Computation and Intelligence in Problem
Solving

Pei Wang
Department of Computer and Information Sciences
Temple University
http://www.cis.temple.edu/~pwang/
pei.wang@temple.edu

Abstract

The concept of computation, as well as the related concepts algo-
rithm, Turing machine, computability, and computational complexity,
correspond to a specific mode of using computers to solve problems.
This computational mode assumes the sufficiency of knowledge and
resources with respect to the problem to be solved. From the view
point of Artificial Intelligence, an intelligent mode of problem solv-
ing is introduced, where the problem solving process cannot been seen
as computation anymore. A system working in this mode is briefly
described. Finally, these two modes of problem solving are compared.

“Computation” is a fundamental concept in computer science. Artificial
Intelligence (Al) is usually taken as a branch of computer science, and it
has also, to a large extent, inherited the theoretical heritage associated to
the concept of computation. In this paper we argue that it is improper
to treat intelligent problem solving as computation, though this conclusion
does not make it impossible to build intelligent computer systems. Actually
it is the contrary: we believe that real Al can be realized only when we
go beyond the concept of computation. An intelligent reasoning system,
NARS, is introduced, whose problem solving activities cannot be referred
to as computation, though the system is still implemented in an ordinary
computer.

1 Problem Solving as Computation

Turing machine is a mathematical model of computer. A Turing machine
M has a finite number of states, and among them there is one initial state



and at least one final state. At each state ¢;, M moves into another state
gj, according to the given input data. A computation is a finite sequence
of moves by which M transforms from its initial state gg to one of its final
states gy, in response to the input data d;. In the final state, M provides
the output data d, as the result of the computation. We can equally well
say that M is a function that maps d; to d,, or that M is an algorithm with
d; and d, as input and output, respectively [Hopcroft and Ullman, 1979].

Usually, an algorithm is defined on a problem class, which has more than
one concrete instances. Each time the algorithm is applied on a problem
instance. A problem (class) is computable if there is an algorithm that
generates correct result in finite steps for each instance of the class. In that
case, the algorithm (or the corresponding Turing machine) is referred to as
the solution of the problem.

The amount of time or space used by an algorithm is called the (time
or space) complezity of the algorithm, and is represented as a function of
the “size” of the problem instance. According to the category the function
belongs, we call the complexity to be constant, logarithmical, polynomial,
exponential, and so on. In particular, a problem is feasible, or tractable,
if it has a polynomial solution or better. The problems without polyno-
mial algorithms are intractable, because the cost of a solution will become
astronomical figures for large instances of the problem.

According to computability theory and computational complexity the-
ory, using a computer to solve a problem usually follows a certain procedure:

1. To define the problem by accurately specifying the valid inputs, and
for each of them, specifying the required output.

2. To design an algorithm that correctly generates output for each valid
input.

3. To analyze the complexity of the algorithm, and to select the most
efficient one if there are multiple algorithms for the problem.

4. To code the algorithm in a programming language, and to save the
executable code in a computer system.

If the algorithm is correct and the program is efficient enough, the problem
is considered as solved — for each instance of the problem, the program
will produce an answer using constant time and space. The output and its
(time-space) cost are determined only by the algorithm and the input. In
this paper, we call the above approach “the computational mode of problem
solving”.



Conceptually, a computer system can be seen as a collection of algo-
rithms, and it works by repeating the following cycle:

to wait for the user to input a new problem instance;

to call the corresponding algorithm when an input comes;
to execute the algorithm on given input;

to report the output;

to reset the working environment.

Though modern computer systems allow multiple problem instances to be
processed in parallel by time-sharing, the above conceptual picture remains
unchanged. When an algorithm is working, whether there are other algo-
rithms running should make no difference in the result, unless it has com-
munication with other algorithms (which should be taken as part of the
input). If the same problem instance is asked again later, the result should
be exactly the same.

Roughly speaking, Artificial Intelligence (AI) is the attempt to build
computer systems that work like human mind. Since AI grew as a branch of
computer science, most people naturally use computer in the computational
mode, by defining problem, designing algorithm, analyzing computational
complexity, and so on. This approach has three possible results:

No algorithm is found. If we do not have the knowledge to design an
algorithm to solve a given problem, then of course there is no solution,
at least at current moment. For certain problems, it can be even
proven that they are not computable. Instead of giving up, the usual
way to deal with this situation is to change the problem into a similar
but simpler problem, for which an algorithm can be designed.

No tractable algorithm is found. If we know an algorithm, but it is too
time-consuming, then it cannot be practically used except on very sim-
ple instances of the problem. When a solution does not “scale up”,
in AI we usually does not count it as a solution. For example, in
principle many problems (such as playing chess) can be solved by ex-
haustive search, but we cannot afford the time it requires. That is why
some authors treat tractability as a central issue in AI — exponential
algorithms easily produce “combinatorial explosion”, so they make
no practical sense [Bylander, 1991, Levesque, 1989]. Again, whenever
this is the case, the common practise is to relax the requirement in
the problem (such as replacing “best answer” by “satisfying answer”),



so that tractable approximate algorithms and heuristic algorithms can
be used.

A tractable algorithm is found. By definition, in this situation the prob-
lem has a known solution that can be practically used. For computer
scientists, this is the end of the story (unless there is the need to im-
prove the algorithm). However, for the purpose of Al, some people are
unhappy — “Where is the intelligence? This is just programming!”
The concept of “intelligence” is intuitively related to creativity and
flexibility, so to many people, solving a problem by accurately follow-
ing a predetermined algorithm cannot be it.

So Al is in a weird situation — if a problem is solved, then it seems that
the problem does not really need intelligence. Different people have different
attitudes toward this situation. Some people take it as an argument for the
impossibility of real AI; some people blame the von Neuman computer, and
believe Al needs a fundamentally different hardware which is not a Turing
machine; some people do not take this as an issue — they proudly see Al as
the expending frontier of computer science.

