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Abstract

The Vitali set is a canonical example of a non-measurable set. It’s description
requires the use of the Axiom of Choice an uncountable number of times. The
classical approach is to demonstrate the quotient R/Q of the reals by the rationals,
and then chose an uncountable number of points from the quotient, resulting in
a set that does not have a representation in any sigma algebra, and thus cannot
be assigned a size. A sophisticated approach is to employ the language of Borel
sigma-algebras, demonstrate a comparable quotient via a Borel equivalence rela-
tion, and arrive at a set that does not admit a measure. A middle ground is to work
with the Bernoulli shift on the Cantor space. This provides a concrete, direct and
easy-to-describe system to work with, while retaining the essential properties of
the abstract approach. This approach indicates exactly why the use of the Axiom
of Choice is forced: the cosets of the quotient space are not well-founded and thus
do not have any unique, distinct element that can be described. Lacking the abil-
ity to isolate a specific element, one is instead forced to declare that surely, there
must be some element and that it can be chosen. There are uncountably many such
cosets, uncountably many choices, and as a result, a set without any representation
in a sigma algebra.

1 Introduction
Dynamical systems generically have two classes of orbits: the periodic orbits, and the
chaotic ones. In between lie the eventually-periodic orbits: the ones that eventually
settle down to periodic behavior, but not before a preliminary bout of irregular motion.

It came as a surprise to the author that, in an attempt to write down the class of
eventually-periodic orbits, these could be used to form the Vitali set. In retrospect, this
appears to be well-known in some parts of the mathematical community, but utterly
opaque and foreign to others. It is well-known, obvious and plain to those partaking
of descriptive set theory; it is foreign and mysterious to the mainstream interested in
dynamical systems and chaos. I came from the later group; this text is a muddledd
attempt to bridge into the former. Apologies to those with a deep understanding of the
first topic. Welcome to those of the second, to whom this is as confused and muddled
as it is for me.
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1.1 Sigma algebras
The Vitali set is famous for being the first example of an unmeasurable set, a set that
cannot be assigned a size according to conventional measure theory. It has a more fa-
mous cousin, the Banach–Tarski paradox. The Vitali set is exhibited in a peculiar way:
after a careful, precise accounting of all of the points in the continuum, these are shuf-
fled into groupings that can no longer be represented by an algebra of open and closed
sets. Alas, the standard notion of size is formulated in terms of this algebra, the sigma
algebra. Without the ability to represent a set within the confines of a sigma algebra,
one also loses the tool by which size can be assigned to that set (or, more precisely, to
the representation of that set in the sigma algebra; no representation means no size.)
The Banach–Tarski paradox is doubly curious, as it offers a way to disassemble, and
then re-assemble, so as to get two copies of a measurable representation. This is but a
trick: a given set is described with notation that lies outside of sigma algebras. There,
it is dissected and factored; when the pieces are then individually assigned a repre-
sentation in the sigma algebra, each piece has a size determined by the representation;
that size is the same size as that from which the pieces were disassembled. The point
belabored here is that representability in a sigma algebra is a key ingredient.

1.2 Axiom of Choice
Another key ingredient is the Axiom of Choice. This is needed to “pick out” points that
are not otherwise identifiable. This is an interesting and subtle point. Many specific,
individual points (many real numbers) can be given a name, such as π or log2, or
described in some way, with some formula or sequence of instructions. But there are
too many points to each name individually. Yet, one often wishes to say something
like “consider a point of this general kind.” How does one obtain a “point of a general
kind”, if one doesn’t have a name or formula for it? This is where the axiom of choice
comes in: it is a rule that says that it is always possible to choose one of these “general
points”, and then, after doing so, to use that point in later discussion, treating it as if it
were unique. Pretending that it has a name, a label, even though it was chosen precisely
because it is un-nameable, un-labelable.

For example, chose some arbitrary infinite string of binary digits. Clearly, such a
string exists. Let’s call it b. Can we talk about it’s n’th binary digit bn? Well, of course
we can; it “exists” in a certain way. But what is it? Is it a zero or a one? That, we
cannot say, because this was intentionally left vague, as b was intentionally chosen as
an arbitrary yet general representative. I almost wrote “choose b at random,” but this
has a subtely diffferent meaning. To “choose at random” requires having a distribution
to choose from, a probability distribution, and this requires a measure, a size, that
determines uniformity of selection. This requires a representation of the set as a sigma
algebra. Sometimes (as in the present case), one does not have a sigma algebra, but one
still wants to select points “at random”. The axiom of choice is a rule, a permission
slip, that allows you to do so.

Again, the point is subtle: if you can explicitly name a point, or the collection of
points you want to talk about, then the axiom of choice is not needed. If you give your
named set a representation in a sigma algebra, then that set becomes measureable, and
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there are plenty of theorems that tell you eactly how to measure it. Lusin’s theorem,
or Egorov’s theorem (first stated over one hundred years ago) provide nice examples
of tools that can be deployed when sets are measurable. The measureability paradoxes
develop when the axiom of choice is employed to create sets of points. When the axiom
of choice is employed an uncountably infinite number of times, to create sets with the
cardinality of the continuum. Sets that are too large to iterate over.

1.3 Iterability
This is the third key ingredient of the recipie: iterability, or rather, the inability to iterate
over a set. Iteration is a form of naming; it provides a countable order, so that some
function or operation can be applied to each element, in sequential order. Of course,
if one has an uncountable set, one can still declare that some function be applied to
all of the points of the uncountable set. However, the construction of a sigma algebra
involves a countable iteration over open (and closed) sets. A countable collection of
problematic points can be avoided with sigma algebras: one simply selects sets that
do not contain the points causing an issue. An uncountable number of points, though,
cannot be differentiated or separated with only a countable sequence of operations. A
sigma algebra must necessarily treat an uncountable set of points as an indivisible unit:
an open or a closed set.

The construction of the Vitali set requires the application of the axiom of choice
an uncountable number of times. The set has an uncountably infinite number of points
in it, and so naively, (intuitively?) one expects to be able to assign a size to it. Alas,
the combination of the axioms governing the representation of sets by sigma algebras,
combined with the axiom of choice, combined with a procedure that applies the axiom
of choice an uncountably infinite number of times results in a set that does name have
a representation in terms of a sigma algebra.

