence is supposed to be a relative mea-
surement defined on finite evidence, a natural idea is
to compare the amount of current evidence with the
amount of evidence the system will know in the near
future. By “near future,” we mean “until the coming
of a constant amount of new evidence”.

Now we get the definition of confidence that we want
to introduce in this paper: ¢ = w/(w + k), where
k is a positive constant indicating the “near future”.
Defined in this way, the frequency and confidence of
a sentence are independent to each other, in the sense
that, from the value of one, the other’s value cannot
be determined, or even estimated or bounded (except
the trivial case where ¢ = 0 indicates that f has an
undefined value).

Obviously, this function satisfies the three require-
ments. For a specific system, k should remain un-
changed to make the system’s behaviors consistent,
but different systems can have different values for k.
In this paper, the default value of k is 1 (and we will
discuss the choice of k later). Under such a definition,
confidence indicates the ratio of the current amount
of evidence (for the piece of knowledge under con-
sideration) to the amount of evidence the system will
have after it gets new evidence with a unit amount (or
weight). The more the system already knows, the less
the new evidence will contribute (relatively), therefore
the more confident, or the less ignorant, the system
is, with respect to the given relation. When w = 1,
c = 0.5, and the new evidence will double the amount
of available evidence; When w = 999, ¢ = 0.999, and
the new evidence will have little effect on the system’s
belief.

For empirical knowledge, ¢ can never reach 1, so
the knowledge is always (more or less) revisible. In
NARS, ¢ = 1 isreserved for analytical knowledge, such
as mathematical knowledge. This kind of knowledge
is not a direct summary of experience, but a conven-
tion that is not directly revisible by evidence (we will
return to this issue later).

We can interpret confidence in another way. As de-
fined previously, the current frequency of positive ev-
idence is f = wT/w. After getting a piece of new
evidence with weight k, where will the new f be? Ob-
viously, if the new evidence is completely negative, f
will be w/(w + k); if the new evidence is completely

positive, f will be (wt + k)/(w + k). Therefore, no
matter what content the new evidence has, the fre-
quency will stay in the interval [w'/(w + k), (w* +
k)/(w + k)] in the near future. Let us call the lower
bound and the upper bound of the interval “lower
frequency” and “upper frequency”, respectively. The
width of the interval, k/(w + k), provides a measure-
ment for the ignorance (or susceptibility) of the sys-
tem on the statement, which is a higher-order uncer-
tainty, and its complement (to 1), w/(w+k), provides
a measurement for the confidence (or stability) of the
judgment.

Now we have three functionally identical ways to rep-
resent the uncertainty of a statement: by two of
the three amounts of evidence (w*, w™, and w), by
the two ratios (frequency and confidence), or by the
lower—upper frequency interval. From the above def-
initions, it is not difficult to get the one-to-one map-
pings among the three representations [25, 26]. No
matter which form is used, we need two numbers to
represent the uncertainty of a statement.

Is this kind of information available to the system?
Even Bayesian network and fuzzy logic, which require
the users to assign a single number to each statement,
have difficulty in getting the numbers. How can we
now expect users to provide a pair of numbers for each
statement? To us, the hardness of value assignments
comes mainly from the unclear interpretation about
what are measured by these values. Our approach at-
tempts to be more user friendly by unifying differ-
ent uncertainty representations. This clarifies the as-
signment process for the users. They can even mix
different forms of uncertainty, in terms of amount of
evidence, frequency, confidence, ignorance, frequency
interval, and so on, in the knowledge they provide.

Though ¢ is defined as a function of w, which is
intuitively understood as “amount of available evi-
dence,” the system does not simply count the num-
ber of pieces of evidence, and treat each of them as
equally-weighted. Instead, it interprets evidence as
equivalent to (“as strong as”) that from such a simple
counting. If a statement has a confidence ¢ = 0.9,
which corresponds to w = 9 when k£ = 1, it does
not mean that the system really has found 9 pieces
of (ideal) evidence, but that the system believes the
statement to such an extent, as if it has found 9 pieces
of ideal evidence for the statement [26].

