
 4 JULY 2001

1

D U A L C O U N T E R M O D E
MIKE BOYLE

CHRIS SALTER

INTRODUCTION

For the past 18 months, the NSA has been developing a high-speed encryption mode for IP packets.
The mode that we designed is identical in many aspects to Jutla’s Integrity Aware Parallelizable Mode
(IAPM). There is one important difference in our proposal. In the IP world, a large number of
packets might arrive out of order. Integrity Aware Parallelizable Mode (IAPM) and the proposed
variations incur a large overhead for out of order packets[JU 01]. Each packet requires at least the
time to perform a full decryption to obtain an IV before decryption of the cipher can begin. This
note describes our solution to this problem.

First, we describe the basic mode and its features. We then describe how to implement this mode for
IPSec.

DUAL COUNTER MODE

Dual counter mode is a hybrid of ECB mode and counter mode. Let E represent encryption by a
codebook of width W. Let P1, P2, ..., Pj be j blocks of plaintext and let C1, C2, ..., Cj be the
corresponding ciphertext. Let f be a polynomial of degree W for a primitive linear feedback shift
register. Also, let {xi} be the sequence of fills generated by this polynomial. The first fill, x0, is a
secret shared between the two peers. This initial fill is most easily derived from the key exchange1.
Dual counter mode can be described as follows:

j = # of datablocks

For i = 1, ..., j

xi = f(x i-1)

Ci = E(Pi ⊕ xi) ⊕ xi

Quite likely the cipherblocks will travel in packets. If the packets arrive in order, the receiver does not
lose track of the fill needed to decrypt the cipher.

TWO IMPLEMENTATION M ODES

We knew that many implementers would want to verify the data integrity of packets. This mode has
the property that any change to a ciphertext block causes the decrypted plaintext to be garbled. Thus
it is easy to add a checksum to verify data integrity.

1 Of course, care should be taken in producing this value. For example, the designers of the key exchange for IPsec used
secure hashes such as SHA-1 to isolate keying material.

 4 JULY 2001

2

We developed this mode for high data rate IP encryption. In the second variation we suggest a
possible implementation for IPsec that is efficient for packets.

VERIFYING DATA INTEGRITY

To detect attempts to make malicious changes to cipher, a simple checksum of the data can be
encrypted and appended as an additional cipherblock.

checksum = 0

j = # of datablocks

For i = 1, ..., j

xi = f(x i-1)

Ci = E(Pi ⊕ xi) ⊕ xi

checksum = checksum ⊕ Pi

xj+1 = f(x j)

Cj+1 = E(checksum ⊕ xj+1) ⊕ x0

Note that checking data integrity only costs one pipelined step of the codebook.

TACKLING OUT OF ORDER IP PACKETS

In the IP world, packets can arrive out of order. Encrypting the current fill and placing it in the
packet’s header would allow the decrypting device to obtain the correct fill for an out of order
packet. This solution, however, defeats the whole point of doing a variation of counter mode, which
is the ability to pipeline the codebook for the entire message.

Each IP packet has a 32-bit sequence number (SEQ). An IPsec packet also has a 32-bit security
parameter index (SPI). The SPI and sequence number can be concatenated to produce a 64-bit block.
Some padding might be required to create a value from the sequence number and SPI that is the
same size as the width of the codebook. To produce a 128-bit padded sequence number for the AES
algorithm, concatenate this 64-bit number with its complement. This number is added to the shared
secret (x0) and used as the initial register fill for that packet.

Thus the sender and receiver both set the current fill of the register at the beginning of the packet to
be: x0 + (SEQ|SPI|padding), where x0 is the shared secret negotiated during the key exchange. To
minimize the hardware and overhead, the addition could be done as a vector of 32-bit adds2. The

2 Addition mod 2128 would be expensive to implement in hardware. Since common codebook widths are divisible by 32, a
reasonable alternative is to break the numbers into 32-bit fields and to perform mod 232 addition within the corresponding
fields.

 4 JULY 2001

3

register steps forward from this per packet starting point to produce the sequence of fills needed for
the data blocks3.

The padded sequence number, which includes the SPI, also needs to be authenticated. This number
and the plaintext blocks are exclusive-or added to produce a checksum the same size as the width of
the codebook.

checksum = SEQ|SPI|padding

j = # of datablocks

y0 = x0 + (SEQ|SPI|padding)

For i = 1, …, j

yi = f(yi-1)

Ci = E(Pi ⊕ yi) ⊕ yi

checksum = checksum ⊕ Pi

yj+1 = f(yj)

Cj+1 = E(checksum ⊕ yj+1) ⊕ y0

ANALYSIS

Adding the fill to the plaintext eliminates the undesirable property of ECB mode that repeated cipher
results in repeated plaintext. Incorporating codebook mode by running the plaintext and a fill
through the codebook eliminates bit-flipping attacks.