1.4 Preface to the rest of this text
The rest of this text is an attempt to restate the above, but this time using more precise
and concrete vocabulary. Both attempts are partially successful, both attempts partially
fail.

Two variants of the Vitali set construction are presented below. The first is a sketch
in the language of Borel sigma algebras; it is quite general, and is sufficient to present
the general idea. But it is only a sketch, and lacks mathematical rigor. The second is a
detailed construction making use of the Bernoulli shift on the Cantor space. This has
multiple desirable properties: each step can be concretely and precisely constructed,
right up to the point where the axiom of choice must be invoked. The precise and exact
nature of the axiom of choice can be exposed and articulated, laying bare as to why it
is unavoidable in the demonstration. The Bernoulli shift is also appealing, because it is
a simple prototype for an ergodic measure-preserving dynamical system, and so is able
to make contact with the broader theory of dynamical systems.

In this construction, the Cantor space 2ω is taken as the space of all infinitely-long
strings of binary digits. The Bernoulli shift acts by lopping off one digit from the front,
with each iteration. Thus, specific points p ∈ 2ω orbit about the space. Some orbits
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are periodic, some are eventually periodic, and some are chaotic, or, more precisely
speaking, ergodic. The Cantor space has an invariant measure; it is uniform on the
space. The uniform measure maps to the reals with the canonical map ∑n bn2−n for a
string of binary digits bn. It also has a nonuniform measure, the Minkowski question
mark measure, that maps it as a run-length encoding into Baire space, and as a map
that takes the eventually-periodic orbits to the rationals. Neither of these measures are
directly relevant to this text; rather, they illustrate how the Cantor space makes contact
with other Polish spaces.

The quotient construction demonstrated in this text is one that assigns all eventually-
periodic orbits to the same equivalence class. This set is countable, and can be iden-
tified with the rationals, after making use of the Minkowski question mark function.
Thus, one can argue that the construction presented here is absolutely identical to clas-
sical Vitali set construction. The difference, and I find this to be an edifying difference,
is that, by working explicitly with the Cantor space, once avoids assorted confusions
and pratfalls regarding the reals. This includes such red-herrings as the half-open topol-
ogy, or the need to ponder how the rationals are dense in the reals. One does not need to
dive into the Hausdorff or T1 separation axioms, nor any of the other tropes of classical
general topology. One does not even need to define a Polish space. The Cantor space
is discrete and totally disconnected; one can mostly avoid arcane topological issues, or,
at least, push them off to a distance where they don’t hurt.

This text has two primary divisions. First, an extremely rapid and condensed review
of sigma algebras, measure theory and dynamical systems is presented. This review
serves only to establish just enough vocabulary so that the idea of a Borel equivalence
can be made concrete, followed by a short sketch as to why some might not admit a
measure. The sketch is only a sketch; it lacks rigor. The second part repeats the general
ideas, this time, setting them within the context of the Bernoulli shift on the Cantor
space. The result is a detailed concrete demonstration of the Vitali set. Much of the
effort is expended on exposing exactly how and why the axiom of choice must appear
in the demonstration. A brief commentary follows about scaling limits.

2 The general setting
This section provides a lightning review of the vocabulary of measure theory and dy-
namical systems. The vocabulary is just barely sufficient to present the general idea of
a non-measurable Borel equivalence relation. This is followed by a critique of just how
this isn’t rigorous enough to be anything more than an illustration.

2.1 Definitions and sketch
A topological space X is a collection T (X) of open sets in X that is closed under the
operation of countable unions. A sigma algebra B (X) is a collection of sets in X that
is closed under the operation of countable unions and complementation. The small-
est (coarsest) sigma algebra compatible with the topology is called the Borel sigma
algebra. Elements A ∈ B (X) are termed Borel sets.
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A Borel measure is a function ν : T (X) → R that assigns a non-negative real
number to each open set in the topology; as a sigma-additive measure, it also dis-
tributes additively over disjoint sets: ν (A∪B) = ν (A)+ ν (B) whenever A∩B = ∅.
The Lebesgue measure extends this to closed sets, that is, to the whole of the sigma
algebra, and not just the topology.

Note, however, the number of Lebesgue measurable sets is strictly greater than the
number of Borel sets; the number of Borel sets has the cardinality of the continuum
ℵ1 = 2ℵ0 , while the number of Lebesgue measurable sets is 2ℵ1 .

The action of a monoid G acting on the sigma algebra B (X) is a collection of
functions Tg : B (X)→ B (X) for each g ∈ G that commute with the monoid product,
so that Tg◦Th = Tgh. The action is free if TgA=A implies that g= e the identity element
in the monoid. The action is transitive if, for every A,B ∈ B (X), there exists a g ∈ G
such that TgA = B.

An invariant measure is a measure µ that does not change under the action of such
a monoid. That is, for each A ∈ B (X), one has that µ (TgA) = µ (A). The orbits of the
monoid are confined to a single slice of the measure; equivalently, the measure defines
an equivalence relation ∼ on the sigma algebra, such that A ∼ B iff µ (A) = µ (B). In
physics, this collection of level sets are called “the canonical ensemble”. If the monoid
is one-dimensional, then it’s action can be interpreted as “the passage of time”, and the
result is called a “measure-preserving dynamical system”. If the monoid is a group,
then the invariant measure is called the Haar measure.

The product topology on X ×Y is the coarsest topology that allows the projection
functions π1 : X ×Y → X and π2 : X ×Y → Y to be continuous.

Given some topological space X , a Borel equivalence relation E is a Borel set in
X ×X , in the product topology.

An equivalence relation E on a space X allows the definition of a quotient space
X/E consisting of cosets of equivalent elements. For a given point x ∈ X , the coset
xE ∈ X/E is defined as xE = {y ∈ X : xEy}. The quotient map is an exact sequence
0 → X → X/E → E → 0. Cosets are pairwise disjoint, so that for xE ̸= yE one has
xE ∩ yE = ∅. The exact sequence states that all cosets are isomorphic to one-another,
and are isomorphic to E. If one is able to assign a size or measure to one coset, then,
by the transitivity of isomorphism, one can assign the same size to all of them. For this
statement to hold, the measure needs to compatible with or respect the isomorphism;
more precisely, the measure needs to be compatible with the quotient operation.