3 Confidence-related Operations

In the following, we show how confidence is processed
in the major inference operations of NARS.



3.1 Revision

In NARS, revision indicates the process by which ev-
idence from different sources is combined. For exam-
ple, assuming the system’s previous uncertainty for
“Crows are black” is <9/10, 10/11> (we know that it
corresponds to “Ten crows observed, and nine of them
are black” when k = 1), now a piece of new knowledge
comes, which is “Crows are black < 3/4, 4/5>” (so
it corresponds to “Four crows are observed, and three
of them are black”). If the system can determine that
no evidence is repeatedly counted in the two sources
(see [25, 26] for how this is defined and checked),
then the uncertainty of the revised judgment should
be <6/7, 14/15> (corresponding to “Fourteen crows
observed, and twelve of them are black”).

Formally, revision is the rule that merges < f1, ¢c1 >
and < fa, co > into < f, ¢> for the same S C P. From
the conversion that the amount of evidence is additive
during revision and the definition of frequency and
confidence in terms of evidence, we get the following
uncertainty function for the revision rule:

f =

fiea(l—ca2)+faca(l—c1)
c1(1—c2)+ca(l—cy)

01(1762)#*02(1761)

c Cl(1—62)+CQ(1—61)+(1—61)(1—62)

where < f1, ¢1 > and < fa, ¢ > are the uncertainty of
the two premises, and < f, ¢ > is the uncertainty of
the conclusion.

This function has the following properties:

1. The order of the premises does not matter.

2. As a weighted average of f1 and fs, f is usually
a “compromise” of them, and is closer to the one
that is supported by more evidence.

3. cis never smaller than either ¢; or ¢y, that is, the
conclusion is supported by no less evidence than
either premise.

4. If ¢; =0, then f = f5 and ¢ = ¢3, that is, a judg-
ment supported by null evidence cannot revise
another judgment.

5. If¢c; =1 and ¢ < 1, then f = f; and ¢ = ¢q, that
is, a definition (supported by complete evidence)
cannot be modified by empirical evidence.

6. If c; = co = 1 but f; # fs, then f and c are
undefined, that is, there are two conflicting defi-
nitions in the system, from which nothing can be
derived.

This definition is compatible with our intuition about
evidence and revision — revision is nothing but to

reevaluate the uncertainty of a statement by taking
new evidence into account. Revision is not updat-
ing, where old evidence is thrown away. A high w
means that the system already has much evidence for
the statement, therefore its confidence is high and its
ignorance is low (on this issue). It follows that the
statement is relatively insensitive to new evidence. All
these properties are independent to the decisions on
how w is divided into wt and w~, as well as to how
they are actually measured (so these decisions may
change from situation to situation without invalidat-
ing the revision rule).

It needs to be clarified that here “revision” refers to
the operation by which the system summarize two
(maybe conflicting) beliefs. In this operation the con-
clusion always has a higher confidence. However, gen-
erally speaking, in NARS it is possible for the system
to loss its confidence on a belief. This can be caused
by the “forgetting” or “explaining away” of previously
available evidence. This issue is related to the mem-
ory management and control mechanism of the system
[26], and thus is beyond the scope of this paper.

3.2 Choice

What will happen if the evidence of the two premises
are “correlated”, that is, some evidence are used by
both of them? Ideally, we would like to merge the ev-
idence without repeatedly counting the overlapping
part. However, with insufficient resources (which is
assumed in NARS), it is simply impossible to distin-
guish the contribution of each piece of evidence to the
uncertainty of the judgment. Therefore, when NARS
recognizes that two premises are based on correlated
evidence (for how this can be done, see [26]), it chooses
the premise with a higher confidence, because it is
supported by more evidence. This is exactly what we
expect from an adaptive system whose behaviors are
based on its experience.