For several reasons, this is an issue. We do not need to run psychological
experiments to know that the problem-solving processes in human mind
rarely follow predetermined algorithm. On the other hand, one important
motivation behind AI research is to introduce flexibility, autonomy, and
creativity into computer systems. If Al still follow the common practise of
computer program development, then “intelligent” is simply a fancy label
on old stuff, and the systems developed will continue to be “brittle”, in the
sense that it cannot handle any event that is not fully expected when the
system is designed [Holland, 1986].

Of course, if the current computer hardware has to be used in compu-
tational mode, then the discussion on this issue is fruitless, because there is
no other possibility. In the following, we will show that it is not the case.
We will introduce an alternative approach, which allows the computer to be
used in a fundamentally different mode.

2 Problem Solving in NARS

In this section we introduce NARS (Non-Axiomatic Reasoning System), an
intelligent reasoning system. The system’s problem solving processes does
not follow predetermined algorithm and cannot be seen as computation,



though the system is still implemented by ordinary computer software and
hardware.

2.1 System overview

NARS is a general-purpose reasoning system. It communicates with its
user in a formal language, in which the user gives the system knowledge
and questions, and the system answers the questions according to available
knowledge.

What distinguishes NARS from other reasoning systems is its ability to
adapt under insufficient knowledge and resources.

To adapt means that the system learns from its experiences. It answers
questions and adjusts its internal structure to improve its resource efficiency,
under the assumption that future situations will be similar to past situations.

Insufficient knowledge and resources means that the system works under
the following restrictions:

Finite: The system has a constant information-processing capacity.
Real-time: All tasks have time requirements attached.

Open: No constraints are put on the knowledge and questions that the
system may get, as long as they are expressible in the formal language.

These restrictions have the following concrete implications in NARS:

e Since new knowledge may (explicitly or implicitly) conflict with pre-
vious knowledge, the knowledge base may contain conflicting beliefs.

e Since questions may go beyond the scope of available knowledge, the
system has to make plausible inference, and to revise its conclusions
when they contradict new evidence.

e No knowledge is absolutely certain. A conclusion may have known
counter evidence, and it is always possible to get counter evidence in
the future.

e Since all questions requires early answers, and new questions may show
up when the system is working on other questions, the system usually
cannot afford the time to answer a question according to all relevant
knowledge.

e Since new knowledge and derived knowledge come constantly, the sys-
tem’s memory (which has a constant capacity) cannot keep all of them.



Consequently, the major components of the system (its knowledge rep-
resentation language, semantic theory, inference rules, memory structure,
control strategy, and user interface) are all fundamentally different from
conventional reasoning systems that work in the computational mode.

In NARS, both knowledge and questions are represented as sentences
of a formal language, and for each piece of knowledge, a numerical truth
value is attached to measure the evidential support its gets according to
the experience of the system. Considering future evidence, no empirical
knowledge can reach the maximum value of truth, though can approach it
with the accumulation of supportive evidence. A question-answering process
of the system consists of a sequence of inference steps. In each inference step,
an inference rule is applied to some existing knowledge to derive a conclusion,
whose truth value is calculated according to the evidence provided by the
premises. The control mechanism of the system decides, for each inference
step, what premises to use and which rule to apply.

In this paper we will only address the aspect of the system that is directly
relevant to the relationship between intelligence and computation. For the
other aspects of NARS, see [Wang, 1994, Wang, 1995, Wang, 2001a], or visit
the author’s website for NARS related publications and an on-line demon-
stration.

2.2 Controlled concurrency

In the current version, NARS accepts two types of “tasks” (i.e., problems to
be solved) from its user: new knowledge to be absorbed and new questions
to be answered. For both, the system lets them interact with as much
available knowledge as possible, so as to get more derived knowledge (for
new knowledge) or more reliable answers (for questions).

What should a system do if it is occupied by one task when another one
shows up? Since for NARS new tasks do not come from a predetermined
set, usually the system cannot tell at the beginning what kind of solution
can be found, or how much resources it will cost. In such a situation, it is
usually undesired either to let the new task wait for a unlimited period, or to
let the new task interrupt the processing of the current task for a unlimited
period.

NARS’ goal is not to obtain solutions of a predetermined quality, but
to work as efficiently as possible when resources are in short supply. For
this reason, NARS distributes its resources among the tasks. At a certain
moment the time resource given to a task is not determined by an absolute
deadline, but by a relative “share”, which depends both on the request from



the user and on the internal situation of the system.

In NARS, a “priority” measurement is defined on tasks. The priority
value of a task is a real number in (0, 1]. At any given instant, if the
priority of task ¢; is u; and the priority of task to is us, then the amounts
of time resources the two tasks will receive in the near future keep the ratio
Uy U3-

Priority is therefore a relative rather than an absolute quantity. Knowing
that u; = 0.4 tells us nothing about when task ¢; will be finished or how
much time the system will spend on it. If #; is the only task in the system, it
will get all of the processing time. If there is another task to with ug = 0.8,
the system will spend twice as much time on ¢ as on t1.

Intuitively, we can envision NARS as having a task pool, in which there
is an priority value attached to each task. The system processes the tasks in
a time-sharing manner, meaning that the processor time is cut into fixed-size
time-slices, and in each slice a single task is processed. Because NARS is
a reasoning system, its processing of a task divides naturally into inference
steps, one per time-slice. The system distributes its time-slices among the
tasks, giving each task a number of time-slices proportional to its priority
value. To implement such an asynchronous parallelism, a task is chosen
probabilistically for each step, and the probability for a task to be chosen is
proportional to its priority. As a result, priority determines the (expected)
processing speed of a task.

If the priority values of all tasks remain constant, then a task that arises
later will get less time than a task that arises earlier, even if the two have the
same priority value. A natural solution to this problem is to introduce an
“aging” factor for the priority of tasks, so that all priority values gradually
decay. In NARS, a real number in (0, 1), called durability, is attached to
each priority value. If at a given moment a task has priority value u and
durability factor d, then after a certain amount of time has passed, the
priority of the task will be ud.