Two distinct issues arise. One issue appears when X/E is countable; that is, when
there are a countable number of cosets. The cosets can then be labeled with natu-
ral numbers n so that there is one xn ∈ X/E for each n ∈ N. The problem arises
in attempting to define an invariant µ (xn), since the idea of invariance implies that
µ (xn) = µ (xm) for all m,n. By abuse of notation, µ (xn) = µ (E). Measures must be
bounded, and yet, clearly the sum ∑n µ (xn) = ℵ0µ (E) demonstrates that µ (E) = 0.
To be explicit: this is in direct contradiction to the idea that the cosets make up all
of the space, so that X =

⋃
n xn with µ (X) = 1. Since the cosets are disjoint, with

xn ∩ xm =∅ when n ̸= m, the sigma-additive property of the measure implies a contra-
diction: 1 = µ (X) = µ (

⋃
n xn) = ∑n µ (xn) = ℵ0µ (E) = 0. Perhaps, in nonstandard

analysis, it is possible to assign an infinitesimal size to E, but then, such a measure is
no longer real-valued; it would be nonstandard-real-valued.
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A second and more serious issue arises if the measure simply is not compatible
with the equivalence relation; this would result in the assignment of different sizes
to isomorphic cosets. Properly speaking, it is inappropriate to talk about the sizes of
individual cosets; the whole point of measure theory is to not have to do this. Is it pos-
sible to describe equivalence relations that do not admit any compatible measure? The
answer is yes, it is, but here, I draw up short, and fail to provide an explicit example.

2.2 Critique
The above provides a fast-and-furious presentation of the issue with measurability.
Unfortunately, it lacks rigor, and glosses over important details. For example, many
of the definitions above are coherent only when the space X is a Polish space. To
some extent, this can be glossed over, since most of the usual spaces encountered in
analysis are Polish spaces; this includes the reals, including Rn; separable Banach
spaces, including Hilbert space; and, of course, the poster children of Cantor space and
Baire space. Precise proofs need to take this into account.

Far more serious is that the jump from the definition of a Borel equivalence rela-
tion to the construction of quotient spaces is entirely hand-wavey. A promise of an
unmeasurable equivalence relation was made, but none delivered. This cannot and will
not be done here (but maybe in some future revision to this paper? It could happen...).
The next steps in a more precise formulation are provided by some search-engine key-
word hits: the Glimm–Effros dichotomy, the Luzin–Novikov theorem and the Feld-
man–Moore theorem.

2.3 A more concrete approach
The critique above can be avoided by focusing on a specific, concrete example. The
example used here will be the Bernoulli shift on the Cantor space 2ω . As already noted,
the Cantor space is a Polish space. The Bernoulli shift is concrete and well-understood:
it is a prototypical measure-preserving dynamical system; it is conservative, and it is
ergodic, demonstrating both periodic and chaotic orbits. If it has a fault, it is that it is
not mixing; but mixing does not seem to be relevant to the present context.

Working with the Bernoulli shift allows all of the above concepts to be given in a
concrete, precisely-defined form, through which, ideally, no smuggler’s truck can be
driven through. Alas, this ideal is not entirely met, either. The problem lies with the
surreptitious appearance of the Axiom of Choice.

The construction of the Vitali set necessarily requires the use of the axiom of
choice, so as to select a representative element from each coset. A fair amount of
effort is devoted below in illustrating exactly why this is hard, and how this is a result
of a fundamental ambiguity in labeling the elements of the coset. More precisely, the
elements of a coset have no natural label; they cannot be placed into a well-founded
order relation that selects a single, unique element in the coset. Lacking the ability to
clearly, completely and unambiguously identify a specific element in the coset, one is
forced to use the axiom of choice. I almost wrote “forced to select one at random” but
therein lies the rub: there’s no conception of randomness that can be applied, as there
is no measure. The axiom of choice rears it’s (ugly?) head whenever one has a set
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that one can show is nonempty, but one does not have any function capable of reliably,
repeatedly selecting a specific element from that set. Absent such a function, one is
forced to fall back to the axiom of choice, to select “any old member of the set, cause
we know there must be one.”

The meta-study would then need to be able to articulate certain questions: “under
what conditions is it impossible to have a function which selects a unique member from
a set?”. Equivalently, “when does a set not admit a unique labeling of it’s contents?”
Equivalently, “when does a category fail to have a unique morphism from the initial
object to a specific object, thus uniquely selecting that object?”. Whenever a unique
morphism fails to exist, the axiom of choice must be invoked to select some arbitrary
element from the known-to-be-nonempty category.

A subtle condition here is that the difficulties only arise when the axiom of choice is
applied an uncountably infinite number of times. If one has a pre-existing uncountable
set, say, the reals, or the Cantor set, then one can often use this set to provide a label
for some other uncountable set. The labelling is done with a map, a function. Often,
but not always, a continuous map or function, situated in some space having some
topology (that is, some description in terms of countable unions of open sets.) This map
or labelling allows the unambiguous marking of the second uncountable set in terms
of the first uncountale set. When such a labelling is possible, there are no problems.
Roughly speaking, the sigma algebra on the first set can be imported into the second
set. The map respects the open sets; it is compatible with the open sets.

If the map is built from an uncountably infinite application of the axiom of choice,
then there is no way to respect the topological structure of the domain into the codomain.
The notion of an open set is not respected; the map shatters all open sets. This is what
is done below. Sets are built, but they are built by picking and choosing points, without
any consideration of what the neighborhoods of those points might be. This works
exquisitely for the Cantor set, since it can be defined without any reference to a topol-
ogy of open neighborhoods, other than to say, perhaps, that it can be given the discrete
topology: every point is unique and distinct from all of the others.

