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Abstract

The Riemann Hypothesis can be restated as a hypothesis about the zeros of the
polylog function. The relationship is quite simple, clear and direct: the nontriv-
ial zeros of the Riemann zeta are in direct correspondence with the zeros of the
polylog. This correspondence allows RH to be refined into two distinct versions: a
strong form, where polylog zeros are uniformly bounded away, and a weak form,
where RH holds, but flirts with failure.

The breakdown of RH would suggest some pretty weird behaviors in the poly-
log that would run counter to conventional ideas about holomorphic functions.
Perhaps this opens up a new route for searching for RH proofs. Things still look
hard: one would have to prove that certain polylog "varieties" are "entire", in a
certain sense.

The correspondence between polylog zeros and RH zeros can be clearly seen
in animations of the polylog function along the critical strip, posted posted on the
linas.org website (See https://linas.org/art-gallery/polylog/polylog.html) This short
note is meant to accompany and explain those animations, providing additional
detail and explanations not given on the website.

The animations provide insight that is otherwise difficult to obtain: the polylog
function has a complicated behavior, due in part to it’s having two branch points,
and participates in many identities.

Introduction
The polylog function has the series expansion

Lis (z) =
∞

∑
n=1

zn

ns

This converges for |z| < 1 and ℜs > 1. Analytic continuation can be used to extend
this to other values of s and z. Comparing the above to the series representation for the
Riemann zeta

ζ (s) =
∞

∑
n=1

1
ns

one is tempted to make a naive (but entirely incorrect) algebraic manipulation that
suggests ζ (s) = Lis (1). But this is false. The problem is that the polylogarithm has a
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branch point (essential singularity) at z = 1; the polylog has many sheets, wrapped as
a helix around z = 1. The naive identity cannot hold.

Although one does not have this simple relationship between the Riemann zeta
and the polylogarithm, one still has a behavior that makes it “almost true”. Zeros of
the polylogarithm “hit” the branch point exactly when s corresponds to a nontrivial
Riemann zero. The relation is deeper: it seems that the zeros of the polylogarithm,
when viewed on the critical line s = 1/2+ iτ , are in exact correspondence with the
nontrivial zeros of the Riemann zeta.

The relationship is best exposed by creating an animation of the polylog along the
critical line s = 1/2+ iτ , varying τ over time. Several animations can be found at
https://linas.org/art-gallery/polylog/polylog.html. The animations can be explained by
starting with a still. The figure below shows the phase of Lis (z) on the complex-z plane,
for fixed s = 0.5+ i14.

The point z = 0 is at the center of the figure; the domain of the figure is over the
intervals −2.5 ≤ ℜz,ℑz ≤ 2.5. The phase1 is color-coded so that black corresponds
to −π , moving through blue at −π/2, green at 0, yellow at +π/2 and red at +π .
Thus, each sharp red–black transition encodes a change of phase by 2π . These edges
terminate at zeros of Lis (z), where the phases wrap around a point: this is the content

1The word “phase” is just the conventional definition. Write Lis (z) = a+ ib = M (s;z)exp iφ (s;z) with
both M and φ being real functions. Then M =

√
a2 +b2 is the magnitude, and φ = arctanb/a is the phase.

As always, the phase is ambiguous up to a multiple of 2π .
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of Cauchy’s theorem. Prominently, at the center of the image,2 we see that Lis (0) = 0.
The discontinuity extending to the right from the branch point at z = 1 is the branch

cut. A precise expression for the difference ∆ = Lis (x+ iε)−Lis (x− iε) across the
branch cut is given in my main paper on the polylog;[1] that paper provides both al-
gorithms for high-precision computation, as well as discussions of the monodromy. In
particular, there is a second branch point, at z= 0, which appears on other sheets. Thus,
continuous paths on the complex z plane can wind around either of these two branch
points.

The above image shows a sequence of zeros, located near the circle |z| = 1. That
they are only near the circle, but not exactly on, becomes evident by watching the
movies on the web page https://linas.org/art-gallery/polylog/polylog.html. The se-
quence of zeros on the upper half-plane accumulates onto the branch point at z = 1.
The precise form of the accumulation is given in the next section. It is exponential in
the distance to the branch-point.