Therefore, durability is a relative measurement, too. If at a certain
moment d; = 0.4, do = 0.8, and u; = us = 1, we know that at this moment
the two tasks will get the same amount of time resources, but when u; has
decreased to 0.4, uo will only have decreased to 0.8, so the latter will then
be receiving twice as much processing time as the former.

If the durability value of a task remain constant, the corresponding pri-
ority will become the following function of time:

u = upds

where ug and dy are the initial values of priority and durability at instant



0, respectively, and c¢ is a constant. Taking the integration of the function,
we get the expected relative time-cost of a task (at instant 0):

0 ~ Indy

As a relative measurement, the constant is omitted in the result.

By assigning different priority and durability values to tasks, the user
can put various types of time pressure on the system. For example, we can
inform the system that some tasks need to be processed immediately but
that they have little long-term importance (by giving them high priority
values and low durability values), and that some other tasks are not urgent,
but should be processed for a longer time (by giving them low priority and
high durability values).

If a task is a question asked by the user, when to report an answer? In the
computational mode, an answer gets reported only at the final state, where
the system has completed its processing of the question. However, when
time is treated as a limited resource and no answer is final, it is better to
let the system provide some sort of answer as soon as possible. NARS keeps
a record of the best answer it has found for each question, and whenever a
new candidate is found, it is compared with the current best. If the new
one is better, it is reported to the user, and the record is updated. Usually,
the question remains active, but with a lower priority, so the system will
continue to spend time on it to find better answers. In this way, the amount
of time spent on a task is determined not only by the requirement of the
user, but also by the result(s) the system has got for the task. Each time a
task is processed (i.e., after each inference step), the system reevaluates the
task’s priority and durability values, to reflect the current situation. As a
result, NARS maintains a dynamical processor-time distribution in its task
pool.

It is possible for the system to report more than one answer for a question
— it can “change its mind” when new knowledge is taken into consideration.
On the other hand, it is also possible for a question to be removed from the
task pool before even a single answer is found for it. When the task pool is
exceeded (it has a constant capacity), tasks at the low end of the priority
spectrum are removed. When a task is removed from the task pool, it is not
because the processing of the task has met some predetermined goal, but
because the task has lost too much ground in the competition for resources.

NARS constantly generates derived tasks (subquestions and implied
knowledge) with its inference rules. Each such task is assigned priority
and durability values by the system (according to the type of the inference



and the priority and durability of its parents), and then put into the task
pool. After that, it is treated just like a task provided by the user. Even
if a “parent” task has been removed (by losing out in the competition for
resources), “children” tasks derived from it may still be processed, provided
that they have sufficiently high priority values.

For example, when answering a question ), NARS may generate two
subquestions ()1 and (2. Later, it finds an answer to 1, which leads to an
answer to . At this point, the priority values of () and )1 are decreased
more rapidly than that of (Q2, and it is possible for Q2 to be processed even
after ) has been removed from the system’s task pool. If the purpose of
a system were solely to answer questions coming from the user, the above
strategy would seem pointless, because @5 is merely a means to solve @,
hence should go away if @) goes away. However, the purpose of NARS is to
adapt to its environment, which means that )2, as a derived question, has
value for its own sake, even in a situation where the question that engendered
it has utterly vanished. The system will benefit from the processing of Q2
when similar questions appear thereafter.

As a result, after running for a while, there will be tasks in the system
that are only remotely related to the tasks provided by the user.

2.3 Bag-based memory organization

In each inference step the system chooses a task, according to the prior-
ity distribution, then interacts it with a piece of knowledge, to get results.
However, how is the knowledge chosen? Here the problem is very similar
to the problem discussed previously. With insufficient resources, the system
cannot consult all relevant knowledge for a task. On the other hand, knowl-
edge cannot be used indiscriminately — some knowledge is more important
and useful than the other.

To solve this problem, the above idea of “controlled concurrency” is
generalized. Let us say that a system has some items to process in a certain
way. Because new items may arrive at any time, and because the time
requirements of the items would exceed the system’s capacity, it is impossible
for the system to do the processing exhaustively. It has to distribute its time
resources among the items, and to truncate the processing of an item before
reaching its “final conclusion”. Furthermore, items are not treated equally.
The system evaluates the relative priority of each item as a function of
several factors, and adjusts its evaluation when the situation changes. In
addition, the system’s storage capacity, which is a constant, is also in short

supply.



Because this phenomenon pervades the discussion of systems with in-
sufficient resources, it will be useful to design a special data structure for
it. In NARS, we have such a data structure called “bag”. A bag is a kind
of probabilistic priority queue that can contain a constant number of items.
Each item has a priority value, which is a positive real number. There are
two major operations defined on a bag: put-in and take-out. The operation
put-in takes an item as argument, and has no return value. Its function is
to put the item into the bag. If the bag is already full, the item with the
lowest priority is first removed from it, and then the new item takes its place
in the bag. The operation take-out has no argument, and returns one item
when the bag is not empty. The probability for a given item to be chosen is
proportional to its priority.

Now we can describe the memory structure of NARS in terms of bag.
NARS implements a term-oriented logic [Wang, 1994]. This kind of logic
is characterized by the use of subject—predicate sentences and syllogistic
inference rules, as exemplified by the Syllogism of Aristotle. A property of
term logic is that every inference rule requires its (usually two) premises
to share a term. This nice property of term logic naturally localizes the
choosing range of knowledge. For a task with the form “Dove is a kind of
bird”, we know that the knowledge that can directly interact with it must
has “dove” or “bird” in it as subject or predicate. If we put all tasks and
knowledge that share a common term together, call it a concept, and name
it by the shared term, then any valid inference step will necessarily happen
within a single concept.