Another type of choice happens when the competing
statements have different contents. For example, the
system needs to decide which one of two statements
S1 C P<f, cg>and S C P < fy, cog > is more
likely to be confirmed in the next time they are tested
(i.e., which of S; and Sy is a better candidate if a spe-
cialization of P is needed). For an adaptive system,
such a decision is only based on available evidence
about the two statements, represented by their un-
certainty.

This problem is similar to the decision-making prob-
lem studied by the Bayesian school, where the system
simply takes the option that has a higher probabil-
ity (when they have the same utility). What makes
things complex in NARS is the fact that here the un-



certainty of a statement is represented by a pair of real
numbers, and both numbers influence the system’s
preferences, but in different ways. When the compet-
ing statements have the same confidence, the system
takes the one with a higher frequency as more likely to
be confirmed. When the competing statements have
the same frequency, the statement with a higher con-
fidence is “stronger.” For example, if fi = fo = 1,
¢1 = 1/2, and ¢o = 10/11, the second statement is
stronger, because it is supported by more evidence.
In this case, the one with a higher confidence is more
likely to be confirmed in the future. On the contrary,
if f{ = fo =0, the one with a higher confidence is still
“stronger”, but less likely to be confirmed, because it
has more negative evidence.

In general, we need to combine f and ¢ into a single
measurement e, indicating the system’s expectation on
how likely the statement will be confirmed again in
the future. Intuitively, this measurement is similar to
“probability” under subjective interpretation, which
is derived from preference in decision making [1]. In
other words, e indicates the system’s betting quotient
on the statement, when the only alternative is the
negation of the statement (that is, abstention is not
allowed). To avoid a sure lose (“Dutch book”), the e
value of a statement and the e value of the negation
of the statement should sum to 1.

As defined previously, ¢ = 0 means no evidence, there-
fore e is 1/2, since the system is indifferent to the
statement and its negation. When ¢ = 1, the system
has known the limit of frequency, which is used as e.
In other cases, f is “squashed” by c¢ to the “indiffer-
ence” point 1/2 to become e, showing a “conservative”
tendency by taking the possible variations of f into
consideration. Consequently, we obtain

e=c(f—1/2)+1/2.
When representing e directly as a function of the

weight of evidence, we get

wt +k/2
w+k

where k is the constant defined previously. With the
same evidence, a system with a larger k£ has an e closer
to the indifference point, that is, it accepts a smaller
betting quotient — the system is more prudent than
a system with a smaller k. We call the k a “personal-
ity parameter,” because it shows a systematic bias in
the system’s preferences. Everyone prefers an option
that has both a high frequency and a high confidence.
However, when the two qualities cannot be achieved
at the same time (i.e., one option has a higher fre-
quency, but the other one has a higher confidence),

different people balance the two differently. There is
no “optimum value” for this parameter, as far as our
current discussion concerns.

The expectation value also happen to be the middle
point of the frequency interval

[

wt  wt+k

w4k’ w—l—kz}

3.3 Inferences

The major inference rules in NARS are the syllogistic
rules for deduction, abduction, and induction, listed
in the following. Each rule takes a pair of premises
that share a common term, and derives a conclusion
between the other two terms. Each rule includes a
truth value function calculating the uncertainty of the
conclusion from those of the premises.

Deduction
M C P <fi, >
S c M <f2, Co >

S C P <f, c>

Abduction
PCM<fi,a>
S C M <fy, co>

S C P <f,c>

Induction
M Cc P <f), 1>
M C S <fo, co>

S C P <f, c>

A detailed discussion of the rules is beyond the scope
of this paper, and such discussions can be found in
[25, 26]. In the following, we only summarize the pro-
cedure by which the above functions is determined.

By definition, frequency f and confidence ¢ take their
values in the interval [0, 1], and so does the amount
of evidence w when the evidence under consideration
is at most of unit amount. Under this condition, we
can carry out the task in the following steps:

1. Treat all the involved variables as Boolean, that
is, have values in {0, 1} (i.e., either 0 or 1). Conse-
quently, each premise is fully positive (f =1, ¢ = 1),
fully negative (f = 0, ¢ = 1), or fully unknown
(c=0).