Just underneath the branch cut, in the lower half-plane, a lone zero is visible. It
is the one terminating the red–black edge, just underneath the branch point. This zero
is a zero of the polylogarithm. As s is slowly increased from s = 1/2+ i14 to s =
1/2+ i14.134725, this polylog zero will smack into the branch point. This is clearly
visible in the movies (watch the movies now, if you have not watched them yet.)

What does this mean? The locations of the polylog zeros vary smoothly as a func-
tion of s (it cannot be otherwise, the polylog is holomorphic in s.) As one moves along
the critical line s = 1/2+ iτ , slowly increasing τ , one discovers that the polylog zeros
peel off the branch point, spin round the origin, and return, hitting the branch-point
exactly, whenever τ is one of the nontrivial zeros of the Riemann zeta. That is, the
polylog zeros are Riemann zeros, in the making, yet to be born. They circle about
smoothly, and become “true” Riemann zeros when they hit the branch point. Now is a
good time to watch the movies, if you haven’t seen them. Take particular note of what
is happening in the following frames:

14.134725
21.022040
25.010858
30.424876
32.935062
37.586178
40.918719

The above list are the first few Riemann zeros. The movies now provide a basis of
discussion for the rest of this text: what does the Riemann hypothesis look like, when
re-expressed in terms of the polylog? It is not hard to figure this out, but still, it is
entertaining to ponder. Nothing “deep” is happening here; it is, in a sense, “obvious”.
If this opens up a new way of thinking about a proof for the RH, then the path remains
unobvious. I don’t know of any easy way of proving theorems about the zeros of the

2For z ≪ 1 small, the first term of the series dominates: Lis (z) ≈ z = |z|eiφ and so φ ≈ 0 to the right,
along the positive real axis (and thus, green), and φ ≈ −π/2 along the negative imaginary axis (and thus
blue), etc. The red/black edge is just the φ ≈±π along the negative real axis.
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polylog. Nonetheless, a number of interesting statements can be made. Most interest-
ing perhaps is that RH can be refined into a strong and a weak version, only one of
which may hold.

Accumulation Point
The picture above clearly shows an accumulation point of polylog zeros, accumulating
onto the branch point at z = 1. They seem to sit, at least approximately, on the unit
circle. In the animations, they appear to spread out as τ increases. This section derives
an explicit formula for their approximate location; it matches this observed behavior.

The most important observation here is that the zeros occur in a sequence. They
can be unambiguously labeled by an integer n, counting up from one. They come
in sequential order, so each precedes the last. In the animations, it can be seen that
the zeros, once they’ve circled the origin, play a game of “Flying Dutchman”, and
interleave themselves back into the sequence. This eventual interleaving does not alter
the order of their “birth” from the accumulation point. This remains sequential and
unambiguous. This sequencing is one of the important properties of the polylog zeros.

The accumulation of zeros near the branch point can be explored by working with
Tom Apostol’s “periodic zeta function” F (q;s) = Lis

(
e2πiq

)
. This function is defined

in Apostol’s textbook.[2] The analytic behavior, as q → 0, is obtained in my polylog
paper.[1] The periodic zeta is first rewritten in terms of the Hurwitz zeta

ζ (s,q) =
∞

∑
n=0

1
(n+q)s

The precise equivalence is

ζ (1− s,q) =
Γ(s)
(2π)s

[
e−iπs/2F (q;s)+ eiπs/2F (1−q;s)

]
Writing s = σ + iτ and setting 1 ≪ τ kills the eiπs/2 term, leaving

F (q;s) =
(2π)s

Γ(s)
e−iπs/2

ζ (1− s,q)+O
(

e−πτ/2
)

≈Kζ (1− s,q)

for some constant K independent of q. For σ = 1/2, it can be shown that |K|= 1, i.e.
that it is a pure phase. This happens because Γ(1/2+ iτ)∼ eπτ/2 for 1 ≪ τ , killing the
other factors.