Defined in this way, a concept becomes a unit for resource allocation,
which is larger than a task or a piece of knowledge. The body of the concept
contains the relations between the term (that names the concept) and other
terms. The memory of the system is simply a set of concepts. The action of
choosing a task can be recast as a two-step process: first choosing a concept,
and then from it choosing a task. In other words, the system distributes its
resources firstly among the concepts, and then secondly, within each concept,
among the tasks. The result is a two-level structure. On both levels, the
notion of “bag” applies. Specifically, we can describe the memory of NARS
as a bag of concepts, with, within each concept, a bag of tasks and a bag of
knowledge.

Now we can see the distinction between tasks and pieces of knowledge
more clearly. All questions are tasks. New knowledge also serves as tasks for
a short time. If a piece of knowledge provides an answer for a question, it will
be treated as a task for a short time. Because of this distinction, the system
has, at any given moment: (1) a small number of tasks, which are active,

10



remembered for a short time, and highly relevant to the current situation;
and (2) a much larger amount of knowledge, which is passive, remembered
for a long time, and mostly not relevant to the current situation.

It follows from the assumption of insufficient resources that in NARS
the results are usually only derived from part of the system’s knowledge,
and which part of the knowledge base is used depends on the context
at the run time. Consequently, NARS is no longer “logical omniscient”
[Fagin and Halpern, 1988] — it cannot recall every piece of knowledge in its
knowledge base, not to mention being aware of all their implications.

From the previous description of the memory organization, we can see
that two types of “forgetting” happen in NARS. The first type, “relative
forgetting”, is caused by the insufficiency of time resource — items (concept,
task, or knowledge) with low priority are seldom accessed by the system,
though they are there all the time. The second type, “absolute forgetting”,
is caused by the insufficiency of space resource — items with the lowest
priority is removed from overloaded bags.

2.4 Inference process

When the system is running, an “execution cycle”, or “inference step”, is
repeated until the process is interrupted by the user. The cycle consists of
the following operation sequence:

1. To check input buffer. If there are new tasks, put them into the cor-
responding concepts.

2. To take out a concept from the concept bag.
3. To take out a task from the task bag of the concept.

4. To take out a piece of knowledge from the knowledge bag of the con-
cept.

5. To apply inference rules on the task and knowledge. Which rule is ap-
plicable is determined by the combination of the task and the knowl-
edge.

6. To adjust the priority and durability values of the given task, knowl-
edge, and concept, according to the quality of the results. Then the
task, knowledge, and concept are returned to the corresponding bags.

11



7. To put the results generated in this step into the input buffer as new
tasks. If a result happen to be a best-so-far answer of a question asked
by the user, it is reported to the user.

The priority value of each item reflects the amount of resources the
system plans to spend on it in the near future. It is determined by two
factors:

long-term factor: The system gives higher priority to more important
items, evaluated according to past experience. Initially, the user can
assign priority values to the input tasks to indicate their relative im-
portance, which will in turn determine the priority value of the con-
cepts and knowledge generated from it. After each inference step, the
involved items have their priority values adjusted. For example, if a
piece of knowledge provides a best-so-far solution for a task, then the
priority value of the knowledge is increased (so that it will be used more
often in the future), and the priority value of the task is decreased (so
that less time will be used on it in the future).

short-term factor: The system gives higher priority to more relevant items,
evaluated according to current context. When a new task is added
into the system, the directly related concepts are activated, i.e., their
priority values are increased. On the other hand, the priority values
decay over time, so that if a concept has not be relevant for a while,
it becomes less active.

To explain how the priority and durability values are actually calculated, it
is inevitable to involve many technical details of the NARS model, and thus
is beyond the scope of this paper.

It is possible to implement the above inference step in such a way that
it takes roughly constant time, no matter how large the involved bags are
[Wang, 1995]. Such a step is like an “atomic operation” of the problem-
solving processes in NARS. However, unlike in computational mode, where
operations are organized into algorithms in advance, in NARS the operations
are linked together for a given problem at run time, and how they are linked
is context-dependent.

Built in this way, NARS shows many novel properties:

e Knowledge is accepted by the system in the form of declarative sen-
tences in a formal language. The user can ask the system any question
that can be phrased in the formal language, and the system will not

12



be paralyzed by questions beyond its current capacity. Neither the de-
signer nor the user needs to provide the system with problem-specific
algorithms.

The user can assign initial priority and durability value to a task to
influence (though not to determine) the system’s resource allocation
to that task.

The system may provide a quick answer to a question, then refine
the answer incrementally. In this sense, NARS can “change its mind”
when new knowledge is taken into consideration.

The system usually concentrates on the most important and promising
tasks, but it also pays some attention to other “peripheral” tasks.

The resource distribution changes dynamically, according to the re-
sult of each inference step. Because certain approximation is used in
the implementation of the control mechanism, the overhead of task
scheduling is low, and each inference step only takes a small constant
amount of time.

The self-adjustment of knowledge structure is also guided by the feed-
back of each inference step. Knowledge useful in the past will get a
higher probability to be used again in the future.

The response to a question depends not only on what the system has
been told, but also on what the system has been asked. For example,
the system may spend a long time to find an answer, but if the same
question (or a similar one) appears again later, the answer usually
comes Sooner.

These properties clearly distinguish NARS from other reasoning systems

that work in the computational mode.

3 Discussion and Comparison

3.1 Is this still computation?

An interesting and important question about NARS naturally arises: Is the
system still doing computation?

To answer this question, we need to first identify the “problems” NARS

attempts to solve. From the previous description, it is obvious that each

13



“task” in NARS corresponds to a “problem instance”, defined at the be-
ginning of the paper. If a task is a question, then to solve it means to find
answer for it; if a task is a piece of new knowledge, to solve it means to reveal
its implications. In this sense, what NARS does is not computation. Actu-
ally, almost all components in the “computational mode” of problem-solving
are missing in NARS:

e Though NARS does solve problems, it processes each problem instance
in a case-by-case manner, without a general algorithm for the “problem
class” as a whole. As a result, it may give a pretty good solution to a
problem (instance), but may fail to solve a similar one.

e In NARS, there is no unique “initial state” in which the system waits
for and accepts new tasks. At any moment when the system is running,
tasks can be accepted, in many different internal states.

e Similarly, there is no “final state” for a task. For instance, if a task’s
priority is low (relative to other tasks), it is even possible for it to
be completely ignored. If a tentative answer to a question is reported,
usually neither the system nor its human designer can predict whether
a better answer will be reported later, since that will depend on events
still to take place in the future, such as whether the system acquires
new knowledge related to the task, or whether more time winds up
being spent on it.

e For a given problem, whether a result is a “solution” become a matter
of degree. Due to the insufficiency of knowledge and resources, NARS
cannot give a “final solution” to any problem.

e As described previously, the inference steps are chained together into
an inference process in run time that generates the result(s) reported
to the user. There is no predetermined algorithm to follow for a given
problem.