2. Study each value combination of the premises, and
decide the corresponding values for the conclusion ac-
cording to the semantics of the language and the def-
inition of the uncertainty measurements.



For deduction, the Boolean truth value function is
given by the transitivity of ideal Inheritance and the
principle that from two pure negative Inheritance re-
lations, no conclusion can be derived. There are the
following situations:

e When < f1,c1 > and < f3,co > are both <1,1>,
sois < f,e>.

e When < f1,¢1 > and < fo,co > are <1,1> and
< 0,1 > (no matter which is which), < f,¢> is
<0,1>.

e When < f1,c1 > and < f5,co > are both <0,1>,
cis 0.

e When ¢ or ¢ is 0, ¢ is 0.

For abduction and induction, the confidence of the
conclusion cannot be 1, therefore it is not fruitful to
directly represent < f,c> as Boolean function of the
truth values of the premises. Instead, the previous
definition of evidence is used, so that the amount of
evidence of the conclusion is represented as Boolean
function:

e When < f1,¢1> and < fa,co> are both <1,1>,
M is positive evidence, i.e., w = wT = 1.

e When in abduction < f1,¢; > is < 1,1 > and
< fa,c2> 18 <0,1>, or in induction < f1, ¢y > is
<0,1> and < fa,co > is <1,1>, M is negative
evidence, i.e., w = 1 and w* = 0.

e When in abduction < f1,¢1 > is < 0,1 >, or in
induction < fa,ce > is <0,1>, M is no evidence,
i.e.,w = 0.

e When ¢ or c; is 0, M is no evidence, i.e.,w = 0.

3. Represent the uncertainty of the conclusion as
Boolean functions of those of the premises, under
the constraint provided by the previous step. Usu-
ally there is more than one function satisfying the
requirement, and we use the one that is simple and
has a natural interpretation. What we get are:

Deduction
AND(ﬁ C) = AND(fh C1, f2702)
C = AND(Cl, Co, OR(fl, f2))

Abduction
w+ = AND(f1701,f2,02)
w = AND(flycI)CQ)

Induction
wt = AN.D(flacthacQ)
w = AND(Clan)CQ)

4. Extend the Boolean operators AND, OR, and NOT
from {0, 1} to [0, 1], according to the study of 7-
norm and T-conorm [2, 6, 17]. The extended Boolean
operators in NARS are:

AND(z,y) = zx*y
OR(xz,y) = z+y—T*Yy
NOT(z) = 1-uz

where the first two are applied only when x and y are
independent to each other, meaning that the value of
one provides no information on the value of the other.
When these operators are applied to the truth value
functions obtained previously, we get the truth value
function of NARS:

Deduction

f=fif2/(fi+ fa— fif2)
c=cico(fi+ fa — fif)

Abduction
=1/
Cc = flclcg/(flclcg + 1)

Induction
f=h
c= facica/(facico + 1)

The above inference rules, plus the revision rule and
the choice rule introduced previously, are the ma-
jor operations on confidence in NARS. By comparing
them, we can see the following:

e Both frequency and confidence contribute to in-
ference and decision making, but in different
ways.

e Revision is the only rule where the confidence of
the conclusion may be higher than those of the
premises.

e The confidence of a syllogistic conclusion is never
higher than the confidence of either premise, that
is, confidence “declines” in syllogistic inference.

e Confidence declines much slower in deduction
than in induction and abduction. In deduction,
if both premises have a confidence value of 1, the
conclusion may also have a confidence value of 1
(so it is a derived definition or convention). In
induction and abduction, on the contrary, the
confidence of the conclusion has an upper bound
which is far less than 1. So, by saying that “In-
duction and abduction are more uncertain when
compared with deduction”, what is referred to
is not the “first-order uncertainty”, f (inductive
and abductive conclusions can have a frequency
of 1 when all available evidence is positive), but
the “higher-order uncertainty”, c.