As one approaches z = 1, one has that q → 0 and the first term in the Hurwitz series
summation dominates the others. Thus, one has

ζ (s,q) = q−s +C+O (q)

for some constant C that depends on s but is independent of q. Writing q = reiφ and
assuming r ≪ 1, this expands to

ζ (s,q) = rφτ−σ e−i(φσ+τ logr)+C+O (r)
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Combining the above, we deduce that

F (q;s) =K
(
C+qs−1)+O (q)

=K
(

r1+σ−φτ ei(φσ+τ logr)+C
)
+O (r)

Thus, one finds F (q;s) = 0 when r1+σ−φτ = |C| and φσ + τ logr = const.− 2πn for
positive integer n and a constant of O (1). Both can be simultaneously solved. For
1 ≪ τ , we can take φ ≈ 0, bumping it only enough to get the magnitude correct. For
the phase, setting φσ ≈ 0 yields a sequence of zeros, located at

rn ≈ econst./τ × e−2πn/τ

This demonstrates the observed accumulation point. As n → ∞ we get a sequence
rn → 0. Since φ ≈ 0, we have that q is approximately real, qn ≈ rn and so the zeros line
up quite near the unit circle as n → ∞. This formula also predicts increasing spacing of
the zeros, as τ increases. This is what is seen in the movies.

Note that the above has also generated a sequence numbering for the zeros. The
numbering might not start at precisely n = 1, due to the constant term that was not
assiduously tracked. Thus, the first few zeros have to be labeled “by hand”, while the
remaining zeros occur near qn in sequential order. The message here is that the zeros
can be explicitly labeled, in sequential order, as they are sprouted from the branch
point.

Riemann zeta zeros
It seems that the the polylog zeros can be placed in correspondence with the nontrivial
Riemann zeta zeros. This section sketches the process.

Lets recap some salient facts. First, as s is varied by small amounts, the zeros of
Lis (z) move about smoothly. There can be no other way: Lis (z) is analytic in s; a
small change in s just shifts the zeros smoothly (and analytically). In particular, the
zeros are “conserved”: they cannot pop into and out of existence as s is changed. With
one exception: they can pop out of branch points, or disappear into them. At all other
locations, they move about smoothly. (This is basic complex analysis and won’t be
belabored here.)

Although the intro noted that ζ (s) ̸= Lis (1), a glance at the image above indicates
that the z → 1 limit is path dependent. The periodic zeta shows how to do it: avoid
the singularity at q → 0 by taking q → 1 instead. Actually, any q → N for any integer
N > 0 should work. Explicitly,

lim
q→N

∞

∑
n=1

e2πiq

ns = ζ (s)

and this time, the direction of approach should not matter.3

3I hate being pedantic, but I know I have readers who get upset when I’m not. So, independent of
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These two ingredients are sufficient to explain the behavior of the polylog zeros as
τ is varied on the critical line, i.e. on s = 1/2+ iτ . That is to say, as τ is increased
(as in the movies), each of the polylog zeros rotate around, counterclockwise, and hit
q = 1 exactly when τ is a nontrivial Riemann zero. There are now several questions
that arise:

1. (Circulation.) As τ increases, it appears that the polylog zeros rotate (circulate)
around the origin. Does this circulation hold indefinitely, as τ grows?

2. (Correspondence.) For the case of s = 1/2+ iτ , do any of the polylog zeros fail
to hit q = 1? That is, as they rotate around, do they ever pass to the left or right
of the branch-point?

3. (RH.) If one performs the same animations along s = σ + iτ with σ ̸= 1/2, do
any of the zeros hit q = 1? If they did, this would be a violation of RH.

4. (Bracketing.) If σ < 1/2, the movies show that the polylog zeros cross the real
number line to the left of z = 1. Can it ever happen that they would cross to the
right? Conversely, if 1/2 < σ , it seems that every polylog zero crosses to the
right of z = 1. In the movie, it passes through the cut onto the next sheet. Does
this bracketing hold for all polylog zeros?

Lets explore these a bit more. For question 1, the movies suggest that circulation
should continue indefinitely. It is hard to imagine how it might break down. Not clear
how to prove this, but it should be noted that the periodic zeta is oscillatory in |q|.
Each oscillation appears to be associated with a zero, and the period of oscillation
increases as q gets large. In the previous section, the oscillations of the periodic zeta
were explicitly linked to polylog zeros, as q → 0. The same link appears to also hold
as |q| → ∞. Perhaps with a bit of work, this could be used to prove the circulation
hypothesized in question 1.