By slightly changing the meaning of the term, one might say that NARS
has an initial state — namely, when its memory is initialized as the system
is just started. Its state changes as soon as it interacts with its environment
(i.e., the user) and begins processing tasks. The system never will return to
its initial state, until and unless a user terminates the processing and erases
all of its memory. In such a case, the system can of course be “reborn” with
the same “genetic code” — its sets of inference rules, control mechanisms,
and so on. However, unless the experience of the system perfectly repeats

14



its experience in its “previous life”, the system’s behaviors will be different.
In this sense, the system’s behaviors are determined by its initial state and
its experience, but not by either one of the two alone.

Now we can see that NARS can be observed on (at least) three scales,
in term of what is referred to as its input (problem) and output (solution).

e In the scale of each execution cycle, or inference step, as defined pre-
viously, the system’s activity is computation, where the input is the
current memory, and the output is a new memory adjusted by that
step. In NARS, there is an explicitly coded algorithm for this process.

e In the scale of each task-processing cycle, where the input is a task,
and the output is the result of the processing of the task, the system’s
activity cannot be captured by concepts like computation, function,
or algorithm, as discussed above.

e In the scale of the whole life cycle of the system, where the input is
its lifelong input stream, and the output is its lifelong output stream,
the relation between the two becomes computation again (even though
there is no explicitly coded algorithm for it). If we take an arbitrary
state of NARS, ¢1, as an “initial state”, the state the system arrives at
after a certain amount of time, g2, as a “final state”, then we can view
what NARS does during that period of time as computation, with its
experience (all of the tasks provided by the user during that time) as
the input, and its responses (all of the system-generated reports) as
the output.

In summary, the behavior of NARS can be described on different levels.
NARS is computing on some, but not all, of them. This state of affairs
has been articulated by Hofstadter in the following way: “something can
be computational at one level, but not at another level” [Hofstadter, 1985],
and by Kugel as “cognitive processes that, although they involve more than
computing, can still be modelled on the machines we call ‘computers’ ”
[Kugel, 1986].

In contrast to this, conventional computer systems, while also describ-
able at these levels, are computing in all of them. Let us use an ordinary
sorting program as an example: you can take either a single sorting prob-
lem (the analogue to a single question from the user), or a sequence of such
problems (the analogue to the unwieldy and long sequence of user inputs
in a given period of time), as the input, and the processes in both cases
are computation — the program’s response to a given sorting task is fully

15



determined (by the algorithm and the input data) and does not depend on
its experience and context (i.e., the processing of other sorting tasks).

Though still follows algorithms at a certain level, NARS is creative and
autonomous in the sense that its behavior is determined not only by its
initial design, but also by its “personal” experience. It can generate results
never anticipated by its designer, and can produce them by its own choice.
A “tutor” can “educate” it by manipulating its experience, but cannot com-
pletely control its behavior due to the complexity of the system. From a
pragmatic point of view, this is neither necessarily a good thing, nor nec-
essarily a bad thing. It is simply the case that an adaptive system with
insufficient knowledge and resources has to behave in this way.

Since in NARS, problem-oriented algorithms are not used, the very con-
cept of “computational complexity” disappears on the problem-solving level.
If the system is faced with a problem that may take a large amount of time,
what is guaranteed is not that the system will arrive at a satisfactory solu-
tion, but rather, that the system will not be paralyzed by the problem —
the system will gradually decrease the problem’s priority, while still leaving
it a chance to be solved through future inspirations. This is much like what
happens in the human mind: we say there is no “combinatorial explosion”
in our minds, not because we can solve all problems in polynomial time,
but because we seldom, if ever, stick to exhaustive searching, nor even to
working monomaniacally on a single problem facing us.

Also, this approach suggests a new interpretation and solution to the
“scaling up” problem. It is well-known that many AI systems work fine at
experiment stage with small knowledge sets, but fail to work in real-world
situations. This is often caused by certain “sufficient resource” assumption
implicitly made in the design, such as with operations exhausting possibili-
ties for a specific purpose. These operations are affordable on small amount
of knowledge, but become inapplicable when the knowledge base is huge.
For the systems based on the assumption of insufficient resources, such as
NARS, the situation is different. These systems do not take the advantage
of small knowledge base by exhausting possibilities, and also do not attempt
to do so when the knowledge base is huge. Consequently, the resource man-
agement mechanisms used by these systems do scaling up. The system’s
performance still becomes not as good when the problem is hard and the
knowledge base is huge, but the degradation happens in a graceful way, just
like what happens to the human mind in similar situations.

16



3.2 Related work

The design discussed in this paper is similar to many previous approaches
in various aspects.

To let a system make trade-off between solution quality and time cost,
this is not a new idea [Good, 1983]. Approximation algorithms and heuristic
algorithms are all motivated by this consideration [Rawlins, 1992]. Similarly,
we can first decide the time request, usually in the form of a deadline, then
look for an algorithm which can meet the deadline, and can also provide a
solution as good as possible. This approach leads to the concept of real-time
algorithm [Laffey et al., 1988, Strosnider and Paul, 1994]. However, in these
algorithms, trade-off is determined when the algorithms are designed. As a
result, the problem-solving process is still computation, only on a relaxed
version of the problem. It is still the problem-oriented algorithm that decides
which step to take at each instant, and where to stop at the end.

