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Abstract

In the current discussion about the capacity of Bayesianism in reasoning under
uncertainty, there is a conceptual and notational confusion between the explicit
condition and the implicit condition of a probability evaluation. Consequently, the
limitation of Bayesianism is often seriously underestimated. To represent the un-
certainty of a belief system where revision is needed, it is not enough to assign a
probability value to each belief.
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1 Introduction

In recent years, Bayesian networks have achieved great success. It has been ap-
plied to various problems, and taken by more and more people as a normative
theory of reasoning, both for the human mind, and for artificial intelligence
systems.

Though the Bayesian approach is indeed a powerful tool for many theoretical
and practical problems, in the current study its limitation is often seriously
underestimated, due to a conceptual and notational confusion. The problem
was first addressed in Wang (1993), but it has got little attention, and the
confusion continues to spread. This research note provides a more focused
and comprehensive discussion on this issue.

According to Pearl (1990), traditional Bayesianism is defined by the following
attributes:

• willingness to accept subjective belief as an expedient substitute for raw
data,
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• reliance on complete (i.e., coherent) probabilistic models of beliefs,
• adherence to Bayes’ conditionalization as the primary mechanism for up-

dating belief in light of new information.

When probability theory is applied in a reasoning system, it usually starts
by assuming a proposition space S, which contains all the propositions that
the system can represent and process. S is normally generated from a set of
atomic propositions, using logical operators NOT (¬), AND (∧), and OR (∨).
A probability distribution P is defined on S, and for every proposition x ∈ S,
its probability evaluation P (x) is a real number in [0, 1]. 1 The function P
satisfies the following axioms [Kolmogorov (1950)]:

• P (x ∨ ¬x) = 1.
• P (x ∨ y) = P (x) + P (y), if y ∈ S and x ∧ y is false.

For any x and y in S, the probability of x under the condition that y is true
is a conditional probability evaluation P (x|y) = P (x ∧ y)/P (y). From it we
get Bayes’ Theorem

P (x|y) =
P (y|x)P (x)

P (y)
(1)

Though the above mathematical definitions and results are acknowledged by
all people using probability theory for reasoning, the Bayesian approach in-
terprets them differently. According to Bayesianism (as defined above), the
probability of a proposition h in a system is the system’s degree of belief on
h, according to certain background knowledge K (or call it experience, data,
evidence, and so on).

The system starts with a prior probability distribution P0, determined by
background knowledge K0 at time t0. At time t1, when a piece of new knowl-
edge e is collected, Bayes’ Theorem is applied to change P0 into a posterior
probability distribution P1, where the probability of a proposition h is

P1(h) = P0(h|e) =
P0(e|h)P0(h)

P0(e)
(2)

Now P1 is based on K1, which includes both K0 and e. By repeatedly applying

1 Sometimes a probability distribution is not defined on a proposition space S, but
on a set of events or a set of possible values of certain random variables. However,
since the probability of an event E is the same as the probability of the proposition
“E happens”, and the probability of a random variable X to have value v is the
same as probability of the proposition “X = v”, for the current discussion it is fine
to use the proposition space representation.
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Bayes’ Theorem in this “conditioning” process, the system learns new knowl-
edge, and adjusts its beliefs accordingly [Heckerman (1999); Pearl (2000)].

According to the above description, we see that under the Bayesian interpreta-
tion, a probabilistic evaluation P (h) is always “conditional”, in the sense that
it is not an objective property of the proposition h, but a relation between h
and background knowledge K. For this reason, the previous inference rule can
be written as

PK1(h) = PK0(h|e) =
PK0(e|h)PK0(h)

PK0(e)
(3)

where K0 and K1 are the background knowledge the system has at time t0 and
t1, respectively. In the following, I will call them “implicit conditions” of the
corresponding probability distribution function, because they are conditions
of the probability functions, and they are usually implicitly assumed in the
formula.

A common practice is to represent the dependency of a probability to an
implicit condition as a conditional probability, that is, to write equation (3)
as

P (h|K1) = P (h|e ∧K0) =
P (e|h ∧K0)P (h|K0)

P (e|K0)
(4)

Such a representation can be found in many publications, for example, Cheese-
man (1985), Heckerman (1999), and Pearl (1988, 2000).

