
Non-Axiomatic Reasoning System (Version 4.1)

Pei Wang
Research Division, Intelligenesis Corporation

and
Center for Research on Concepts and Cognition, Indiana University

http://www.cogsci.indiana.edu/farg/pwang.html

Introduction
NARS (Non-Axiomatic Reasoning System) is an intelligent
reasoning system. It answers questions according to the
knowledge originally provided by its user. What makes it
different from conventional reasoning systems is its ability
to learn from its experience and to work with insufficient
knowledge and resources.

The NARS 4.1 demo is a Java applet. It comes with help
information and simple examples to show how the system
does deduction, induction, abduction, analogy, belief revi-
sion, membership evaluation, relational inference, backward
inference, new concept formation, and so on, in a unified
manner.

The demo also allows its user to create new examples to
test the system, as well as to see the internal structure and
process when the system is running. The on-line help docu-
ment contains links to relevant publications.

A previous version of the system, NARS 3.0, is described
in detail in (Wang, 1995), which, and other related publica-
tions, are available at the author’s web page.

The System
NARS is based on the conjecture that what we call “intelli-
gence” can be built into a computer system by making it to
adapt to its experience, that is, to answer questions accord-
ing to available knowledge and resources.

Concretely, it means that the system should open to new
knowledge and questions in real time, and answer questions
according to its available knowledge when the knowledge
and resources are insufficient to provide a perfect answer.

Knowledge Representation
NARS does not use first-order predicate logic. Instead, each
piece of knowledge in NARS has the form “SrP < f; c >”.
Here S is the subject term, and P is the predicate term. In
the simplest situation, both of them are words. r is an in-
heritance relation. In this demo, three types of inheritance
relations can be used:

� “S � P ” means that “S is a special type of P ”;

� “S 2 P ” means that “S is an instance of P ”;

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

� “S = P ” means that “S and P are similar to each other”.

“< f; c >” is the truth value of the sentence, where f is
the “frequency”, a real number in [0, 1], indicating the ratio
of positive evidence among all evidence of the relation, and
c is the “confidence”, a real number in (0, 1), indicating the
amount of evidence the system has on the relation.

Each question that can be asked to the system has the form
SrP . A question looks just like a piece of knowledge, ex-
cept that there is no truth value, and that S or P (but not
both) can be a special symbol “?”. A question without “?”
is like a “yes/no” question — the system is asked to evaluate
the truth value of the given relation. A question with “?” is
like a “what” question — the system is asked to find a term
that have more positive evidence and less negative evidence
for the given relation.

Since the confidence of a piece of knowledge cannot reach
1.0, no answer is absolutely sure. Instead, the system needs
to compare the available candidates to choose a “best an-
swer”, which may be overturned by new knowledge or fur-
ther consideration.

Inference Rules
The following basic rules are involved in this demo. Each
of them in NARS takes two pieces of existing knowledge as
premises, and derive a piece of new knowledge as conclu-
sion. The premises must share at least one common term.

Revision Deduction
S � P < f1; c1 > S �M < f1; c1 >
S � P < f2; c2 > M � P < f2; c2 >
——————— ———————
S � P < f; c > S � P < f; c >

Abduction Induction
S �M < f1; c1 > M � S < f1; c1 >
P �M < f2; c2 > M � P < f2; c2 >
——————— ———————
S � P < f; c > S � P < f; c >

Analogy Comparison
S �M < f1; c1 > S �M < f1; c1 >
M = P < f2; c2 > P �M < f2; c2 >
——————— ———————
S � P < f; c > S = P < f; c >



Since by definition S 2 P is identical to fSg � P , rules
on the “2” relation can be derived from those on the “�”
relation.

In each rule, there is a truth value function that calculate
the strength and confidence of the conclusion (< f; c >)
from those of the premises (< f1; c1 > and < f2; c2 >).
Different rule use different function.

According to how the confidence c is calculated, the
above rules can be put into three categories:

1. In Deduction and Analogy, the confidence of the conclu-
sion can be very close to the confidence of a premise, so
these types of inference can produce relatively sure an-
swers.

2. In Abduction, Induction, and Comparison, the confidence
of the conclusion is always much lower than that of the
premises, so these types of inference are more tentative.

3. Revision is the only rule where the confidence of the con-
clusion is higher than that of the promises, because this
rule merges the evidence of the premises into that of the
conclusion.

Besides these basic rules, NARS 4.1 also has compound-
term composition and decomposition rules, such as “S �
(P1 \ P2) if and only if S � P1 and S � P2”. Another
type of rule is backward inference rule that derive question
from question and knowledge, such as from available knowl-
edge “S �M” and question “? 2M” to derive a new ques-
tion “? 2 S”, whose answer and the knowledge can derive
an answer to the original question. This kind of rule allows
the system to work in a goal-directed manner.

Control Mechanism
Because of the assumption of real time input, NARS cannot
work on a task at a time, but must allow multiple tasks to
be under processing at the same time. Because of the as-
sumption of insufficient knowledge and resources, it cannot
assume that all tasks will be processed to their “logical end”,
or to be solved by considering all relevant knowledge in the
system.

Instead, the system processes multiple inference tasks by
time-sharing. Each task is given a priority value, which indi-
cates the frequency for it to be processed for a time slice. Af-
ter a task is selected for processing, a piece of knowledge is
also selected according to a priority distribution, then the de-
rived task and knowledge are put back into the task pool and
knowledge base, and the priority of the involved task and
knowledge is adjusted according to the feedback obtained in
this inference step.

When an answer is found for a user question, it is re-
ported, then the system continue to look for a better one,
if the task still have a high enough priority.

The Demonstration
NARS has been implemented several times. The current ver-
sion, 4.1, is a Java applet which is available at the author’s
web page. There is also a file for download, which contains
both the code and the documentation.

User Interface
The user interface of NARS 4.1 allows the user to provide
knowledge and questions to the system in a text field. The
system will return answers to the questions in another win-
dow. Since the timing of input influences the system’s pro-
cessing, the user can also specify the number of inference
steps allowed between input events.

The user can let the system to work step by step, or to run
continuously. The user can open several display windows
to watch the internal inference process, as well as the con-
tent and priority distribution of the task pool and knowledge
base.

There are several system parameters the user can adjust to
change the system’s behavior, such as the forgetting rate of
the knowledge base, and so on.

There is an on-line User’s Guide that explains how the
demo can be used.

Examples
The NARS 4.1 demo has a set of examples attached, and
each of which shows a basic function or property of the sys-
tem. By observing how the examples are processed in the
system, the user can get direct experience on how the sys-
tem works.

The examples include: input and output, context sen-
sitivity, deduction, induction, abduction, mixed inference,
confidence processing, backward inference, contradiction
handling, similarity evaluation, compound term formation,
Hempel’s paradox, relation operators, and fuzzy concept for-
mation.

In the on-line documentation, each example comes with
a simple explanation about the system’s processing and the
result, as well as links to related publications.

All of these examples can be given to the system by
copy/paste. When a user becomes familiar enough to the
system, he or she can create new examples to test the sys-
tem, as long as they can be expressed in the formal language
of NARS.

These examples show that NARS is different from other
reasoning systems in terms of the knowledge representation
language, the semantics of the language, the inference rules,
the knowledge base structure, the control mechanism, and
the relation with users. NARS provides a unified solution to
many problems that are traditionally handled in isolation to
one another.

References
Wang, P. 1995. Non-Axiomatic Reasoning System: Explor-
ing the essence of intelligence. Ph.D. diss., Dept. of Com-
puter Science and Program of Cognitive Science, Indiana
Univ.


