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Abstract

The AI system NARS contains a categorization model, in
the sense that categorization and reasoning are two aspects
of the same mechanism. As a theory of categorization, the
NARS model unifies several existing theories. In this paper,
the logic used in NARS is briefly described, and the catego-
rization model is compared with the others.

Introduction
NARS (Non-Axiomatic Reasoning System) is an AI sys-
tem based on the theory that intelligence means adaptation
with insufficient knowledge and resources (Wan94; Wan95;
Wan01).

Though NARS is usually presented as a reasoning system,
it can also be seen as a computational model of categoriza-
tion. In NARS, knowledge is represented in the framework
of a categorical logic, so that all relations are variations
of categorical relations, such asInheritanceandSimilarity.
With insufficient knowledge, the truth value of a statement
is not binary.

According to the experience-grounded semanticsof
NARS, the meaning of a term (concept) is determined by its
existing (categorical) relations with other terms. In this way,
in general the meaning of a term depends both on its exten-
sion (instances, exemplars) and intension (properties, fea-
tures), though the dependency on the two aspects is not nec-
essarily equal. Also, limited by available resources, when
each time a term is used, only part of its meaning is involved,
selected according to a priority distribution.

Given this semantics, the reasoning activity of the sys-
tem (deduction, induction, abduction, revision, comparison,
analogy, ...) constantly changes the meaning of terms, ac-
cording to the experience of the system.

Non-Axiomatic Reasoning System (NARS)
Under the length limitation of the paper, this paper only
gives a brief introduction to the most relevant aspects of
NARS. For publications and an on-line demo of NARS, see
http://www.cogsci.indiana.edu/farg/peiwang/papers.html.
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Knowledge representation
NARS does not use First-Order Predicate Logic or its varia-
tions. Instead, it uses a kind ofcategorical logic(also called
term logic), in which each statement is about a categorical
relation between a subject term and a predicate term, where
a term is the name of a concept. In NARS, the most funda-
mental categorical relation is theInheritancerelation, writ-
ten as “⊂”. In the ideal form, it is a reflexive and transitive
binary relation defined among terms. Intuitively, a statement
S ⊂ P says thatS is aspecializationof P , andP is agen-
eralizationof S. This roughly corresponds to “S is a kind
of P ” in English. For example, “Bird is a kind of animal”
can be represented asbird ⊂ animal. In this way, Inheri-
tance defined in NARS is like the “sub-category vs. super-
category” relation. GivenS ⊂ P , we often say that the
instancesassociated withS have thepropertiesassociated
with P .

The Inheritance relation is treated as basic, because all
other relations can be converted into Inheritance relations
with the help of compound terms. For example, an arbitrary
relationR among three termsA, B, andC is usually written
asR(A,B,C), which can be equivalently rewritten as one
of the following Inheritance statements (i.e., they have the
same meaning and truth value):
• (A,B,C) ⊂ R, where the subject term is a compound

(A,B,C), an ordered tuple. This statement says “The
relation amongA, B, C (in that order) is a special case of
the relationR.”

• A ⊂ R(∗, B, C), where the predicate term is a compound
R(∗, B,C) with a “wildcard”, ∗. This statement says “A
is such anx that satisfiesR(x,B,C).”

• B ⊂ R(A, ∗, C). Similarly, “B is such anx that satisfies
R(A, x,C).”

• C ⊂ R(A,B, ∗). Again, “C is such anx that satisfies
R(A,B, x).”

This treatment of relation is similar to the case in set theory,
where a relation is defined as a set of tuples.

Since in principle all knowledge can be written as Inher-
itance relations, we can think the knowledge base of NARS
as an “Inheritance network”, where each node represents a
term, and each link represents an Inheritance statement from
one term to another. It means that the memory of NARS con-
sists of a set of concepts, each of which is named by a term.



The body of a concept consists of a set of statements (with
truth values attached), in which the term is the subject or the
predicate. These statements are the knowledge the system
has on the concept. Inference tasks are also stored within
the concepts whose names appear in the tasks. In the current
version of NARS, there are two types of tasks: questions to
be answered and pieces of new knowledge to be digested.