4 Compared with Other Approaches

4.1 Bayesian approach

For reasoning under uncertainty, the most popular re-
search paradigm is the Bayesian approach, which has
the following major features: [1, 4, 14, 20]

1. The probability of a proposition is interpreted as
the system’s degree of belief on the proposition,
according to available evidence.

2. The system’s beliefs, or knowledge, are repre-
sented by a (consistent) probability distribution
on a proposition space.

3. When the system needs make a choice among
competing uncertain answers, it always prefer the
one that has the highest probability (when utility
is the same).

4. The inferences in the proposition space precisely
follow probability theory.

5. When new evidence comes, the beliefs are revised
according to Bayes’ theorem,

According to this approach, when “probability” is
identified with “degree of belief”, which indicates a
system’s preference among possible choices, and prob-
ability theory is used as a normative theory for how
the system should behave to maintain a consistent
belief space, a probability distribution on a proposi-
tion space is capable of representing the uncertainty
involved in the above operations, because no matter
what is the origin of uncertainty, its effects eventually
appears in the system’s preference among possible op-
tions in making a choice.

This argument is valid if we only consider the choice
and the inference operations defined above. However,
if we carefully analyze the revision operation, a limit
of Bayesian approach can be found. A detailed dis-
cussion of this issue is in [23], and here we only briefly
summarize the argument.

In the Bayesian approach, learning of new evidence is
mainly carried out by conditionalization according to
Bayesian Theorem, that is, if new evidence is F, then
the probability of an arbitrary statement S'is changed
from time T°0 to time T'1 as Ppy(S) = Pro(S|E). The
problem in this method is: the knowledge that can be
put into the system a priori (in Prg) cannot always
be learned a posteriori as E. In general, to revise the
background knowledge of a probability distribution,
to know the distribution itself is not enough. The
confidence measurement introduced in this paper can

be seen as an attempt to measure the knowledge be-
hind a probabilistic judgment.

To use two (or more) numbers to represent the un-
certainty of a statement is not a new idea. The
previous problem (or similar problems) is the origin
of many alternative approaches which challenge the
dominant position of the Bayesian approach in the
field. The advocates of these new approaches claim
that the Bayesian approach cannot properly represent
and process this kind of uncertainty, and various new
measurements have been proposed. Some of them are
discussed in the following.

4.2 Higher-order probability

Several new measurements are proposed under the
assumption that the first-order uncertainty measure-
ment (call it “probability” or “degree of belief”) is an
approzimation of a “real” or “objective” probability.
Under the frequentist interpretation, the probability
of a statement is the limit of frequency, therefore all
estimations of it based on finite evidence are not accu-
rate. Even if we take probability as degree of belief, it
can still be argued that such a degree should converge
to the objective probability if it exists.

If the first-order probability assignment is only an
approximation of an unknown value, the need for
a higher-order measurement follows naturally — we
want to know how good the approximation is, in ad-
dition to the approximated value itself.

One natural idea is to apply probability theory once
again, which leads to the concepts like “probability
of probability,” “second order probability,” “higher
order probability,” and so on [7, 8, 13]. In this way,
we can assign probability to a probability assignment,
to represent how good an approximation it is to the
real probability.

However, there are problems in how to interpret the
second value, and whether it is really useful [12, 14].
For our current purpose, under the assumption of in-
sufficient knowledge, it makes little sense to talk about
the “probability” that “the frequency is an accurate
estimate of an objective first-order probability”. Since
NARS is always open to new evidence, it is simply
impossible to decide whether the frequency of a judg-
ment will converge to a point in the infinite future, not
to mention where the point will be. If we say that the
second-order probability is an approximation itself,
then a third-order probability follows for the same
reason — we are facing an infinite regression [16].

Since second-order probability is not introduced as
a function of available evidence alone, it does not
represent ignorance. “P(P(A) = p) = 0” means



“P(A) # p”, rather than “P(A) is completely un-
known” (as what confidence means in NARS). Con-
sequently, such a measurement does not support the
revision operation — we cannot combine a pair of con-
flicting judgments, given their first-order and second-
order probabilities.

