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Abstract

The distribution of rationals on the unit interval is filledtlvsurprises. As a
child, one is told that the rationals are distributed “unifity” on the unit interval.
If one considers the entire s&, then yes, in a certain narrow sense, this is true.
But if one considers just subsets, such as the subset ohadgiwvith “small” de-
nominators, then the distribution is far from uniform andl &f counter-intuitive
surprises, some of which we explore below. This implies th&hg “intuition”
to understand the rationals and, more generally, the rgabats is a dangerous
process. Once again, we see the footprints of the set-thempresentation of the
modular grouBL(2,Z) at work.

This paper is part of a set of chapters that explore the oglstip between the
real numbers, the modular group, and fractals.

1 Distributions Of Rationals on the Unit Interval

The entire field of classical calculus and analysis is basethe notion that the real
numbers are smoothly and uniformly distributed on the remhiper line. When one
works with a particular representation of the rational nensbsay the dyadic repre-
sentation, where each rational is represented by a seqoébagary digits, one gets,
'for free’, a measure that goes with that representatiothéncase of the dyadics, that
measure is the idea that all strings of binary digits arearnify distributed on the unit
interval. This statement is so blatently obvious and talengfanted that it in fact
impedes the understanding of measure. But this will be thie @f this chapter.

There are several different ways of representing the rakiofand thier closures),
and these are (as we will see shortly) inequivalent. One wéy iepresent them with
p-adic, or base-p expansions of digits. Another way is toaggnt them as rationals,
thatis, as ratios of integers. Each of these represensatithresult in a uniform distri-
bution of reals on the real number line, when one takes thapajate limit of allowing
p-adic strings with an infinite number of digits, or allowifractions with arbitrarily
large denominators. However, if we work with just finite setssof p-adic expansions,
or finite sets of rationals, one finds that the distributioresfar from uniform, and are
inequivalent to each other. In particular, this implies ti notion of measure on the
real number line has a certain kind of ambiguity associatittl itv



The next thing that one finds is that the modular gr8uf®, Z) becomes manifest,
being the symmetry group that connects together the diffapresentations of the
rationals. However, insofar as there is no such thing asal irember’ except as
defined by the closure of the rationals, using a specific sgmtation of the rationals,
one has that the real numbers themselves have a modular gyaupetry, if only
because the underlying representations in terms of p-agiareions and ratios have
this symmetry.

We develop the above wild-sounding claim a bit further iretathapters; here,
we show one very simple way in which the modular group, and tfarey Fractions,
manifest themselves on the real number line. We do this bgofmectly) counting
rationals, and then wildly scrambling to find the correct wfgounting.

1.1 SimpleCounting

Lets begin by trying to enumerate the rationals, and seeingthey fall on the real
number line. Start by listing all of the fractions with deniators from 1 to N, and
numerators between 0 and the denomintor. Clearly, manyesktiiractions will be
reducible, i.e. the numerator and denominator have comictors, and thus, in this
simple-minded enumeration, some rationals are countetipiauimes. In particular,
we’ll count 0 over and over again: it will be in the list as 02, 0/3 and so on.
Likewise, 1 will appear in this list over and over: as 1/1,,2223, etc. We'll have
1/2 also appearing as 2/4, 3/6 and so on. Although this eratinarof the rationals
clearly over-counts, it has the advantage of being extresigiple: it is a subset of the
rectangular lattic& x Z. Its the canonical grade-school example of how the ratonal
are enumerable.

How are these rationals/q distributed on the real number line? In fancy terms,
what is the distribution of this lattice on the real numbael? Or, what is the measure
induced by the projection of the latti@ex Z onto the real number line? Unfortunately,
using words like “measure” implies the taking of a limit tdimty. Lets stick to the
simpler language: we want to make a histogram of the ratoonakts draw some
graphs.

The figure 1 shows this enumeration, up to a denominator ofok64carved up
into N=720 bins, and normalized to unit density. Thatigs/if20< p/q< (n+1)/720,
then we assign the fractiop/q to then'th bin, and so the graph is a histogram. We
might expect this graph to have a huge peak at the bin n=36€x. af, this bin will
hold 1/2 and 2/4 and 3/6 and in general should have a big sedi®ing from the
degeneracy at 1/2. One mght expect peaks at 1/3, and 1/4@rimbesmaller.

Indeed, there is a big upwards spike at 1/2. But there seebesadig downwards
spike just below, at bin 359, seemingly of equal and oppasie. This is the first
surprise. Why is there a deficit at bin 359? We also have btifig3a 1/4, 1/5, 1/6, but
not at 1/7: something we can hand-wave away by noting thats/@@actorial. (When
one attempts 7!=5040 bins, one finds the peak at 1/7 is theréhdone at 1/11 seems
to be missing; clearly having the number of bins being ddlesby 7 is important.).
The other surprising aspect of this picture is the obvioasthl self-similarity of this
histogram. The interval between 1/3 and 1/2 seems to refiisevhole. The tallest
blip in the middle of this subinterval occurs at 2/5, whichhe Farey mediant of 1/2



Figure 1: Distribution of Simple Rationals into 720 Bins
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The above is a density graph of the rationals that occur irsitmple enumeration,
binned into 720 bins, up to a denominator of N=4000. The ntima#on of the bin
count is such that the expected value for each bin is 1.0,alaierd in the text.



and 1/3. Why are we getting something that looks like a flagthen we are just
counting rationals? More tanalizingly, why does the freicteolve Farey Fractions?