If the second question can be answered in the negative (and if RH holds), then we
have that the polylog zeros can be put in correspondence with the nontrivial Riemann
zeros. That is, each and every polylog zero eventually becomes a Riemann zero.

Careful observation of the movies indicates that each polylog zero continues to
circle around, slotting itself back into the sequence (“playing a game of Flying Dutch-
man”) and becoming a Riemann zero again, a second, third, forth ... time as well. Even
as new zeros are sprouted from the branch point, the old ones get recycled. Overall, it
would seem that the number of circulating zeros becomes more and more dense.

It would presumably be quite interesting to know the interleaving sequence. It
seems reasonable to think that perhaps this interleaving sequence corresponds to the
orbit of some geodesic on some peculiar Riemann surface. This seems to be a recurring
theme in the industry, but is a bit out-of-scope for the current paper.

approach means that one writes q = N+ε exp iφ with both ε and φ being real. One takes the limit ε → 0 and
demonstrates uniform convergence: for all φ there exists an upper bound, and convergence is better than this
upper bound. For N > 0 this is always possible. Well, that, and ℜs > 1, else analytically continue to remove
pole at s = 1, etc. which does complicate the eqns but is entirely tractable. Again, see my polylog paper.[1]
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The Riemann Hypothesis
The third question is identical to the Riemann Hypothesis (RH): If the answer is “yes”,
then there exists a polylog zero s such that ζ (s) = 0 but σ ̸= 1/2. Conversely, if the
answer is “no”, then the RH is satisfied (all nontrivial zeros lie on the critical line.)

Consider the case of a movie with σ ̸= 1/2. Assuming the circulation hypothesis
(given above,) each polylog zero will eventually loop about, and cross the real line.
That is, z will be pure-real when it crosses, and, in order to preserve the RH, it must
have z ̸= 1. This suggests that it should be possible to bound each crossing to occur at
some distance δ away from z = 1. Lets refine the definition of bracketing, and convert
the third question into a delta-epsilon hypothesis that’s equivalent to the RH.

Write σ = 1/2+ ε for ε real. Let m be an integer counting the m’th polylog zero
to rotate through (past) the real axis. Let τm be the value of τ when the m’th crossing
happens. Likewise, sm = σ + iτm. Basically, we’re applying labels to each crossing.
Let xm be a real number, the location of the crossing polylog zero on the real axis. That
is, Lism (xm) = 0. Write δm = |1− xm| as the distance of the crossing point from z = 1.

Assuming RH, we then have that, for each |ε| > 0 and each polylog zero m, we
must have δm > 0. Clearly, the converse holds as well: if there’s always such a δm > 0,
then RH is true. So, this holds if and only if.

There are two possibilities for the behavior of the δm if RH is true. One is that they
are uniformly bounded away from z = 1. That is, for each |ε|> 0 there exists a uniform
bound δ > 0 such that δm ≥ δ for all m. The other possibility is that there is no uniform
bound, and that δm → 0 as m → ∞. The first possibility could be called “strong RH” or
“uniform RH”. The second could be called “weak RH”. In a certain sense, “strong RH”
says that RH never even gets close to failing, while “weak RH” says that RH is true,
but just barely, flirting with disaster. The word “weak” is a fun choice; it is reminiscent
of weak convergence in Hilbert spaces.

I have no idea if anyone has explored this before, or anything equivalent to this.
Write me, let me know.

The Polylog Variety
The polylog variety can be defined as the collection V ⊂U (C)×C where the polylog
vanishes:

V = {(z,s) ∈U (C)×C |Lis (z) = 0}

The space U (C) is the covering space for the complex holomorphic structure of Lis (z).
It stands for C∞ modulo the polylog monodromy: it is the collection of sheets, glued
together at the branch points, such that Lis (z) is “entire”, after excluding the branch
points. No such cover is needed for the s coordinate: there is a simple pole at s = 1;
there are no branch points.

The shape of the variety V can be understood as a collection of two-dimensional
sheets. From the work on the accumulation point, above, we know that a polylog zero
Lis (z) = 0 can be labeled with an integer m, at least, when s is held fixed. That is,
z = zm. The location of zm in the complex-z plane, or, more precisely, its location in
the cover U (C), is a smooth function of s. That is, zm = zm (s). The movies show what

7



happens as both σ and τ are varied, each as the other is held fixed. For a fixed m, the
zero Lis (zm (s)) = 0 defines a smooth mapping zm : C→U (C). Based on the labeling
given by the accumulation point, it appears that there are countably many such sheets.