In many situations, it is better to treat time pressure as a variable and
context-dependent factor, because the time requests of problems, the desired
quality of solutions, and the system’s time supply for a problem (in a multi-
task environment) may change from context to context. It is inefficient, if
not impossible, to equip the system with a family of algorithms for each
possible context. For this situation, we hope to take the time pressure into
consideration in the run time.

One instance of this approach is to use an interruptible algorithm. In
the simplest case, a “trial and error” procedure can be used to “solve” a
uncomputable problem [Kugel, 1986]. Suppose we want to check whether a
Turing machine halts, we can use such a procedure. It reports “NO” at the
very beginning, then simulate the given Turing machine. When the Turing
machine halts, the trial-and-error procedure reports “YES” and halts. Such
a procedure is not an algorithm because it may not stop, but it can be
implemented in ordinary computers, and its last report is always a correct
one, though the user may not have the time to get it, or cannot confirm that
it is really the last one when it is “NO”.

A more general concept along this path is the concept of “anytime algo-
rithm” [Dean and Boddy, 1988]. The term “anytime algorithm” is currently
used to refer to algorithms that provide approximate answers to problems in
such a way that: (1) an answer is available at any point in the execution of
the algorithm; and (2) the quality of the answer improves with an increase
in execution time.

Such an “algorithm” no longer corresponds to a Turing machine. Be-
cause there is no predetermined final states, the algorithm is stopped by an

17



external force, rather than by itself. Consequently, the amount of time spent
on a problem is completely determined by the user (or a monitor program)
at run time, and no result is “final” in the sense that it could not be revised
if the system had spent more time on the problem.

In this way, the time pressure on a problem-solving activity is no longer
a constant. The user can either attach a time request, such as a deadline, to
a problem at the beginning, or let the algorithm run, then interrupt it later.
Under different time pressure, the same algorithm may provide different
solutions for the same problem.

A more complex situation happens when the idea of anytime algorithm
is used at the sub-problem level.

If a task can be divided into many subtasks, and the system does not
have the time to process all of them thoroughly, it is often possible to carry
out each of them by an anytime algorithm, and to manage the processing
time as a resource. According to Good’s “Type II rationality” [Good, 1983],
in this situation an optimum solution should be based on decision theory, by
taking the cost of deliberation and the expected performance of the involved
algorithms into account. To do this, the system needs a meta-level algo-
rithm, which explicitly allocate processing time to object-level procedures,
according to the expected effect of those allocations on the system’s perfor-
mance. This idea is developed in several research projects under the name of
“deliberation scheduling” [Boddy and Dean, 1994], “flexible computation”
[Horvitz, 1989], and “meta-reasoning” [Russell and Wefald, 1991].

The above approaches stress the advanced planning of resource alloca-
tion, therefore depends on the quality of the expectations, though run-time
monitoring is also possible [Zilberstein, 1995].

However, if the information about object-level procedures mainly comes
at the run time, the meta-level planner may have little to do before the
procedures actually run — its expectations will be very different from the
reality revealed later. To be efficient, the resource allocation has to be
adjusted dynamically when the system is solving object-level problems, and
the advanced planning become less important (though still necessary). This
is particularly true for adaptive systems.

The rationality of NARS is reflected in its ability to learn from its expe-
rience and to adapt to its environments, even though the system provides
no guaranty to the absolute answer quality and response time for a certain
task. What we can say about it is: if the system spends more time on a
task, the quality of the answer, mainly measured by its “confidence” value
[Wang, 1994, Wang, 1995, Wang, 2001b], will improve. However, how much
time will be actually spent on it and the quality of the answer are deter-

18



mined only at the end of the processing, not at the beginning of it, as in
other flexible computation approaches.

From a technical point of view, what distinguishes this approach from the
other flexible computation procedures is the use of asynchronous parallelism,
derived from the idea of time-sharing. Even though, this control mechanism
is still very different from ordinary time-sharing, because here the tasks
work on a common knowledge base, and it is not guaranteed that all tasks
will be processed all the way to their final conclusions. Consequently, the
interaction among tasks in NARS is much stronger than that among the
processes in a conventional time-sharing system. The coexistent tasks not
only influence the processing speed of a task (this is also true for ordinary
time-sharing systems), but also strongly influence its processing depth (i.e.,
when the processing terminates) and path (what knowledge is consulted,
and in what order).

The “parallel terraced scan” strategy developed by Hofstadter’s research
group [Hofstadter and the Fluid Analogies Research Group, 1995] provides
another example of dynamical resource allocation.

When exploring an unfamiliar territory to achieve a goal under a time
pressure, it is usually impossible to try every path to its end. Without
sufficient knowledge, it is also impossible to get a satisfactory plan before
the adventure. However, if somehow the system can investigate many paths
in parallel, and the intermediate results collected at different levels of depth
can provide clues for the promise of the paths, the system may be able to
get a relatively good result in a short time.

This kind of terraced scan moves by stages: first many possibilities are
explored in parallel, but only superficially. Then the system reallocates its
time resources according to the preliminary results, and let the promising
ones to be explored more deeply. Stage by stage, the system focuses its
attention to less and less good paths, which hopefully lead the system to a
final solution.

Putting it in another way, we can think the system as exploring all the
possible paths at the same time, but at different speeds. It goes faster in
the more promising paths, and the speeds are adjusted all the time accord-
ing to the immediate feedback on different paths. The system usually does
not treat all paths as equal, because that means to ignore available infor-
mation about different paths; the system usually also does not devote all
its resources to a path that is the most promising one at a certain time,
because in that way the potential information about other paths cannot be
collected. In between these two extreme decisions, the system distributes
its time resource unevenly among its tasks, and dynamically adjusts its bias

19



according to new results. A similar approach is taken by genetic algorithm
[Holland, 1986].