Based on the work below, a necessary condition for the inability to build a topology-
respecting map seems to be the lack of a well-founded order on the set. If one had
an order, and if that order had a unique minimal element, then that unique minimal
element could be used as a label, from which the rest of the set can be generated via
a free, transitive action. Is this a sufficient condition? What if one has a well-founded
order, but not a free, transitive action? The questions here spiral out of control.

There are three possibilities to arrive at a more precise formulation. One is to
rephrase the construction below, but this time explicitly using first-order logic, so that
each step of the construction becomes a predicate. That predicate can then be examined
to see which axioms of set theory were required to state it. It can be assigned to a
specific level in the Borel hierarchy. This is a large task, and would inflate this text to
twice it’s current size.

Another alternative is to return to the literature. The ultrafilter lemma and the
Boolean prime ideal theorem are, in a sense, equivalent to each other. Compactness
properties of subsets of the Cantor space provide insight into the structure of each. Ei-
ther can be used to provide a weaker form of the axiom of choice. But, again, to deploy
this, the construction below would need to be formalized using first-order logic.
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A third approach is to continue working withing the language equivalence relations,
and perform the construction in that language. I do not currently understand how to do
this. I remain confused.

With all these caveats, disclaimers and apologies out of the way, let’s proceed and
see where we get.

3 Vitali sets inside the Cantor Space
This section reviews the construction a certain class of quotient spaces that can legiti-
mately be called Vitali sets. The word “legitimately” is used, because the construction
does not proceed through the conventional quotient of R/Q. The end result, however,
is isomorphic to it.

The demonstration proceeds by creating quotient spaces, obtained by equating all
eventually-periodic sequences. The prototypical example is the quotient space E0 =
∆/D of the Cantor space ∆ = 2ω = {0,1}ω modulo the space of finite length strings
D = 2<ω . The equivalence relation generates cosests that consist of infinite-length
binary strings that differ at a finite number of locations.

The set E0 can legitimately be called “the Vitali set”. That this is an appropriate
name can be sketched as follows. Note that the cardinality of ∆ is ℵ1 while the car-
dinality of D is ℵ0 and so we conclude that E0 consists of ℵ1 cosets, each of which
contains ℵ0 members. One then defines a set of points V0 by choosing one represen-
tative from each coset. Finally, one maps the points from V0 to the unit interval of the
real numbers by applying the canonical binary expansion mapping from ∆ to the reals.
The image of V0 is then the conventional Vitali set.

The rest of this text expands on the above. It tends to veer into the territory of
unneeded detailing and over-explaining the obvious. My apologies. The details do
seem to reveal the shape of some monster lurking in the depths.

3.1 Prelude
The alert reader might notice that D corresponds to the dyadic rationals, whereas the
usual Vital set is constructed using the rationals. No matter: if this objection arises,
then the inverse ?−1 of the Minkowski question mark function ? can be applied, to map
the dyadics to the rationals. A short side-trip to explain this remark is worthwhile. The
set D, and all of ∆, can be mapped to the unit interval [0,1] of the reals, by writing
x = ∑n bn2−n for a string of binary digits bn. The finite-length strings correspond to
the dyadic rationals in this mapping. There is also a different mapping, given by the
run-length encoding of the string bn. Write a sequence a1,a2, · · · as the count of the
number of sequential zeros appearing in the string bn, followed by the count of the
sequential ones, then zeros again. This provides a map from Cantor space to Baire
space Nω . Elements in Baire space can again be mapped to the unit interval; this is the
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continued-fraction mapping

y =
1

a1 +
1

a2 +
1
· · ·

When expressed as real numbers, these two maps are related as x =?(y) where ? is
the Minkowski question mark function. It has a property of mapping the rationals
to the dyadic rationals. It has a large variety of other interesting properties, such as
mapping the quadratic irrationals to the rationals (thus proving the quadratic irrationals
are countable). But all of this is a grand distraction from the task at hand. This mapping
is mentioned only as a prelude, reminding the reader that the Cantor space (or Baire
space) can be mapped to the reals, and so the Vitali set constructions below can be
likewise mapped. As we vowed not to work with the reals, further mentions will be
avoided.

3.2 Finite binary strings
To provide a proper anchor for the discussion, a vast ocean of thoroughly conventional
and quite tedious notation will be provided.

Let ∆ = 2ω = {0,1}ω be the Cantor space, represented as the space of all infinite-
length binary strings. The goal of this section is to more closely define the space
D = 2<ω of all finite-length binary strings. Although the idea is seemingly obvious,
the additional notation is needed to avoid later ambiguities.

Let b = (bk)
∞

k=1 ∈ ∆ be an infinite-length string of binary digits bk. Define the
length of such a string as len(b) = |b| = k, where k is the largest integer for which
bk = 1; write |b| = ∞ if there is no such largest integer. A string is finite-length if
k < ∞. Informally, the finite-length strings are exactly the ones for which all digits are
zero after a certain point.

Use this to define the set of finite-length strings as

D= {b ∈ ∆ : len(b)< ∞}

This defines D such that the subset relation D⊂∆ is made explicit. The strings in D still
have an infinite number of bits; just that almost all of them are zero. By construction,
D is countable; the cardinality of D is ℵ0.

There are other conceptions of length. The “one-based length” is given by len1 (b)=
|b|1 = k where k is the largest integer for which bk = 0; if there is no such largest in-
teger, then |b|1 = ∞. Informally, these are the strings which have a finite-length pre-
fix, after which all digits are one. This leads to another set D1 defined analogously,
as D1 = {b ∈ ∆ : len1 (b)< ∞}. It is convenient to disambiguate all these by adding a
subscript 0 to the earlier definitions, so as to write |b|= |b|0 = len0 (b) and also D=D0.