There is also a corresponding variety generated by the poles of the polylog. These
are not visible on the principal sheet, but a clockwise rotation about the z = 1 branch-
point brings these into view. These are shown in one of the movies. These not far
away from the zeros in the sheet below; they move in a similar manner, and thus form
a collection pm : C→U (C) where Lis (pm (s)) =±∞ denotes the poles.

The movies show that, when holding τ fixed, and moving towards σ → ±∞, one
watches zm flee either to infinity, or drop to zero. In the other direction, holding σ

fixed and varying τ →±∞, one has the budding-then-circulating motion for each zm,
as described earlier. Very approximately, zm (s) behaves like e−2πm/s, up to assorted
corrections. This includes the “correction” that zm (s) circulates to other sheets, when
σ > 1/2.

Ribbons
If RH is violated, then the bracketing hypothesis is also violated (since the corre-
sponding polylog zero fails to bracket.) It is well-known that that the RH is violated,
then the violating zero must be doubled. That is, for real ε > 0, if it happens that
ζ (1/2+ ε + iτ) = 0 then one also has that ζ (1/2− ε + iτ) = 0. This mirroring fol-
lows from the reflection formula for ζ . From question three, above, we have that there
must be some polylog zero, call it zm, which corresponds to this RH violation. As τ

passes τm, then zm passes through the q = 1 point. More precisely, this happens in
both the 1/2± ε + iτ movies. What happens to zm in the 1/2±α + iτ movies, where
−ε < α < ε? Clearly, each of those zm must circulate past the the real axis as well.
Each of these zm is a smooth function of α , so that zm (α) is a smooth curve (and there-
fore continuous). Thus, when α = 0,the corresponding zm also passes q = 1 either at
the same time τm, or possibly a bit earlier or later. If it misses q = 1 entirely, then there
has to be another pair of ±α on the curve that do hit q = 1, and the reasoning can be
repeated, this time with a tighter bound. At any rate, if there is a violation, then zm is
associated not just with a pair of mirrored RH zeros, but also with a third zero that is on
the critical line. There could also be five, seven or any odd number of zeros associated
with zm. (I hope I’ve explained all this clearly.)

One way to envision the process above is to imagine the variety zm (s) described in
the previous section. If RH is true, then we expect only one point s in all of zm (s) to cor-
respond to a nontrivial Riemann zero. This is the point sm = 1/2+ iτm corresponding to
the m’th nontrivial Riemann zero. Sheets and zeros are in one-to-one correspondence.

If RH is violated, then a sheet m will have multiple points s for which ζ (s) = 0
(and always an odd number, per the argument above). This suggests a perhaps novel
approach for proving RH: demonstrate that all of the functions zm (s) are one-to-one;
that is, demonstrate that zm (s) ̸= zm (s′) whenever s ̸= s′. This would hold if one could
show that zm (s) are “entire”. I’m using scare-quotes, because the range of zm is not
all of C, but the covering space U (C). This seems to add a lot of baggage. Perhaps,
though, it is not entirely impossible. Holomorphic functions also have this desired
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property, at least in limited domains. And it seems zm (s) is holomorphic. If one can
prove that zm (s) has no zeros or poles, then one would be done. And a casual ex-
amination does suggest that zm (s) has no zeros or poles, and thus entire. This would
constitute a proof of RH. Actually arriving at the required details to explicitly demon-
strate all of these claims seems daunting. It seems one would need assorted general
theorems on varieties, together with specializations for the polylog, to achieve this in
any kind of manageable manner.

In short, the bracketing hypothesis (property?) works with the smoothness of the
locations of the polylog zeros to force fairly strong constraints on what can happen if
RH is violated. If RH is violated, then there are these “violation arcs” associated with
the violating zm. If not, then there aren’t any such arcs: they’re all shrunken to a single
point.

Conclusion
We’ve demonstrated two different hypothesis, named “strong” and “weak”, both of
which imply RH. Conversely, RH implies that either “strong” or “weak” must hold.

That’s all for now.
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