From the user’s point of view, the most distinguished nature of NARS’
control mechanism is non-determinism (or context-sensitivity). Even if the
user provides the same task to the system, with the same priority and dura-
bility values, the task may be processed differently: when the system is busy
(that is, there are many other tasks with higher priority), the task is only
briefly processed, and some “sallow” implications or answers are found; when
the system is idle (that is, there are few other tasks), the task is processed
more thoroughly, and deep results can be obtained. Generally speaking, a
task can be processed for any number of steps, as in anytime algorithms.
The actual number of steps to be carried out is determined both by the ini-
tial assignment of priority and durability, and by the resources competition
in the system. Furthermore, the processing procedure and result depend
on the other tasks existing currently and recently. Every task changes the
knowledge structure while being processed, and therefore influences how
other tasks will be processed.

For example, if the system just processed a task A, and then begins to
work on a related task B, the knowledge that contributes to A’s processing
will get a higher chance to be used again. In this way, tasks are processed in
a context-sensitive manner, rather than by following a predetermined path.
Here “context” means the events that happened before the task appears
(they shaped the knowledge structure) and the events that happen when the
task is being processed (they change the knowledge structure and influence
the resource supply).

The above feature distinguishes NARS from other similar approaches
that are based on the idea of anytime algorithm or asynchronous parallelism.
In NARS the processing of a task becomes unpredictable and irrepeatable
(from the design of the system and the task itself), because the context plays
a central role. It should be understood that the system is indeterministic
in above sense, rather than because it takes out items from bags according
to a probabilistic distribution — that is simply a way to allocate resources
unevenly, and can be implemented deterministically.

We can see the priority distribution adjustment in NARS as a learning
process, by which the system learns, from its own experience, about that
knowledge is more useful and relevant. This kind of “structural knowledge”
is not declaratively expressed by the system’s knowledge representation lan-
guage, but embedded in its knowledge structure. In NARS, this kind of
learning, like the learning of declarative knowledge, is a life-long process
[Thrun and Mitchell, 1995] that determined partially by the experience of

20



the system. On the contrary, in the current study of “machine learning”,
most approaches are still algorithms that generate certain output from cer-
tain input, therefore much less flexible.

NARS uses a forgetting mechanism to manage its memory. Though
many systems release memory when running, usually it is done when the
data there is no longer useful. The challenge to the forgetting mechanism is
NARS is to decide what to ignore or delete, even when it may be useful in
the future.

This reminds us of human memory. On one hand, we all suffer from
forgetting information that become needed later; but on the other hand, it
is not hard to image what a headache it would be if every piece of knowledge
was equally accessible — that is, equally inaccessible. Like it or not, prop-
erties such as forgetting are inevitable consequences of the insufficiency of
resources. This theme will appear from time to time in the discussion about
NARS — though many of its properties are usually judged as unwelcome in
AT systems, they become inevitable as soon as we want a system to work
under insufficient knowledge and resources. In this sense, we say that many
mistakes made by the system are rational, given its working environment.
The only way to inhibit these mistakes is to limit the problems that the sys-
tems are exposed to, like in most computer systems. However, in this way
computer systems loss the potential to conquer real hard problems, because
the problems we call “hard” in everyday life are precisely the problems for
them our knowledge and resources are insufficient.

4 Conclusions

By describing the problem solving process in (the current version of) NARS,
we are not claiming that it is how intelligence works (NARS is going to be
further extended in several major aspects). Instead, it is used as an example
to propose a new mode of problem solving. Generally speaking, this working
mode has the following properties:

e It does not define a “problem” as a set and use the same method to

solve all of its instances. Instead, it treats each “problem instance” as
a problem by its own, and solve it in a case-by-case manner.

e For a problem, it does not draw a sharp line between solutions and
non-solutions, and treat all solutions as equal. Instead, it compares
candidate solutions to decide which one is better.

21



e It does not insist on the “one problem, one solution” format. Instead,
it allows the system to generate zero, one, or a sequence of solutions,
each of which is better than a previous one.

e It does not depend on a predetermined algorithm to solve a problem.
Instead, it cuts a problem-solving process into steps. Each step may
still follow an algorithm which takes constant time to finish, but the
who process is linked together at run time.

e It processes tasks (and subtasks) in parallel, but at different speed,
according to their priority values.

e It does not attempt to use all relevant knowledge to solve a problem.
Instead, in each step it only considers a constant amount of knowledge,
selected according to their priority values.

e In each step, it lets the selected task and knowledge to decide how the
task is processed.

o It does not throw away the intermediate results at the end of a problem-
solving process. Instead, it keeps them for future tasks, and let all
tasks to interact with the same knowledge structure.

e When memory is full, it removes items with the lowest priority.

e [t adjusts the priority distributions according to the experience of the
system and the current context, so as to give important and relevant
items more resources.

We call this working mode the “intelligent mode” of problem solving,
because we the believe that “intelligence” is basically the capacity of adapta-
tion with insufficient knowledge and resources [Wang, 1995]. Though it can
be implemented in existing computer systems, and its steps and the whole
system history can be seen as computation, this mode is fundamentally
different from the computational mode. The traditional theories on compu-
tation cannot be directly applied to this kind of problem solving anymore.
New theories are needed where the assumption of insufficient knowledge and
resources are made from the very beginning.

This approach is not just a picturesque new way to see things, but has
important methodological implications for Al research. When a system like
NARS is designed, the designer should not try to decide what answer the
system should produce in response to a given question — that should be

22



decided by the system itself at run time; the designer simply cannot exhaus-
tively consider all possible situations in advance (the designer, hopefully,
is also an intelligent system, thus limited by insufficient resources). For
similar reasons, the designer cannot decide in advance how much of the
resources to spend on a certain task, for this is totally context-dependent.
Thus, the designer is no longer working on either domain-specific algorithms
or general-purpose algorithms (like GPS), but rather on meta-algorithms or
micro-algorithms, which carry out inferences, manage resources (like a small
operating system), and so on. In this way, the problems solved by the de-
signer and the problems solved by the system itself are clearly distinguishable
from one another.