Since in a conditional probability the condition is explicitly represented, in the
following, I will call them “explicit conditions”. The argument this research
note makes is that, in general, it is improper to represent an implicit condition
as an explicit condition, and that their difference shows a serious limitation
of Bayesianism, which is related to several previous debates on related topics.

2 Explicit conditions vs. implicit conditions

Since Bayesian learning is carried out by equation (2), the knowledge the sys-
tem can directly learn in this way must be represented as an explicit condition
e. This means:

(1) It is a (binary) proposition (otherwise it cannot be in S).
(2) It is in S (otherwise its probability P0(e) is undefined).
(3) P0(e) > 0 (otherwise it cannot be used as a denominator).

3



The first restriction should not be confused with that a random variable X
can have more than two possible values. Though X can have more than two
values, the knowledge “X = vi” is still a binary proposition.

These restrictions are not unknown — for example, a similar list is discussed
in Diaconis and Zabell (1983) and Pearl (1990). Since all learning methods
have their restrictions, it is not a surprise that Bayesian conditioning cannot
learning everything. However, here the problem is that the above restrictions
are not applied to the implicit conditions of probability distribution functions:

(1) An implicit condition may include statistical conclusions and subjective
probabilistic estimates, which are not binary propositions.

(2) An implicit condition only needs to be related to S, but not necessarily
in S. For example, “Tweety is a bird and cannot fly” can be part of an
implicit condition, even though S includes only “Birds fly”, and does not
include the name “Tweety” at all.

(3) Even if a proposition is assigned a prior probability of zero according to
one knowledge source, it is still possible for the proposition to be assigned
a non-zero probability according to another knowledge source.

Now we can see that only certain types of implicit conditions can be repre-
sented as explicit conditions. It follows that if some knowledge is not available
when the prior probability is determined, it is impossible to be put into the
system through Bayesian conditioning. We cannot assume that we can always
start with a “non-informative” prior probability distribution, and learn the
relevant knowledge when it becomes available.

Therefore, it is wrong to represent an implicit condition as an explicit condi-
tion, and the previous equations (3) and(4) are not equivalent to each other.
Though both equations are correct, they have different meanings.

From a practical point of view, the three restrictions are not trivial, since they
mean that although the background knowledge can be probabilistic-valued,
all new knowledge must be binary-valued; no novel concept and proposition
can appear in new knowledge; and if a proposition is given a probability 1 or
0, such a belief cannot be changed in the future, no matter what happens. We
could build such a system, but unfortunately it would be a far cry from the
everyday reasoning process of a human being.

Some people claim that the Bayesian approach is sufficient for reasoning with
uncertainty, and many people treat Bayes’ Theorem as a generally applicable
learning rule, because explicit conditions and implicit conditions of a probabil-
ity evaluation are seldom clearly distinguished in related discussions. Without
such a distinction, the illusion arises that all the knowledge supporting a prob-
ability distribution function can be represented by explicit conditions, and can
therefore be learned by the system using Bayes’ conditionalization.

4



3 Revision vs. updating

Within the Bayesian tradition, there is a way to handle new evidence that is
not a binary proposition. After a prior probability distribution P0 is assigned
to a proposition space S, some new evidence may show that “The probability
of proposition e (e ∈ S) should be changed to p” (i.e., P1(e) = p). In this
situation, assuming the conditional probabilities that with e or ¬e as explicit
condition are unchanged (i.e., P1(h|e) = P0(h|e)), we can update the probabil-
ity evaluation for every proposition h in S to get a new distribution function
according to Jeffrey’s rule [Jeffrey (1965); Diaconis and Zabell (1983); Kyburg
(1987); Pearl (1988)]:

P1(h) = P0(h|e)× p + P0(h|¬e)× (1− p) (5)

If we interpret “e happens” as “e’s probability should be changed to 1”, then
Bayes’ Theorem, when used for learning as in (2), becomes a special case of
Jeffrey’s rule, where p = 1. 2