Semantics
In NARS, theextensionandintensionof a termT are defined
as sets of terms that have direct Inheritance relations withT :

TE = {x | x ⊂ T} ; T I = {x | T ⊂ x}

Intuitively, they include all known specialization (instances)
and generalizations (properties) ofT , respectively. Under
this definition, “extension” and “intension” is a dual relation
among terms. That is,T1 is in the extension ofT2, if and
only if T2 is in the intension ofT1.

From the reflexivity and transitivity of Inheritance, it can
be proven that

(S ⊂ P ) ⇐⇒ (SE ⊆ PE) ⇐⇒ (P I ⊆ SI)

where the first statement is about an Inheritance relation be-
tween two terms, while the last two are about subset rela-
tions between two sets (extensions and intensions of terms).

The above theorem identifiesS ⊂ P with “P inherits the
extension ofS, andS inherits the intension ofP ”. Since
an Inheritance statement is a summary of multiple other In-
heritance statements, we can use the latter asevidencefor
the former. We need the concept “evidence” to define the
truth value of “imperfect” Inheritance statements, which is
uncertain because the system has insufficient knowledge and
resources. These uncertain statements are the ones actually
appear in NARS, while the idealized (binary) Inheritance re-
lation is just a theoretical notion used to build the semantics
of NARS.

According to the above theorem, for a statementS ⊂ P
and a termM , we have

• if M is in the extensions of bothS andP , it is positive
evidence for the statement (because as far asM is con-
cerned,P indeed inherits the extension ofS);

• if M is in the extensions ofS but not the extension ofP ,
it is negative evidence (because as far asM is concerned,
P fails to inherit the extension ofS);

• if M is in the intensions of bothP andS, it is positive evi-
dence for the statement (because as far asM is concerned,
S indeed inherits the intension ofP );

• if M is in the intension ofP but not the intension ofS, it
is negative evidence (because as far asM is concerned,S
fails to inherit the intension ofP );

• otherwise,M is not directly relevant to the statement.

Therefore, when the experience of the system is given as
a set of statements, and each statement in the set is either
an (ideal) Inheritance or its negation, then forS ⊂ P , the
amount of positive evidence is

w+ = |SE ∩ PE |+ |P I ∩ SI |

the amount of negative evidence is

w− = |SE − PE |+ |P I − SI |

and the amount of all evidence is

w = w+ + w− = |SE |+ |P I |

Another categorical relation,Similarity, is defined as
symmetric Inheritance, so thatS = P is a summary of
S ⊂ P andP ⊂ S. The (positive and negative) evidence of
either Inheritance relation is also the evidence for the Simi-
larity relation. Therefore, forS = P we have

w+ = |SE ∩ PE |+ |P I ∩ SI |

w− = |SE − PE |+ |PE − SE |+ |P I − SI |+ |SI − P I |

w = w+ + w− = |SE ∪ PE |+ |P I ∪ SI |

The truth valueof a statement in NARS is a pair of num-
bers in [0, 1],<f, c>. f is thefrequencyof the statement,
defined as

f = w+/w

so it indicates the proportion of positive evidence among all
evidence.c is theconfidenceof the statement, defined as

c = w/(w + 1)

so it indicates the proportion of current evidence among evi-
dence in the near future (after a unit-weight evidence is col-
lected). Whenf = 1, it means that all known evidence is
positive; whenf = 0, it means that all known evidence is
negative; whenc = 0, it means that the system has no ev-
idence on the statement at all (andf is undefined); when
c = 1, it means that the system already has all the evidence
on the statement, so that it will not be influenced by future
experience. Therefore, “absolute truth” has a truth value
< 1, 1 >, and in NARSS ⊂ P < 1, 1 > can be writ-
ten asS ⊂ P , as we did earlier in the discussion. Under
the “insufficient knowledge” assumption, such a truth value
cannot be reached by empirical knowledge, though it can be
used for analytical knowledge (such as theorems in mathe-
matics), as well as serve as idealized situation in semantic
discussions.

In NARS, themeaningof a term consists of its extension
and intension, that is, the categorical relations between the
term with other terms in the system, including both its in-
stances and its properties. In the memory structure men-
tioned previously, the meaning of a term is exactly the con-
cept body associated with the term.

The above semantics of NARS is called “experience-
grounded”, because both “truth” and “meaning” are defined
as functions of the experience of the system. This seman-
tics is fundamentally different from the traditional model-
theoretic semantics used by most AI reasoning systems,
where truth and meaning are defined by an “interpretation”,
a mapping between items in the system and items in a model.