Of course, D0 and D1 are isomorphic in the obvious, conventional sense. Let’s
belabor this into absurdity. The binary-not provides the conventional complementa-
tion map ¬ : {0,1} → {0,1} defined as ¬ : 0 7→ 1 and ¬ : 1 7→ 0. This extends to
an involution ¬ : ∆ → ∆ on the Cantor space, by bit-wise extension to the product
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space. This is done in the obvious, conventional manner, as the bit-wise complement:
b 7→ ¬b = ¬(bk)

∞

k=1 = (¬bk)
∞

k=1. This provides the desired isomorphism ¬ : D0 →D1.
If one is too lazy to work with an infinite number of digits, one can just drop the

trailing repeated digits, and work with the finite prefixes. For this purpose, it is useful
to define the set of finite-length prefixes as1

P0 =
{

p|p = (pk)
N
k=1 for N < ∞ and pN = 1

}
and likewise P1 = ¬P0. For ease of notation, the subscript can be dropped, to write
P = P0. These are the “true” finite length strings; one gets D0 from P0 by appending
an infinite string of zeros. Clearly, D0 is isomorphic P0, as are D1 and P1. We may as
well give these isomorphisms a name. Let ext0 : P0 → D0 be defined by appending the
infinite string of zeros. The inverse operation is trunc0 : D0 → P0 which truncates the
trailing zeros. It is unambiguous, because len0 is unambiguous. Likewise, ext1 : P1 →
D1, this time by appending all-ones, and similarly trunc1 : D1 → P1 is defined using
len1.

3.3 Eventually periodic sequences
The above constructions generalize to periodic orbits; instead of appending zeros or
ones to a prefix, one appends a repeating, periodic string. Again, we fall into a tedious
funk of providing notation for the obvious. The definitions that follow are entirely
conventional.

Write 0 for the the infinite string of zeros, so that 0 = (bk)
∞

k=1 with bk = 0 for all k.
Define 1 likewise as the infinite string of ones.

The periodic orbits will be chosen as elements taken out of the set of finite strings

S= 2<ω =
{

q|q = (qk)
N
k=1 for N < ∞

}
which can be either zero or one-terminated. Clearly, P0 ⊂ S and P1 ⊂ S and S=P0∪P1
and P0 ∩P1 =∅, so that the complementation involution ¬ partitions S into two equal
parts.

For any q∈ S, having length n= |q|, one can define a periodic orbit q as q= (bk)
∞

k=1
where each bit is bk = qk mod n.

This allows Dq to be defined as the set of ultimately-periodic orbits. Formally, for
each q ∈ S one has an associated set of eventually-periodic orbits

Dq = {pq : p ∈ S}

This does not quite preserve the definition of D0 and D1 from before, although the
result is isomorphic. The technical issue is that the prefixes for D0 and D1 were taken
from P0 and P1 and not S. This issue creates difficulties for the definition of a prefix-
length function lenq which we would like to have. Similar issues arise if the prefix p

1This set is meant to include the empty string ε , but I’m too lazy to carry this throughout the text, and so
only mention it as a pedantic footnote. For this purpose, the definition can be modified to read P0 = {· · ·}∪ε ,
or alternately, when N = 0, the restriction pN = 1 is not applied. The goal of the empty string is to make sure
that 0 ∈ D0 where 0 is the string of all zeros. Similar remarks apply for the Pq that follow later.
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just happens to end with q. This allows double-counting, as exactly the same sequence
might appear two or more times, with some of the bits being partitioned into the prefix,
and some to the cyclic part. On the surface, this does not seem important, but can be a
potential source of confusion.

To avoid this awkwardness, define the prefix set

Pq =
{

p|p = (pk)
N
k=1 for N < ∞ and tail|q| (p) ̸= q

}
This makes use of the string tail function b = (bk)

n
k=1 7→ tailm (b) = (bk)

n
k=n−m that

removes the leading bits from b, leaving only the final m bits. Clearly, this is only
defined if |b| > m; otherwise, take the result to be the empty set ∅. As before, this
definition of Pq is meant to include the zero-length empty string ε among it’s elements.
This definition of Pq does preserve the definition of P0 and P1 from before; its the same
definition.

This allows a definition of Dq without double-counting:

Dq =
{

pq : p ∈ Pq
}

As before, one can provide explicit isomorphisms extq : Pq → Dq. It also allows
an unambiguous definition of truncq : Dq → Pq as the leading bits of of b ∈ Dq that do
not end with q. Similarly,lenq : Dq → N is length of the leading bits, with all trailing
instances of q removed.

As before, the cardinality of Dq is ℵ0. If the first bit of q is a zero, then we have an
unambiguous isomorphism between D0 and Dq; likewise, if the first bit of q is a one,
then we have an unambiguous isomorphism between D1 and Dq. These isomorphisms
commute with truncq so that Pq and P0 are isomorphic if the first bit of q is a zero, and
likewise Pq and P1 are isomorphic if the first bit of q is a one.

3.4 Cyclic permutations
By convention, orbits do not have a unique starting place, and so a proper enumeration
of orbits would first organize finite binary strings into Lyndon words, then define a
collection of prefixes that exclude cyclic permutations of Lyndon words in the tail, and
only then define the set of ultimately-periodic sequences for a given orbit. This would
mirror the above collection of definitions, modifying them as needed. For now, there
does not seem to be any point in writing this out in detail.

3.5 The Vitali quotient space
The above provides more than enough machinery to expand on the sketch of the Vitali
quotient space given in the introduction. The space E0 is will be defined as the quotient
space E0 = ∆/D, where the cosets are given by all infinite-length binary strings that
differ at a finite number of locations. Just a few more very simple definitions are
needed to make this idea fully coherent.

The quotient space E0 =∆/D is to be written with respect to an equivalence relation
∼ such that a ∼ b iff a⊕ b ∈ D where a⊕ b = (ak ⊕bk)

∞

k=1 is the bit-wise compare
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(alternately, the exclusive-or, xor, or the symmetric difference). That is, ak ⊕ bk = 0
if ak = bk, else its one. Thus, when writing E0 = ∆/D it is meant E0 = ∆/ ∼ for this
equivalence relation ∼. Likewise, define E1 = ∆/D1 where a ∼1 b iff a⊕b ∈ D1, and
Eq = ∆/Dq where a ∼q b iff a⊕b ∈ Dq.

One can then walk just a bit further down this path, and consider an equivalence
relation where two ultimately periodic sequences are equivalent, if the periods are of the
same length, and one is a cyclic permutation of the other. That is, u ≈p v iff u ∈Dp and
v ∈ Dq and |p| = |q| and p is a cyclic permutation of q. Under this definition, u ≈p v
iff u ≈q v. The wisdom of doing this, without carefully defining sets of cyclically-
permuted orbits is somewhat questionable, as one does run the risk of double-counting
some of the sequences. The utility of doing this, for the present text, seems to be absent.