Though the confidence value defined in NARS is in
[0, 1], can be considered to be a ratio, and is at a
“higher level” than f (which is closely related to prob-
ability), in the sense that it indicates the stability of f,
it cannot be interpreted as a second-order probability
in the sense that it is the probability of the judgment
“f is the (real or objective) probability of the state-
ment”. The higher the confidence is, the harder it will
be for the frequency to be changed by new evidence,
but this does not mean that the judgment is “truer”,
or “more accurate”, because in an open system like
NARS, the concept of a real or objective probability
does not exist.

Defined in this way, there is no “third-order uncer-
tainty” to worry about. The stability of a confidence
value can be derived from the confidence value itself.
Because the current confidence is ¢ = w/(w + k),
in the near future, with the coming of new evi-
dence whose amount is k, the new confidence will be
(w+ k)/(w + 2k), that is, 1/(2 — ¢). Therefore we
do not need another measurement, and there is no
infinite regression.

4.3 Probability Interval

Another intuitively appealing approach is to use an
interval, rather than a point, to represent uncertainty,
and to interpret the interval as the lower bound and
upper bound of the real probability [2, 9, 11]. In this
way, the higher-order uncertainty can be represented
by the width of the interval. When the system knows
nothing about a statement, the interval is [0, 1], so
the real probability can be anywhere; when the real
probability is known, the interval degenerates into a
point.

A well-known method in statistics is to calculate the
confidence interval [1], which has a high probability
(such as 95%) of including within the real probability.
Here, the width of the interval also provides informa-
tion about the accuracy of the current estimation.

Although the above methods are directly based on
probability theory (and thus have a sound founda-
tion), and they are useful for various purposes, they
cannot be applied in a system like NARS.

When the probability interval is interpreted as the
interval containing the true probability value, the sit-
uation is similar to the case of higher-order probabil-

ity. For an open system with insufficient knowledge,
it cannot be assumed that a frequency always has a
limit. Even when such a limit really exists, it is im-
possible for the system to know how close the current
frequency is to it without making assumptions about
the distribution of the limit. If the probability inter-
val is interpreted as an estimation itself, an “interval
of the bounds” will follow, so the infinite regression
appear again. For the same reason, the “confidence”
defined in NARS has different meaning from the “con-
fidence” as in “confidence interval”, used in probabil-
ity theory and statistics, though they do correspond
to the same intuition, that is, some frequency esti-
mations are more reliable than the others, and their
difference can be measured.

The closest probability-based approach to NARS is
the “imprecise probability” (IP) theory proposed by
Peter Walley [21, 22]. Walley defines lower and upper
probabilities of an event as the minimum and maxi-
mum betting rate, respectively, that a rational person
is willing to pay for the gamble on the event. An in-
teresting result relates this theory to the approach
proposed in this paper. Suppose that an event has a
constant (unknown) chance to happen, that the obser-
vations of the event are independent to one another,
and that the chance has a near-ignorance beta distri-
bution as its prior. If the observed relative frequency
of the event is m/n, then, according to Walley’s the-
ory, the lower and upper probabilities of the event are
m/(n+ so) and (m + so)/(n + sp), respectively. Here
so is a parameter of the beta distribution, and it in-
dicates the convergence speed of the lower and upper
probabilities. This is exactly the result we get for the
lower and upper frequencies previously. The width of
the interval can be seen as a measurement of “igno-
rance”, which is the opposite of “confidence” defined
above (the sum of the two is 1).

Though these two approaches (NARS and IP) define
uncertainty measurements differently, they are con-
sistent in the sense that they make the same deci-
sions in situations where both theories are applicable.
What makes them different from the other “probabil-
ity interval” approaches mentioned earlier is: in both
NARS and IP, the interval does not bound the limit
of the frequency (if such a limit exists). The inter-
val [m/(n+ sg), (m+ sg)/(n+ sp)] is just where the
frequency will be in a constant near future, and after
that it can be anywhere in [0, 1].

