
Channel Capacity

How fast can we transmit information over a communication channel?

Suppose a source sends r messages per second, and the entropy of a

message is H bits per message. The information rate is R = r H

bits/second.

One can intuitively reason that, for a given communication system, as the

information rate increases the number of errors per second will also

increase. Surprisingly, however, this is not the case.

Shannon’s theorem:

• A given communication system has a maximum rate of information C

known as the channel capacity.

• If the information rate R is less than C , then one can approach

arbitrarily small error probabilities by using intelligent coding

techniques.

• To get lower error probabilities, the encoder has to work on longer

blocks of signal data. This entails longer delays and higher

computational requirements.

Thus, if R ≤ C then transmission may be accomplished without error in

the presence of noise.

Unfortunately, Shannon’s theorem is not a constructive proof — it merely

states that such a coding method exists. The proof can therefore not be

used to develop a coding method that reaches the channel capacity.

The negation of this theorem is also true: if R > C , then errors cannot be

avoided regardless of the coding technique used.
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1 Shannon-Hartley theorem

Consider a bandlimited Gaussian channel operating in the presence of

additive Gaussian noise:

White Gaussian noise

Ideal
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The Shannon-Hartley theorem states that the channel capacity is given by

C = B log2(1 + S/N )

where C is the capacity in bits per second, B is the bandwidth of the

channel in Hertz, and S/N is the signal-to-noise ratio.

We cannot prove the theorem, but can partially justify it as follows:

suppose the received signal is accompanied by noise with a RMS voltage

of σ , and that the signal has been quantised with levels separated by

a = λσ . If λ is chosen sufficiently large, we may expect to be able to

recognise the signal level with an acceptible probability of error. Suppose

further that each message is to be represented by one voltage level. If there

are to be M possible messages, then there must be M levels. The average

signal power is then

S =
M2

− 1

12
(λσ )2.

The number of levels for a given average signal power is therefore

M =

(

1 +
12

λ2

S

N

)1/2

,
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where N = σ 2 is the noise power. If each message is equally likely, then
each carries an equal amount of information

H = log2 M =
1

2
log2

(

1 +
12

λ2

S

N

)

bits/message.

To find the information rate, we need to estimate how many messages can
be carried per unit time by a signal on the channel. Since the discussion is
heuristic, we note that the response of an ideal LPF of bandwidth B to a
unit step has a 10–90 percent rise time of τ = 0.44/B. We estimate
therefore that with T = 0.5/B ≈ τ we should be able to reliably estimate
the level. The message rate is then

r =
1

T
= 2B messages/s.

The rate at which information is being transferred across the channel is
therefore

R = r H = B log2

(

1 +
12

λ2

S

N

)

.

This is equivalent to the Shannon-Hartley theorem with λ = 3.5. Note that
this discussion has estimated the rate at which information can be
transmitted with reasonably small error — the Shannon-Hartley theorem
indicates that with sufficiently advanced coding techniques transmission at
channel capacity can occur with arbitrarily small error.

The expression of the channel capacity of the Gaussian channel makes
intuitive sense:

• As the bandwidth of the channel increases, it is possible to make faster
changes in the information signal, thereby increasing the information
rate.

• As S/N increases, one can increase the information rate while still
preventing errors due to noise.

• For no noise, S/N → ∞ and an infinite information rate is possible
irrespective of bandwidth.
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Thus we may trade off bandwidth for SNR. For example, if S/N = 7 and

B = 4kHz, then the channel capacity is C = 12 × 103 bits/s. If the SNR

increases to S/N = 15 and B is decreased to 3kHz, the channel capacity

remains the same.

However, as B → ∞, the channel capacity does not become infinite since,

with an increase in bandwidth, the noise power also increases. If the noise

power spectral density is η/2, then the total noise power is N = ηB, so the

Shannon-Hartley law becomes

C = B log2

(

1 +
S

ηB

)

=
S

η

(

ηB

S

)

log2

(

1 +
S

ηB

)

=
S

η
log2

(

1 +
S

ηB

)ηB/S

.

Noting that

lim
x→0

(1 + x)1/x
= e

and identifying x as x = S/ηB, the channel capacity as B increases

without bound becomes

C∞ = lim
B→∞

C =
S

η
log2 e = 1.44

S

η
.

This gives the maximum information transmission rate possible for a

system of given power but no bandwidth limitations.

The power spectral density can be specified in terms of equivalent noise

temperature by η = kTeq.

There are literally dozens of coding techniques — entire textbooks are

devoted to the subject, and it is an active research subject. Obviously all

obey the Shannon-Hartley theorem.

Some general characteristics of the Gaussian channel can be demonstrated.

Suppose we are sending binary digits at a transmission rate equal to the

channel capacity: R = C . If the average signal power is S, then the

average energy per bit is Eb = S/C , since the bit duration is 1/C seconds.
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With N = ηB, we can therefore write

C

B
= log2

(

1 +
Eb

η

C

B

)

.

Rearranging, we find that

Eb

η
=

B

C
(2C/B

− 1).

This relationship is as follows:
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The asymptote is at Eb/η = −1.59dB, so below this value there is no

error-free communication at any information rate. This is called the

Shannon limit.
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