An argument that the Eq can be validly called “Vitali sets” was already made in the
introduction. A minor expansion of this argument can be made by observing that the
cardinality of Eq is ℵ1 and the cardinality of each coset is ℵ0. The latter is a trust-
worthy conclusion, in part because of the care taken to avoid double-counting in Dq.
This establishes that the cosets are each strictly isomorphic to Dq.

3.6 Total orders
In order to have further meaningful conversations about Eq and it’s cosets, we would
like to have some means of enumerating all of the elements of Eq, ideally placing them
into some order, and likewise, a way of enumerating the elements of any given coset
in Eq, again, ideally by placing them into some order. To get to there, we have to step
back and look at orders on ∆ and on Dq.

The Cantor set is totally ordered. That is, for any two a,b ∈ ∆ one can always
determine if a < b by performing a bitwise comparison. Define a < b as true, if there
exists an integer N such that ak = bk for all k < N and aN = 0 while bN = 1. If there
is no such integer, then we say that a ≥ b. There are several equivalent ways of saying
this. One is to say that the Cantor space is metrizable, with metric g(a,b) = 1/N where
N is the smallest integer for which aN ̸= bN . Equivalently, it is the length (plus one) of
the initial run of zeros in a⊕b. We even know what the greatest and least elements of
∆ are: this is easy, they are 0 and 1.

The total order is inherited by the Dq, where, in some sense, it is “even easier”,
mostly because we know that the elements of Dq are of (effectively) finite length. Yet,
it is also “more difficult”, because Dq does not contain a least element. Write 0(n) for
the string of n zeros. Then 0(n)1q ∈ Dq for all n. But the total order, as inherited from
∆, implies that 0(n)1q < 0(m)1q whenever n > m. Worse,Dq is not complete, as the
limit point of the sequence 0(n)1q would seem to be 0 but 0 /∈ Dq. A different issue is
that, in saying “limit point”, we assumed that the conventional rules about the limits
of sequences should be applied, but we haven’t yet firmly stated what the word “limit”
means, in the present context. Conventional rules apply when things can be metrized,
but absent a metric, it’s not clear how something can be close to something else. There
are, of course, other definitions of the limits of sequences. Those definitions require the
concept of an open set, and the neighborhood of a point. So far, we have not defined
either open sets, or neighborhoods. There’s no topology. This is not an accident; its
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intentional. We are staring into the gaping maw of a monster, and so will be a bit more
careful.

The primary issue is that the bit-wise-defined order on ∆ carries with it some im-
plicit assumptions about distance and convergence. Halting comparisons upon the first
bit to mismatch makes the implicit statement that all later bits do not matter. Were they
changed in arbitrary ways, one would still have, in some sense, that 0 < |a−b|, which
implies the existence of some sort of metric |a−b|. It can be taken to be any decreasing
function of of N, as long as it says that bits later than N do not matter for order compar-
ison, once the first mismatch aN ̸= bN has been found. This has the implicit side-effect
of metrizing the space ∆. It also has the implicit effect of defining convergence: some
sequence converges to a point whenever more and more bits in the sequence match.
This notion can be done without explicit appeal to a metric, yet it unavoidably forces
the implicit assumption of one, by saying that points are “closer together”, the more
bits match.

Is there anything wrong with this? Well, in the conventional sense, no. Writing
|a−b|= 2−N just reduces (eventually) to the conventional metric on the reals, the con-
ventional open sets, and so forth, topologizing ∆ with the weak topology (the product
topology). Yet, the present discussion is attempting to talk about the Vitali set, and so
topologizing prematurely threatens to ruin the ability to perform later inference.

Fortunately, the lexicographic order is available. For this, recall that truncq : Dq →
Pq is an isomorphism, and the lexicographic order is entirely unproblematic for Pq, as
long as shorter prefixes precede longer ones, and that only then is the bitwise compare
performed. Write this order as <lex. Just to be tediously precise, a <lex b iff |a|< |b|
or if |a| = |b| and a <bit b with <bit being the earlier-defined bitwise ordering. By
isomorphism, <lex is well-defined on both Pq and Dq. It can be extended to all of ∆,
if the length function lenq (b) = |b|q is used, so that the length is measured only after
removing a trailing q, if any. There will only be a countable number of b ∈ ∆ with a
trailing q; these are precisely the strings in Dq. For all the other (uncountably many)
infinite-length strings, use the bitwise compare <bit just as before. This extends <lex

q
to all of ∆. The subscript q is used once again to remind us that lenq is to be used for
measuring length for the lexicographic sorting. The ordering <lex

q has the interesting
property that it places all of Dq before any string not in Dq.

The ordering <lex
q is well-founded on Dq, in that the minimum element q ∈Dq and

all other elements in Dq are no more than a finite number of steps above Dq. Specifi-
cally, they are all lenq steps away, and, of course lenqq = 0. By contrast, this ordering
is not well-founded on ∆; all elements in ∆ but not in Dq are at least a countably infinite
number of steps away, and usually more. The bitwise order <bit is not well-founded;
in particular, it places an uncountably infinite number of elements underneath q.

3.7 Orders on the Vitali set
Neither of the orders discussed above extend easily or naturally to either Eq or any of
it’s cosets. Consider first the case of some coset γ ∈ Eq. It has a countable number
of elements, but the bit-order <bit cannot be used to find a least element, since the
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order may converge to a limit point outside of the coset. The lexicographic order <lex
q

cannot be applied, since all strings appear to be of infinite length to lenq. From the
point of view of lenq, the strings in γ seem to be “encrypted”: they are elements of Dq
that have been xor’ed with some unknown u ∈ γ . That is to say, if one were to select
some specific u ∈ γ (thus applying the axiom of choice), then all other v ∈ γ could
be “decrypted” by computing u⊕ v ∈ Dq. Each selection of u ∈ γ provides a distinct
mapping u : γ → Dq given by u : v 7→ u⊕ v. There are a countable number of such
mappings, they are clearly all inequivalent; the points in the coset can be distinguished
from one another, but they cannot be labeled without selecting an order, and selecting
an order requires selecting a distinguished u ∈ γ , bringing us back to the axiom of
choice. There doesn’t seem to be any function, natural or unnatural, that provides a
distinguished element u ∈ γ .