These ideas allow us to explain why Tesler’s Theorem — “Al is whatever
hasn’t been done yet” [Hofstadter, 1979] — applies to many Al projects:
in those projects, the designers usually use their own intelligence to solve
domain problems, and then implement the solutions in computer systems
in the form of task-specific algorithms. The computer systems then execute
the algorithms on specific instances of the problems, an activity that can
hardly be referred to as “solving problems intelligently”.

This is also related to the “mind over machine” argument proposed by
many authors — namely, since human mind does not follow algorithms in
many problem-solving activities but computers cannot run without algo-
rithms, thinking is not computation, and “Strong AI” is impossible. All
these arguments have the same problem: when claiming (correctly) that
thinking usually does not follow algorithm, the brain’s activities are de-
scribed on the “problem-solving” level (rather than on the “neuron firing”
or “lifelong history” level, where the claim is hard to justify). On the other
hand, it is usually implicitly assumed that all activities of a computer follow
algorithms, no matter on which level or scale of description.

The intelligent mode is not always better than the computational mode.
Their relation is similar to Hofstadter’s distinction between “Intelligent
mode” and “Mechanical mode” [Hofstadter, 1979]. For a given problem,
if we have sufficient knowledge (so we can write an algorithm to solve it)
and resources (so we can afford the time-space resources required by the
algorithm), it is still better to use computation, because of its correctness,
efficiency, and stability. Only when we have to deal with problems for which
the system’s knowledge and resources are insufficient, intelligence becomes
the answer, because of its creativity, flexibility, and autonomy.

23



References

[Boddy and Dean, 1994] Boddy, M. and Dean, T. (1994). Deliberation
scheduling for problem solving in time-constrained environments. Ar-
tificial Intelligence, 67:245-285.

[Bylander, 1991] Bylander, T. (1991). Tractability and artificial intelligence.
Journal of Experimental € Theoretical Artificial Intelligence, 3:171-178.

[Dean and Boddy, 1988] Dean, T. and Boddy, M. (1988). An analysis of
time-dependent planning. In Proceedings of AAAI-88, pages 49-54.

[Fagin and Halpern, 1988] Fagin, R. and Halpern, J. (1988). Belief, aware-
ness, and limited reasoning. Artificial Intelligence, 34:39-76.

[Good, 1983] Good, 1. (1983). Good Thinking: The Foundations of Proba-
bility and Its Applications. University of Minnesota Press, Minneapolis.

[Hofstadter, 1979] Hofstadter, D. (1979). Gdédel, Escher, Bach: an Eternal
Golden Braid. Basic Books, New York.

[Hofstadter, 1985] Hofstadter, D. (1985). Waking up from the Boolean
dream, or, subcognition as computation. In Metamagical Themas: Quest-
ing for the Essence of Mind and Pattern, chapter 26. Basic Books, New
York.

[Hofstadter and the Fluid Analogies Research Group, 1995] Hofstadter, D.
and the Fluid Analogies Research Group (1995). Fluid Concepts and

Creative Analogies: Computer Models of the Fundamental Mechanisms of
Thought. Basic Books, New Nork.

[Holland, 1986] Holland, J. (1986). Escaping brittleness: the possibilities
of general purpose learning algorithms applied to parallel rule-based sys-
tems. In Michalski, R., Carbonell, J., and Mitchell, T., editors, Machine
Learning: an artificial intelligence approach, volume II, chapter 20, pages
593-624. Morgan Kaufmann, Los Altos, California.

[Hopcroft and Ullman, 1979] Hopcroft, J. and Ullman, J. (1979). Introduc-
tion to Automata Theory, Language, and Computation. Addison-Wesley,
Reading, Massachusetts.

[Horvitz, 1989] Horvitz, E. (1989). Reasoning about beliefs and actions
under computational resource constraints. In Kanal, L., Levitt, T., and

24



Lemmer, J., editors, Uncertainty in Artificial Intelligence 3, pages 301—
324. North-Holland, Amsterdam.

[Kugel, 1986] Kugel, P. (1986). Thinking may be more than computing.
Cognition, 22:137-198.

[Laffey et al., 1988] Laffey, T., Cox, P., Schmidt, J., Kao, S., and Read, J.
(1988). Real-time knowledge based system. AI Magazine, 9:27-45.

[Levesque, 1989] Levesque, H. (1989). Logic and the complexity of reason-
ing. In Thomason, R., editor, Philosophical Logic and Artificial Intelli-
gence, pages 73-107. Kluwer Academic Publishers, Boston.

[Rawlins, 1992] Rawlins, G. (1992). Compared to What? Computer Science
Press, New York.

[Russell and Wefald, 1991] Russell, S. and Wefald, E. (1991). Principles of
metareasoning. Artificial Intelligence, 49:361-395.

[Strosnider and Paul, 1994] Strosnider, J. and Paul, C. (1994). A structured
view of real-time problem solving. AI Magazine, 15(2):45-66.

[Thrun and Mitchell, 1995] Thrun, S. and Mitchell, T. (1995). Learning
one more thing. In The Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 1217-1223.

[Wang, 1994] Wang, P. (1994). From inheritance relation to nonaxiomatic
logic. International Journal of Approzimate Reasoning, 11(4):281-319.

[Wang, 1995] Wang, P. (1995). Non-Aziomatic Reasoning System: Explor-
ing the Essence of Intelligence. PhD thesis, Indiana University.

[Wang, 2001a] Wang, P. (2001a). Abduction in non-axiomatic logic. In
Working Notes of the IJCAI workshop on Abductive Reasoning, pages
56-63, Seattle, Washington.

[Wang, 2001b] Wang, P. (2001b). Confidence as higher-order uncertainty.
In Proceedings of the Second International Symposium on Imprecise Prob-
abilities and Their Applications, pages 352-361, Ithaca, New York.

[Zilberstein, 1995] Zilberstein, S. (1995). Operational rationality through
compliation of anytime algorithm. AI Magazine, 16(2):79-80.

25