Inference
The truth value isdefinedin terms of amount of evidence
collected in idealized situation (so the evidence itself is cer-
tain), but it is not actually obtained in that way for the
statements in NARS. In real situation, the input knowledge
comes into the system with truth value assigned by the user
or other knowledge sources (according to the above defi-
nition), and derived knowledge is produced recursively by
the built-in inference rules, which have truth value functions
that determine the truth values of the conclusions accord-
ing to those of the premises. The truth-value functions are
designed according to the above semantics. In NARS, an
inference rule is valid as long as its conclusion is based on
the evidence provided by the premises. This, once again, is
different from the definition of validity of inference rules in
model-theoretic semantics.

Typical inference rules in categorical logic take asyllo-
gistic form, that is, given a pair of statements, if they share
a common term, a conclusion between the other two (not
shared) terms is derived. In this aspect, NARS is more sim-
ilar to Aristotle’s Syllogism than to First-Order Predicate
Logic. Different combinations of premises correspond to
different inference rules, and use different truth-value func-
tions. NARS has inference rules fordeduction, induction,
abduction, revision, comparison, analogy, compound term
formation, and so on. An introduction of the rules is be-
yond the scope of this paper. For our current discussion, it is
enough to know that a rule can generate new statements, as
well as can revise the truth value of existing statements.

After initialization, NARS runs by repeating the following
steps in a cycle:

1. selecta concept to work on;

2. within the selected concept,selectan inference task, with
can either be a question to be answered, or a piece of new
knowledge to be digested;

3. within the selected concept, according to the selected task,
selecta piece of (previous) knowledge;

4. derive new tasks and knowledge from the selected task
and knowledge by the applicable rules;

5. returnthe selected concept, task, and knowledge back into
the memory;

6. insert the new tasks and knowledge into the memory.

In the above step 1, 2, and 3, the selection of items (concept,
task, and knowledge) is done according to the priority dis-
tributions among the items involved. The probability for an
item to be selected is proportional to its priority value. In
step 4, the priority of the new items are determined by the
inference rule. In step 5, the priority values of the selected
items are adjusted before returned into the memory.

NARS maintains priority distributions among compo-
nents of its memory (concepts, tasks, and knowledge) be-
cause of its assumption of insufficient resources. Under that
assumption, the system cannot afford the time to use all
available knowledge to process all existing tasks, nor can
it afford the space to keep all derived knowledge and tasks.
Therefore, it has to allocate its resources among the items.

The allocation is uneven, and reflects the relative importance
of the items for the system. (Wan96b)

In all the three cases (for concept, task, and knowledge),
the priority of an item depends on a long-term factor and a
short-term factor.

The long-term factor is initially determined by the “qual-
ity” of the item. It depends on, in a concept, how rich its
content is; in a task, how urgent it is to user; in a piece of
knowledge, how confident it is, and so on. Then after each
time an item is processed, this factor is adjusted according to
its performance in this step. Therefore, in the long run, use-
ful concepts and knowledge become more accessible. Since
the system’s memory has a constant size, and new items are
input and derived all the time, items with low priority value
are removed from the system when the memory is full.

The short-term factor mainly reflects the relevance of an
item to the current context. The inference activity of the
system “activates” the items that are directly related to the
tasks under processing. On the other hand, there is a “decay”
process going on, so that if an items has not been involved
with the inference activity for a while, its priority value is
decreased.

The above resource allocation mechanism makes NARS
to show “attention” and “forgetting” phenomena. Also, the
meaning of a concept is not a simple set of knowledge and
task, but a set with a priority values defined among the com-
ponents, so that some components contribute more than the
others to what a concept means to the system at a given time.

Categorization in NARS
In this section we discuss the major aspects of the catego-
rization model proposed by NARS, and compare it with the
other theories.

Extension and intension
To define the meaning of a concept as its relation with other
concepts is not really a new idea. For example, this is also
the case in semantic networks (Qui68). What makes NARS
special is that, formalized as a categorical logic, all empiri-
cal statements become instances of the Inheritance relation
defined above, therefore becomecategoricalstatements —
S ⊂ P says thatS is a sub-concept ofP , andP is a super-
concept ofS. As a result, the meaning of a concept in NARS
can be simply defined by the extension and intension of the
concept, and extension/intension is defined by Inheritance
relation.