A related method was suggested to process uncertain evidence e, where a
“virtual proposition” v is introduced to represent the new knowledge as “a
(unspecified) proposition v is true, and P0(e|v) = p” [Cheeseman (1986); Pearl
(1988)]. Then a new conditional probability distribution can be calculated
(after considering the new knowledge) in the following way:

P1(h) = P0(h|v) = P0(h|e ∧ v)× P0(e|v) + P0(h|¬e ∧ v)× P0(¬e|v) (6)

Under the assumption that P0(x|e∧v) = P0(x|e) and P0(x|¬e∧v) = P0(x|¬e),
equation (6) can be reduced into (7):

P1(h) = P0(h|v) = P0(h|e)× p + P0(h|¬e)× (1− p) (7)

Therefore we end up with Jeffrey’s rule. The only difference is that here the
prior probability is not updated directly, but is instead conditionalized by a
virtual condition (the unspecified proposition v). However, no matter which
procedure is followed and how the process is interpreted, the result is the same
[Pearl (1990)].

Some other systems process uncertain evidence by providing likelihood ratios
of virtual propositions [Pearl (1988); Heckerman (1988)]. This method also
leads to conditionalization of a virtual condition, therefore is semantically
equivalent to the previous approach [Pearl (1990)].

2 Jeffrey’s rule can be seen as a special case of “Probability Kinematics” [Jeffrey
(1965)], by which P1(h) =

∑n
i=1 P0(h|ei)P1(ei), where

∑n
i=1 P1(ei) = 1.
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Jeffrey’s rule (and its equivalent forms) avoids the first restriction of Bayes’
Theorem, that is, the new evidence must be a binary proposition. Also, if
conditional probability is directly defined by de Finetti’s coherent conditional
probability (that is, not as P (x|y) = P (x ∧ y)/P (y)), it is possible to do con-
ditioning on an event which has prior probability 0 [Coletti et al. (1993)]. Fur-
thermore, Pearl defines “Neo-Bayesianism” by adding structural information
(i.e., the topological structure of a Bayesian network) into tradition Bayesian-
ism. With this kind of information, conditional probability can be introduced
independent of the absolute probability values, and, therefore, the above lim-
itations of conditioning is overcome [Pearl (1990)].

Though the above methods are well justified, they only cover a special case. In
general, by “revision” (or “learning”, “belief change”, and so on), I mean the
process by which a system changes the degree of belief (no matter what they
are called and defined) of certain proposition h from B(h) = p1 to B(h) = p2,
according to evidence e. By “updating”, in this paper I mean a special case
of the above process where e takes the form of “B(h) should be p2”, and it is
indeed the result of the process, no matter what p1 is.

This distinction between “revision” and “updating” should not be confused
with some other distinctions made in previous discussions. For example, some
authors use “revision” for “correction of wrong beliefs”, and “updating” for
“belief change due to changing world” [Dubois and Prade (1991)]. In the
current discussion, however, the issue is not why a belief change happens,
but whether the new value is exactly what the evidence says.

Another distinction is “revision” vs. “focusing”, as discussed in Dubois and
Prade (1997), corresponding to the modification of generic knowledge and
the shifting of reference class according to the current situation, respectively.
Focusing does not really change any belief of the system. Instead, in this pro-
cess conditional propositions are used to replace unconditional propositions
(though the conditions may not be explicitly represented). On the other hand,
the revision view of conditioning, as advocated by people working in proba-
bility kinematics [Jeffrey (1965); Domotor (1980)], is about how to change
a probability distribution according to new information. As analyzed previ-
ously, conditioning used in this way can only completely replace the previous
probability distribution with a new one (what I call “updating”), but cannot
balance (or take some kind of “average” of) the two (what I call “revision”).

Though “updating” is a valid operation in uncertain reasoning, it is only a
special case of “revision”, because it does not cover the situation where the
result is a compromise of conflicting beliefs/information/evidence. In certain
situations, it is proper to interpret belief changes as updating [Dubois and
Prade (1991)], but revision is a more general and important operation. When
there are conflicts among beliefs, it is unusual that one piece of evidence can
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be completely suppressed by another piece of evidence, even though it make
sense to assume that new evidence is usually “stronger” than old evidence.