Adding the fill the second time to the subcipher helps prevent the adversary from doctoring the
components of the linear checksum and thus also helps prevent cut-and-paste and replay attacks.

A shift register was chosen instead of a 1-up counter to prevent an adversary from reordering cipher
blocks within a packet. For instance, adjacent blocks would have counters that differ only in the low
order bit 1/2 the time. The adversary could add out that difference in the cipher when blocks are
reordered, thus eliminating the difference sent into the codebook. The linear checksum would not
pick up that the two blocks of plaintext were added in a different order. Using a shift register with
hidden state hinders an adversary’s ability to guess the difference between two fills.

A possible drawback of dual counter mode is that the entire packet must be decrypted before
attempts to change the data are detected. Quite likely, however, decrypting the packet with a

3 Although any primitive degree 128 polynomial would do, we suggest using x128 + x 7 + x2 + x + 1 in a Galois configuration.
Since there are no primitive trinomials of degree 128 this should be optimal in hardware, and having all the feedback taps in
one byte should optimize it for software as well.

 4 JULY 2001

4

pipelined codebook should take no longer than applying an HMAC. Moreover, both authentication
and encryption are completed at the same time.

COMPARISON WITH OTHE R MODES

It is worth considering the implementation trade-offs between dual counter mode and the two other
modes traditionally used in a high data rate environment, namely counter and CBC modes. Counter
mode and dual counter mode allow pipelining, while CBC can only be pipelined in the decrypt
direction. There is a technique for speeding up CBC mode that requires the use of additional
initialization vectors. For example, to be twice as fast, two copies of the codebook and two
initialization vectors are required. The odd number blocks are encrypted with the chain started by
one initialization vector and the even by the other chain. We have not explored the nuances of how
to implement this technique, such as whether each chain should be protected by a different key, since
we have presented an alternative mode that does not have the data integrity problems of CBC.

Counter mode does not require the decrypt version of the codebook, whereas CBC and dual counter
mode do. This may not be significant for three reasons. The first is that the decrypt implementation
may be able to share circuitry with the encrypt version. The second reason is more straightforward: in
trying to maximize throughput, there will probably be two copies of the codebook hardware, one for
sending and one for receiving messages. Finally, space on the chip is freed up since an optimized
hash implementation is not necessary for data integrity.

As mentioned in the introduction, it would be useful to have a version of Integrity Aware
Parallelizable Mode (IAPM) that does not incur a large overhead for out of order packets[JU 01].

CONCLUSION

Several modes have been proposed to speed up IP encryption. Most eliminate the need to have a
separate mode for data integrity. Our variation differs from these submissions by preserving the
ability to parallelize even if packets arrive out of order.

REFERENCES

[Bel 96] Steven M. Bellovin. Problem Areas for the IP Security Protocols. In Proceedings of the Sixth Usenix UNIX
Security Symposium, July 1996. Available at ftp://ftp.research.att.com/dist/smb/badesp.ps

[HC 98] D. Harkins and D. Carrel. The Internet Key Exchange (IKE), November 1998. RFC 2409.

[JU 01] C. Jutla. Encryption Modes with Almost Free Message Integrity. To appear in EUROCRYPT’2001.

[KA 98] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP), November 1998. RFC 2406.

[MD 98] C. Madson and N. Doraswamy. The ESP DES-CBC Cipher Algorithm with Explicit IV, November 1998. RFC
2405.

[MOV 96] A. Menezes, P. Oorschot, S. Vanstone. Handbook of Applied Cryptography. CRC Press. 1996.

[Sch 96] Bruce Schneier. Applied Cryptography, 2nd edition. John Wiley and Sons. 1996

 4 JULY 2001

5

SUMMARY OF PROPERTIE S

Security Function: dual encryption/data integrity mode for a codebook.

Error Propagation: an error in a cipher block causes all the data in the packet to fail the data
integrity check. Cipher blocks without errors still decrypt correctly.

Synchronization: key exchange initializes mode and in a less reliable environment packets carry
information necessary for decryption to proceed.

Parallelizability: mode allows encryption and decryption to be pipelined.

Keying Material Requirements: the mode requires that the key exchange produce an additional
secret initialization vector.

Counter/IV/Nonce Requirements: if packets arrive out of order, the packet must have a
sequence number. The mode uses the fill from a primitive stepping polynomial as a pre and post add.

Memory Requirements: marginally more memory is required in software for this mode.
Hardware implementations that pipeline lay out the entire stepping of the codebook in hardware.

Ciphertext Expansion: one data block per packet is used for encrypting a checksum that ensures
data integrity.