The major difference between these two approaches
comes from the fact that IP is proposed as an ex-
tension of probability theory, and therefore the infer-
ence is mainly within the same probability distribu-
tion. On the other hand, NARS is designed to be a
logic. As described previously, in NARS each piece of



knowledge is based on a separate body of evidence, so
that the rules introduced previously correspond to in-
ference across different probability distributions. The
detailed relationship between these two approaches is
an interesting issue for future research.

4.4 Other related works

The Dempster-Shafer theory [5, 18] is also motivated
by the observation that probability theory cannot rep-
resent and process ignorance properly. However, the
use of Dempster’s rule causes a conflict between the
two basic goals of the theory — that is, generalizing
probability theory and supporting evidence combina-
tion. This problem is discussed in [24], and thus is
not repeated in this paper.

The expectation continuum in NARS
wt +k/2
w+k

is also very similar to Carnap’s A-continuum [3] and
the result derived in probability theory for a beta dis-
tribution [1]. Again, what make our formula different
from them is that it is completely based on available
evidence without any reference to a “real probabil-
ity”. As we have shown, such a definition is necessary
for the purpose of revision.

Intuitively, confidence indicates how much the sys-
tem knows about a statement, and thus is similar to
Shafer’s “reliability” [19] or Yager’s “credibility” [28].
Both of the approaches evaluate the uncertainty of a
probability assignment, where 0 is interpreted as “un-
known”, rather than “impossible”. These approaches
relate the higher-order measurement to the reliability
of its information source or to the compatibility of a
judgment with higher priority evidence. These kinds
of information, though available in some other situ-
ations, is not available in NARS, where the system’s
confidence about a statement depends on the amount
of available evidence.

5 Summary

With conflicting evidence, the conclusions made by a
reasoning system are usually uncertain. If the system
is also open to new evidence, there is a higher order
uncertainty indicating the stability of first order un-
certainty evaluations.

Several approaches have been proposed for handling
higher order uncertainty. Although each approach has
a suitable application domain, none is appropriate for
the situation discussed in this paper.

When positive and negative evidence can be (in prin-
ciple) distinguished and measured, confidence can be

defined as a function of the amount of available evi-
dence. Such a definition is simple, natural, and closely
related to concepts like ignorance, credibility, relia-
bility, stability, sensitivity, susceptibility, and so on.
This measurement also provides support to the design
of various reasoning rules.

Though the uncertainty calculus used in NARS shares
certain intuition and even concrete formula with
probability-based approaches, it is not an application
or extension of probability theory, for several reasons.

The frequency and confidence measurement used in
NARS is completely defined on available evidence,
without any assumption about the distribution, or
even the existence, of the limit of the frequency.

When measuring frequency and confidence in NARS,
both extensional and intentional factors are included
(as defined previously). Therefore, the frequency of
“A C B” is not the conditional probability P(z €
Ep |z € Ey) = |EgNE4|l / |Ea|l (“The probability
for A’s instance to be included in B”), which is the
usual (pure extensional) interpretation of probability.

In NARS, the uncertainty of each statement is eval-
uated separately, based on local evidence, so the sys-
tem’s beliefs do not correspond to a consistent proba-
bility distribution over the space of all statements. In-
stead, each statement is like a probability distribution
of its own, with its statement space and background
knowledge.

Consequently, the uncertainty calculations carried out
by the inference rules do not correspond to probability
calculations within the same probability distribution.
They are more similar to calculations across multiple
probability distributions.

The NARS approach is not proposed as heuristics or
an ad hoc method for special purposes. Though still
incomplete, this approach is designed to be a norma-
tive theory of inference. Its differences with probabil-
ity theory mainly come from its assumption of insuf-
ficient knowledge and resources [27].

This approach is not necessarily better than the com-
peting approaches in all environments, but it is better
in the environment described at the beginning of the
paper, which has special theoretical and practical in-
terests from the view point of artificial intelligence
and cognitive science [26].
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