Some authors represent revision as “deriving P (h|e1 ∧ e2) from P (h|e1) and
P (h|e2)” [Deutsch-McLeish (1991)]. According to the previous discussion, we
can see that this treatment only considers explicit conditions, while in general
we cannot assume that conflict beliefs always come under the same implicit
condition.

Concretely speaking, revision of probability happens when the system’s cur-
rent belief on h is PK0(h), the new knowledge is PK′

0
(h), and the result is

PK1(h), where K1 summarized the knowledge in K0 and K ′
0. We cannot do it

in the Bayesian approach, because PK′
0
(h) contains information that cannot be

derived from PK0 , nor can the operation be treated as updating, where PK0(e)
is simply replaced by PK′

0
(h). Intuitively, to carry out the revision operation,

we need more information about K0 and K ′
0, and this information is not in

the probability distribution function PK0 .

Therefore, even if Jeffrey’s rule is used to replace Bayes’ Theorem and struc-
ture information is added into the picture, the system still does not have a
general way to revise its implicit conditions (i.e., background knowledge be-
hind the probability distribution function). If we want to apply a Bayesian
network to a practical domain, one of the following requirements must be
satisfied:

(1) The implicit condition of the initial probability distribution, that is, the
domain knowledge used to determine the distribution initially, can be
assumed to be immune from future modifications; or

(2) All modifications of the implicit condition can be treated as updating,
in the sense that when new knowledge conflict with old knowledge, the
latter is completely abandoned.

From artificial intelligence’s point of view, such domains are exceptions, rather
than general situations. In most cases, we can guarantee neither that all initial
knowledge is unchangeable, nor that later acquired knowledge always com-
pletely suppresses earlier acquired knowledge. Usually, revision is a compro-
mise, as addressed in the discussions on belief change [Voorbraak (1999)] and
multiple source information fusion [Dubois et al. (2001)]. 3

Some people may think that whenever the above situation happens, we can
always go back to the very beginning, to redefine the proposition space and the
probability function on it, according to all currently available information. Of

3 Information fusion also includes many other issues, such as to detect whether the
information sources are using the same evidence. These issues are beyond the scope
of this paper.
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course this can be done, but it is not done by the Bayesian learning mechanism
of the system itself, but by the designers using something else. Such a redesign
shows the limitation, not the strength, of Bayesian learning.

4 Ignorance and sensitivity

Since the probability distribution function P is defined on S according to
implicit condition K, it provides a summary of the available knowledge of the
system about propositions in S, but the function says little about K itself.
Consequently, the system has no general way to revise and extend K. The
Bayesian approach has no general way to represent and handle the uncertainty
within the background knowledge and the prior probability function. This is
a serious limitation of Bayesianism, both in theory and in application.

Though the distinction between explicit and implicit conditions is rarely made,
the above conclusion, that is, Bayesianism has limitations in representing and
processing uncertainty, is not new at all. From different considerations, many
people reached the same conclusion, that is, to use a probability distribution
function alone to represent uncertainty is not enough, because it fails to show
the ignorance, or uncertainty about the function itself.

Several alternative approaches are proposed to solve this problem, including
the following:

• probability interval, where the probability value is not specified as a point,
but as an interval, and the width of the interval indicates the ignorance of
the system [Grosof (1986); Kyburg (1988)],

• higher-order probability, where a second probability value is introduced
to specify the accuracy of the “first-order” probability evaluation [Kyburg
(1988); Paaß (1991)],

• imprecise probability, where upper and lower probability values are used to
replace precise probability values [Walley (1991, 1996)],

• Dempster-Shafer theory, where a belief function and a plausibility function
are used to represent uncertainty, and a evidence combination rule is used
to reduce ignorance [Dempster (1967); Shafer (1976)],

• confidence measurement, where a frequency value and a confidence value
are used to represent uncertainty, and the latter also indicates ignorance
[Wang (1993, 2001)].

Though these approaches are technically different, they can all (more or less)
be seen as attempts of extending the Bayesian approach by using more than
one value to represent the uncertainty of a statement, and therefore indicates
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the ignorance of the system. 4

To discuss these approaches is beyond the scope of this research note. 5 In the
following I only analyze the response from the Bayesian school against these
challenges.