There is another, distinct possibility. Suppose the quotient was being constructed
“algorithmically”, one point at a time. Then, perhaps, the very first point to be added
to a coset could serve as the distinguished label u. Later points do not even have to
be added, since γ = u⊕Dq and so simply having one distinguished point in the coset
is enough to define the entire coset. Is such an “algorithm” achievable? In the narrow
sense, no, since clearly conventional finite algorithms cannot enumerate uncountable
sets. Let’s ignore this minor inconvenience for a moment, and assume it was possible,
for some suitably defined uncountably-long runtime. The goal of such an algorithm
is to enumerate the cosets; for that to happen, it would seem that there needs to be a
way of enumerating the elements of ∆ first. The total order provided by <bit cannot
be used. The first element is the least element 0, but what is the next element? Can we
find some way of iterating to the next element?

Perhaps this can be provided by using the ergodic properties of the Bernoulli shift
applied to the Cantor set. The Bernoulli shift is the shift operator T : ∆ → ∆ acting on
individual points as T : (bk)

∞

k=1 7→ (bk)
∞

k=2. The shift is ergodic in all the conventional
definitions of ergodicity. For the present purposes, it can be employed as a generator
of candidate cosets. Select a point b ∈ ∆ “at random”. This has two issues: what do
we mean by “select”? The axiom of choice, I guess. What do we mean by “at ran-
dom”? Choosing from the uniform distribution on ∆. But defining such a distribution
requires defining a measure on ∆, which requires defining Borel sets on ∆, which re-
quires topologizing ∆ sufficiently to define the open sets that will become elements of
Σ0

1 of the Borel hierarchy. All this can be done; the required topologization is provided
by the bitwise metric given by the first miscompare, when comparing two bit-strings.
This provides the conventional weak topology on ∆, and the rest flows downhill.

With these tools, one proceeds to generate sequences of candidate points. The
algorithm is as follows: select a point p ∈ ∆ and then iterate to obtain other points
T k p. Then, if

(
T k+1 p

)
⊕
(
T k p

)
/∈ Dq, write u(k+1) = T k+1 p as the new, unique label

for a coset γ = γ(u). Due to the nature of the uniform distribution on ∆, it will almost
certainly be the case that the randomly selected point p ∈ ∆ is ergodic. In the present
case, this means that it will almost certainly be the case that T m+n p⊕T n p /∈ Dq for all
non-negative integers m,n. This is a slightly stronger statement than the conventional
definition of ergodicity, so I suppose I should prove that it is true. For now, I assume
that it is true, and that proving it would be another tedious exercise. At any rate,
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running this loop once will generate at most a countable number of cosets u(k). It still
required the axiom of choice; only that the burden was shifted from choosing base-
points u ∈ γ for each coset γ ∈ Eq, to choosing an initial random p ∈ ∆. No matter.
Only a countable number of cosets u(k) were generated, and thus the loop has to be run
again, starting with a new randomly-chosen p ∈ ∆, ad infinitum, for an uncountable
number of iterations of the outer loop. This time, taking care to verify that each new
coset is distinct from all the previously generated ones. Of course, this will be the case
almost certainly. The check can be avoided by instead verifying that p⊕ pα /∈ Dq for
all previously selected points pα . At any rate, we’ve described a process that requires
algorithms that somehow run for uncountably-long periods of time, and the algo still
has not magically evaded the axiom of choice. This is a good time to just give up.

The above does reveal a minor curiosity, though: if the above algo is terminated
in finite time, then the resulting set of u(k) are uniformly distributed across the unit
interval. This follows from the random draw of p from a uniform distribution. As this
finite set of u(k) can be given the counting measure, one must conclude that the non-
measurability of the Vitali set must come from repeating the construction into the limit.
But of course! This will be reviewed in the next section.

What about Eq? Given that each coset γ ∈ Eq carries a unique, distinguished label
u ∈ γ ⊂ ∆, it should be clear that all of the cosets γ can be totally ordered by using the
bitwise total order <bit on the collection of u.

3.8 The Vitali set measurability paradox
It is time to recap the core argument for the measurability of the Vitali set. One starts
with the Cantor space ∆ and assigns a total measure of one to it. The quotient Eq =
∆/Dq shatters it into an uncountable number of cosets (cardinality ℵ1), each labeled
by a unique string u ∈ ∆. The construction forces that each such label is distinct: for
all label pairs u,v one has that u⊕ v /∈ Dq. This allows an entire coset to be exhibited
as u⊕Dq. Since Dq is countable (i.e. having cardinality ℵ0), it can be indexed with
integers. The indexing can be made explicit: for each d (m,n) ∈ Dq just define k =
m+2n. Recall how these elements were defined: the length lenqd (m,n) = n, and there
are exactly 2n finite strings of length exactly n; these are labeled with 0 ≤ m < 2n.
These are in one-to-one correspondence with the dyadic rationals (2m+1)/2n+1

Each distinct label is assigned to a distinct Vitali set Vk, so that

Vq;k =
⋃

u∈Eq

u⊕d (m,n)

is a set of disjoint points. Disjoint, simply because we’ve never created any topology,
so disjoint by default. Each set is also pair-wise disjoint: Vq; j ∩Vq;k = ∅ for each pair
of integers j ̸= k.

By construction

∆ =
∞⋃

k=0

Vq;k

as the point-wise union. Every point in ∆ was carefully accounted for, in this construc-
tion. More specifically, each and every possible infinite string of binary digits b ∈ ∆
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has been assigned to one and only one Vq;k. There are no extras, there are no duplicates
or double-counting, and nothing has been missed or forgotten.