According toPrototype Theory, a concept is characterized
by propertiesshared by most of its members (Ros73). Ac-
cording toExemplar Theory, a concept is determined by a
set of instances(Nos91). Using the terminology of NARS,
Exemplar Theory defines the meaning of a concept as its
extension, and Prototype Theory (as well as “feature list”
theory) defines the meaning of a concept as its intension.

In this way, the problem is like the “chicken-and-egg”
question — do we get instances first, then generalize prop-
erties from them, or get properties first, then determine in-
stances according to them? The answer provided by NARS
is: both. Whenever the system get a piece of new knowl-
edge, since its form isS ⊂ P (with a certain truth value),



it always adds something new to the extension ofP , and
to the intension ofS. Therefore, to the system as a whole,
extension and intension are symmetric, and are developed
together — they are just two opposite directions of a link.

On the other hand, for a concrete concept, it is quite pos-
sible that its meaning is mainly determined by its extension,
while in another concept, by its intension. It depends on
how the concept is learned and used in the past. In general,
both extension and intension contributes to the meaning of a
concept, though not necessarily to the same extent.

Since meaning of a concept is determined by its rela-
tions with other concepts, it depends on the role the con-
cept plays in the conceptual structure of the system. Conse-
quently, NARS is also consistent with the “Theory Theory”
of categorization (MM85). However, concretely speaking,
in NARS the “role in a theory” is indicated by nothing but
instances and properties of the concept. In this sense, NARS
provides a more detailed model for how a concept is related
to a conceptual structure.

When the truth value of a statement is determined in
NARS, both extensional evidence and intensional evidence
are taken into account, as implied by the previous definition
of evidence. In this way, Inheritance is different from similar
relations like “subset” in set theory (which is defined by ex-
tension only) and “inheritance” in object-oriented program-
ming (which is defined by intension only). As discussed in
(Wan95), in a closed world where the system has sufficient
knowledge and resources, the extension and intension of a
concept uniquely determine each other, so that to consider
one of the two is enough. However, for environments where
the system has insufficient knowledge and resources, the two
are no longer perfectly synchronized, so it is necessary to
consider both. When NARS is asked to decide whether an
entity e belongs to a conceptC, the system may do so by
comparinge with known instances ofC, or by checking
whethere has the properties associated withC, or both — it
depends on what knowledge is available to the system, and
which part of it is active at the time.

In summary, one feature that distinguishes NARS from
the other models of categorization is: since NARS has mul-
tiple types of inference rules, the same categorical relation
can be built in different ways. Therefore, NARS provides a
possibility to unify the various models of categorization, not
by simply putting them together, but by building a unified
mechanism, which under different conditions show different
features.

As mentioned above, in NARS concepts have priority val-
ues attached, and the long-term factor in the priority value
mainly depends on the usefulness of the concept. Usually,
a concept with unbalanced extension/intension is not very
useful — a concept with a big extension and a small inten-
sion is like a collection of objects with few common prop-
erties, and a concept with a big intension and a small exten-
sion is like a collection of features which few object can sat-
isfy. A concept with balanced extension/intension tend to be
close to the “basic level” of categorization (Ros78), which,
according to typical human experience, include many in-
stances with many common properties, therefore are usually
more useful for various future situations. Therefore, NARS

provides an explanation to the basic-level phenomenon, and
also uses it for categorization and inference control.

Fluid concept

Concepts in NARS approach the idea that Hofstadter calls
“fluid concept” — that is, “concepts with flexible bound-
aries, concepts whose behavior adapts to unanticipated cir-
cumstances, concepts that will bend and stretch — but not
without a limit” (HtFARG95).

Though many people agree that “invariant representa-
tions of categories do not exist in human cognitive systems”
(Bar87), the existing models of categorization do not pro-
vide a clear picture about thedynamicsof concepts.

In NARS, Inheritance is always a matter of degree, de-
termined by the system’s experience about the terms in the
relation. In this aspect, it agrees with fuzzy logic (Zad65)
and several psychological models of categorization (MR92).
The difference between NARS and fuzzy logic is in the inter-
pretation of fuzziness, as well as how it changes over time.
Since the first issue has been addressed by a previous publi-
cation (Wan96a), here we will focus on the second one.