To argue against the opinion that “more than one number is needed to repre-
sent uncertainty”, Cheeseman (1985) claimed that a point value and a density
function will give the same result in decision making, which I agree to cer-
tain extent. However, I believe that he was wrong by saying that standard
deviation can be used to capture “the change of expectations” (or revision, as
defined in this paper). If we test a proposition n times, and the results are the
same, then the standard deviation of the results is 0, that is, independent to
n. But our confidence about “the result will remain the same” will obviously
increase with n. Actually, what the standard deviation measures is the vari-
ations among the samples, but what needed in revision, intuitively speaking,
has more to do with the amount of the samples.

Pearl said the uncertainty in the assessment of P0(e) is measured by the (nar-
rowness of the) distribution of P0(e|c) as c ranges over all combinations of
contingencies, and each combination c is weighted by its current belief P0(c)
[Pearl (1988)]. A similar approach is in Spiegelhalter (1989), where ignorance
is treated as sensitivity.

I agree with them that ignorance is the lack of confidence, and confidence can
be measured by how much a degree of belief can be modified by possible future
evidence (in this sense, it is different from what measured by the “confidence
interval” in statistics) [Wang (2001)]. However, in their definition, they still
assume that all relevant future evidence causing a belief change can be rep-
resented as an explicit condition, and can be processed through conditioning.
As a result, their measurement of ignorance (or confidence) cannot captures
the ignorance about implicit conditions.

No matter whether other approaches can solve the problem, as far as the
“ignorance” to be represented is about an implicit condition, it cannot be
handled properly by Bayesianism. For a specific domain, if revision is a crucial
operation for the solving of the practical problems, the Bayesian approach
cannot be used, and other approaches should be considered.

4 A related work is possibility theory, which is not an attempt to extend proba-
bility theory, but also use two values to represent ignorance [Dubois et al. (1996)].
There are other competitors of Bayesianism, such as fuzzy logic [Zadeh (1965)] and
Spohn’s kappa calculus [Spohn (1990)], as well as the approaches without numerical
measurement of uncertainty, but they are irrelevant to the current discussion.
5 Such discussions can be found in Wang (1994, 1995, 2001).
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5 Conclusion

In this short research note I do not intend to evaluate all aspects of Bayesian-
ism, not even all of its limitations. 6 Instead, I try to clarify the interpretation
of conditional probability by distinguish two types of conditions, because this
distinction is in the center of several previous debates, and the confusion can
be found in many influential publications.

According to the above analysis, what the Bayesian approach can do is:

• Given some values in a probability distribution, to calculate some other
values in the same distribution, as shown in equation (1).

• Given some values in a new probability distribution, to update a previous
probability distribution accordingly, as shown in equations (2) and (5).

What it cannot do is:

• To combine conflicting beliefs that are based on different implicit conditions,
such as PK0(h) and PK′

0
(h).

• To carry out inference when the premises are based different implicit con-
ditions, such as PK0(h|e) and PK′

0
(e).

For the last two cases, we need additional information about the implicit
conditions involved (to merely attach a probability value to each belief is not
enough), as well as inference rules that use this kind of information.

When a reasoning system has insufficient knowledge and resources (with re-
spect to the tasks assigned to it), it cannot assume that the initial back-
ground knowledge does not need revise, nor that all revisions can be treated as
complete updating of probability distribution function. Therefore, the above
limitation means that the Bayesian approach is not a normative theory of
reasoning in this situation, and we need something else [Wang (2001)].

Though similar conclusions were proposed by other people before, the discus-
sion has been messed up by the confusion between explicit conditions and im-
plicit conditions of probability evaluations. This confusion is both conceptual
and notational, and it causes a serious underestimation about the limitation
of Bayesianism. To clearly distinguish these two types of conditions, as well as
to clearly distinguish different operations like revision and updating, will not
only help us to understand the capacity of the Bayesian approach, but will
also help us to design and analyze alternative approaches for reasoning under
uncertainty.

6 There are other issues, such as the requirement of a coherent prior probability
function and the computational expense of global updating.
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