The conventional argument proves the non-measurability of each Vq;k with an ar-
gument by contradiction. Assume there exists a measure µ such that µ (∆) = 1 and
µ
(
Vq;k
)
= εk > 0. Since all Vq;k are isomorphic to one-another, they must all be of the

same size: the measures must all be equal: εk = ε . One then concludes that

1 =µ (∆)

=µ

(
∞⋃

k=0

Vq;k

)

=
∞

∑
k=0

µ
(
Vq;k
)

=
∞

∑
k=0

εk

=ωε

Clearly, there is no real number ε that can preserve this identity; thus, one concludes
that each individual Vitali set Vq;k is unmeasurable.

Written in this way, it is also clear that nonstandard analysis, using hyperreal num-
bers, avoids this ugly fate: just set ε = 1/ω as the infinitesimal, and the problem goes
away. Of course, this opens up a can of worms: what are the hyperreals, and what are
their properties? How do they behave? Is this a legitimate and valid construction? As
I have no desire to write a textbook on the hyperreals, the short answer is, yes, every-
thing is just fine. Here, ε is just an infinitesimal; it behaves just like any other number,
and doesn’t present any particular challenges. One can go farther, and use the surreals
as well, although this is not strictly called for, at this point. Again, there’s no particular
problem, here.

There is also an alternative interpretation, given in the next section.

3.9 Scaling and the Renormalization Group
An earlier section attempted to provide an algorithmic construction of the Vitali set,
albeit with algorithms that might take an uncountably long time to run. The construc-
tion founders on technical details, but not before noting that a finite approximation can
be achieved. The finite approximation can be used as a stand-in for the infinite limit.
Increasing the size/length of the finite approximation by a factor of α causes assorted
quantities to scale as a function of α . These can be renormalized, by rewriting newly
scaled quantities in terms of the old. This can be done arbitrarily, thus presenting the
idea of a renormalization group. Using the renormalization group allows one to always
work with finite quantities, which behave exactly as they should, even if the limit was
taken. Thus, one does not have to deal with the “actual infinite”, but only with the “po-
tential infinite”. This is just a trick, a sleight of hand, but appears to be consistent. Or
rather, should be consistent; consistency would need to be proved. At the time of writ-
ing, I see no reason to doubt the validity and consistency; I’m not expecting dragons
here; everything is finite, everything scales.
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The procedure is simple, to the point of silliness; the big words above are used only
to shock the reader into taking a more principled approach.

It works like so. A source of random binary digits was identified. In the present
case, a pseudo-random generator will do; it generates bits of sufficient quality that they
offer no impediment to numerical algorithms. These are used to generate a sequence of
values u that are interpreted as the indicator elements of the Vitali cosets. That they are
numerically distinct can be readily checked. But what does this really mean? Suppose
one has two random 32-bit integers u,v Computing the xor u⊕ v is trivial: the result
is some other 32-bit integer. The theory insists that one must have u⊕ v /∈ D0, where,
for now, take q = 0 just to keep the discussion simple. Clearly u⊕v is just some 32-bit
integer; it is clearly in D0 simply by rescaling by 232. This would seem to violate the
base requirement of the construction. Well, not really. Set N = 32 as the physical scale,
but set M < N as the “computational scale”. For the present example, M = 22 seems
like a reasonably adequate scale to work with. Then, the requirement that u⊕ v /∈ D0
translates into the idea that the ten bits 23 to 32 are not zero. That is, all bits from M to
N lie in the “scaling continuum”. If we have a number x and discover that bits 23-32 are
all zero, we conclude that x ∈ D0, else assume x /∈ D0. Since there are 10 bits between
23 and 32, the chance that a random number is dyadic becomes one in 210 ≈ 103. That
is, the chance of being wrong, and of accidentally misclassifying a real number as a
dyadic rational is about 1 in a thousand. The chance of mis-classifying in the opposite
direction is zero: any the dyadic rational will have bits 23-32 all zero, and there is no
chance of accidentally getting that wrong.

Consider now the act of simulating the Vitali set. With the above parameter choices,
we are allowed a total of 2N ≈ 4 × 109 distinct real numbers, and so we conclude
that ω = N = 32 at this computational scale. Not very large! If exactly the same
representational system is used to represent the dyadic rationals, then we can have
2M ≈ 4× 106 distinct dyadics. This follows only because dyadics smaller than 2−M

cannot be distinguished from reals. Put differently, the size of D0 is 2M . Since the size
of D0 is supposed to be ω , we have a clashing estimate that ω = 2M ≫ N. What is
the size of each Vitali set? By construction, it is of size ε = 1/ |D0| = 2−M . From the
nonstandard analysis, we concluded that ωε = 1 and so again ω = 2M .

The above considerations indicate that there are two independent scaling factors:
c= 2N and ω = 2M and that it is a mistake to conflate log2 c with ω . To have renormal-
ization work correctly, these need to be tracked distinctly. In the scaling limit, we want
to arrive at c = 2ω as the limit, and so, for N = 32, setting M = 5 would preserve the
scaling. For N = 64,one has M = 6 which really shows just how small a “set of mea-
sure zero” really is, in gut-sense terms. For practical calculations, there is no particular
reason to adhere to the scaling limit; who wants to count up to only 32 or 64? It’s OK
to have “too many dyadics” with respect to the real numbers, as long as one is aware
of this, and adjusts scales appropriately.

To complete the presentation above, it would be appropriate to describe the actual
group that carries sets from one scale to another. This can be done either by working
directly with the construction above, or by attempting block renormalization on both
the Vitali set, and the Borel measure at the same time. This will not be done here.
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4 Conclusion
The construction of the Vitali set was articulated in two different ways. The introduc-
tion provided a simple abstract but general construction. It was enough to present the
general idea, but lacked the mathematical rigor and precision to turn it into anything but
a sketch of the general idea. The second construction resorted to a specific and concrete
example: the Bernoulli shift on the Cantor space. This allowed most of the notions to
be made precise. In particular, it was useful for highlighting exactly why the axiom
of choice is required to construct the Vitali set, and also why it’s use is so particularly
destructive. Several next steps are possible; an obvious one is to repeat the construc-
tion, this time taking the effort to found all statements within the language of effective
descriptive set theory, so as to highlight all of the boundaries, and, in particular, where
each of the specific statements show up in the Borel hierarchy.
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