As described above, in NARS, the meaning of concepts
changes as the system get new information, as well as a re-
sult of the internal inference activity. At a given time, the
system only uses part of the available knowledge, according
to the priority distribution.

A concept changes its meaning both in long-term and in
short-term.

In the long-term, the process corresponds to concept
learning and evolving. Instead of assuming the learning pro-
cess converges to a “correct representation” or “true mean-
ing” of the concept, in NARS the process is a never-ended
adaptation, and the result is determined by the experience of
the system. In NARS, “experience” not only includes “ex-
ternal experience” (i.e., what information the system has got
from the environment), but also includes “internal experi-
ence” (i.e., what the system has done on the information).
According to the previous description about the inference
process and the definition of meaning in NARS, we see that
the inference activity changes the meaning of the concepts
involved, simply by adding new links, removing old links,
and revising the truth value and priority value of existing
links.

In the short-term, the system shows context-sensitivity.
Under the assumption of insufficient resources, NARS al-
most never tries to use all available knowledge to process
a task. Instead, only “partial meaning” will be used, and
which part actually get selected depends on the priority dis-
tribution. Roughly speaking, the selected ones tend to be
“useful” and “relevant”, judged by the system according to
past experience and current context, and there is also a ran-
dom factor in the selection mechanism. As a result, the
system may use the same concept with different meaning
in different situations, by focusing on different part of the
available knowledge on the concept.

Such a categorization model can explain many psycho-
logical and linguistic phenomena. For example, a concept is
used as a metaphor when only a small part of its meaning



is used, and the other part is deliberately ignored, due to a
certain context.

Of course, “fluid concept” does not mean that every ar-
bitrary usage of a concept is equally possible. When the
environment is stable, the system’s experience on certain
concepts may become stable, too, and consequently those
concepts may develop their “hard cores” — a small set of
relations that can efficiently process most tasks related to
those concepts. Such a hard core is close to what we usually
call the “essence”, or the “definition”, of the concept. Since
in NARS nothing is ever absolutely stable, the above words
are only used relatively.

Categorization and reasoning

NARS is an attempt to provide a unified normative theory
for intelligence, both in human and in computer (Wan95).
As a reasoning system, it unifies various types of inference
(Wan01). Here we see that it also unifies categorization and
reasoning.

As described above, in NARS, all categorization related
information processing is carried out by the inference rules,
therefore categorization is reasoning. On the other hand,
since NARS is a kind of categorical logic, in each infer-
ence step the premises and conclusions are all categorical
statements (i.e., the Inheritance relation defined previously),
therefore reasoning is categorization. The two terms just fo-
cus on different aspects of the same process.

In traditional reasoning (and computing in general) sys-
tems, model-theoretic semantics is used, so that the syn-
tax and semantics of a language is separated. The formal-
ized inference engine knows syntax only, and has nothing
to do with the meaning of the concepts. Searle’s “Chinese
Room” argument is actually about this distinction (Sea80).
In NARS, with experience-grounded semantics, inference
is based on both syntax and semantics. For example, the
deduction rule derives conclusionA ⊂ C from premises
A ⊂ B andB ⊂ C (truth-value function omitted), which is
a syntactic rule, because the inference engine only needs to
recognize the fact that the predicate term of the first premises
is also the subject term of the second premise, and to gen-
erate the conclusion accordingly. However, the same rule
is also a semantic rule, because the premises reveal par-
tial meaning of the terms involved, the conclusion add new
meaning to the terms in it, and the inference rule, with its
truth-value function, is justified according to the semantic
analysis of this type of inference.

Besides the semantics used, NARS is also different from
traditional reasoning system in its formal language. As we
have seen, NARS uses a categorical logic, where all relations
are converted into categorical relations. On the contrary, in
predicate logic, categorical relations and non-categorical re-
lations are separated, and usually need to be handled dif-
ferently. Such examples can be found in many knowledge-
based systems, where “terminological knowledge” (categor-
ical relations) and “factual knowledge” (non-categorical re-
lations) are represented and processed differently (BS85).
As a result, in such systems categorization and reasoning do
not have the same relationship as in NARS.

Though NARS is not finished yet, and we cannot discuss
all of its categorization-related aspects in this paper, we can
see that it provides a promising theory of categorization, and
may unify various aspects of cognition into a single model.
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