We suspect that something peculiar happens because themwaing at 1/2,
2/4'ths etc. falls on exactly the boundary between bins 36 269. In fact, any
fraction with a denominator that is a multiple of 2,3,4,5 6owill have this problem;
fractions that have a multiple of 7 in the denominator doeéra to have this problem,
perhaps because they are not on a bin boundary. We can edlidaidea by binning
into 719 bins, noting that 719 is prime. Thus, for the most,pEmost all fractions
will clearly be in the “middle” of a bin. We expect a flatter gig the up-down blips
should cancel. But it shouldn’t be too flat: we still expecbadf overcounting at 1/2.
See below:
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Wow, thats flat! How can this graph possibly be so flat? We shbalmassively
overcounting at 1/2, there should be a big peak there. Maghdrowned out by the
blips at 0 and 1: we are, after all histograming over 8 milliactions, and we expect
statistical variations to go as one over the sqaure-rodte$ample size. So lets graph
the same data, but rescale more appropriately. This is shelomw:




Diztribution of Simple Rationals into 719 Bins
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Hmm. Curious. There is indeed a peak at 1/2. But there aredafécits symmetri-
cally arranged at either side. This is still confusing. Weglntihave expected peaks, but
no deficits, with the baseline pushed down, to say, 0.99%, alitpeaks going above,
so that the total bin count would still average out to 1.0. BBetbaseline is at 1.0, and
not at 0.999, and so this defies simple intuition. Notice #ted the fractal nature is
still evident. There are also peaks at 1/3, 1/4, 1/5 and 1i6nBt at 1/7°'th. Previously,
we explained away the lack of a peak at 1/7'th by arguing abmprime factors of
720; this time, 719 has no prime factors other than itselfisthhis naive argument
fails. What do we replace this argument with?

Well, at any rate, lets compare this to the distribution wieotdd have been using
all along”, where we eliminate all fractions that are rediei That is, we should count
each rational only once. This mkes a lot more sense, if weoaedk of teh distribution
of rationals on the real number line. This is graphed belgajg binned into 719 bins,
for all irreducible rationals with denominator less tharequal to 4000:



Distribution of Irreducible Rationalz into 719 Bins
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Wow! We no longer have a peak at 1/2. In fact, it sure gives tbindt impression
that we are undercounting at 1/2! Holy Banach-Tarski, Batm&hat does it mean?
Note also the graph is considerably noiser. Compare thescal the left for a rela-
tive measure of the noise. Part, but not all, of the noise &stduthe smaller sample
size: we are counting fewer fractions: 4863602 are irrddla@ut of the simple list of
8002000. However, matching the sample sizes does not sesignificantly reduce
the small-amplitude noise: qualitatively speaking, thenig of irreducible fractions
seems much noisier.

Let us pause for a moment to notice that this noise is not dgerte numerical
aberation due to the use of floating-point numbers, IEEE bemtise. The above
bincounts are performed using entirely integer math. Th&br every pair of integers
p, g, we computed the integer bin numbreand the integer remainderOr < N such
thatng = pN +r holds as in integer equation, whe¥ewas the number of bins. This
equation does not have 'rounding error’ or 'numerical ingis®n’.

Curiously, binning into a non-prime number of bins does steraduce the (small-
amplitude) noise. Equally curiously, it also seems to ethsgrominent features that
were occuring ath the Farey Fractions. This is exactly theosjte of the previous
experience, where it was bining to a prime that seemed tgééthe features. Below
is the binning into 720 bins.



Distribution of Irreducible Rationalz into 720 Bins
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Following the usual laws of statistics and averages, oneaxzghat increasing the
sample size reduces the noise. This is true in an absoluse daut not a relative sense.
The graph below shows 720 bins holding all irreducible raie with denominators
less than 16000. The absolute amplitude has been reducedebyadactor of ten
compared to the previous graphs; this is not a surprise. \Wea@unting 77809948
irreducible rationals, as opposed to 4863602 before: aupkasize is nearly 16 times
larger. What is perhaps surprising is that there is relbtfee more power in the higher
frequencies. There are also still-visible noise peaks b&arl/3, and 2/3'rds, as well
asatOand1.



Distribution of Irreducible Rationals into 720 Bins
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Let reiterate that the noise in this figue is not due to floappmt errors or numer-
ical imprecision. Its really there, deeply embedded in di®nals. As we count more
and more rationals, and bin them into a fixed number of bires) the will expect that
the mean deviation about the norm of 1.0 to shrink and shasksome power law.
It is in this sense that we can say that the rationals are imifodistributed on the
real-number line: greater sample sizes seemingly lead®te mmiform distributions,
albeit with strangely behaved variances. But even thigstant is less than conclu-
sive, because it hides a terrible scale invarience. We hagermre nasty histogram to
demonstrate.




Distribution of Irreducible Fractions into 2350 Bins
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This one shows irreducible fractions with denominators tegn 16000, which, as
we've mentioned, represents a sample size almost 16 timgsrlthan the first sets
of graphs. We bin these into four times as many bins: 28802@x7Tompare the
normalized scale on the vertical axis to the corresponditg e for the smaller sample
size and smaller number of bins. The vertical scales ardi@nand the sizes of the
peaks are identical. Each bin, on average, holds four timesaay rationals (16 times
as many rationals, 4 times as many bins). We've increasedample size, but the
features are not 'washing out’: they are staying constarsize, and are becoming
more distinct and well-defined.

1.1.1 SomeNotesabout Histogramming

In light of the fact that the above graphs have some surpyiféatures, we take a
moment to try to be precise about what we mean when we saytat” and “nor-
malize”.

Lets go back to the first figure. The total number of rationalthie histogram is
K(K+1)/2 = 4000x 4001/2 = 8002000, a little over eight million: a decent sample
size. Each bin will have some coudi of these rationals. We want to talk in statistical
terms, so we normalize the bin count@s= NC,/(K(K +1)/2), so that the average
value or expected value &f, is 1.0. That is, we have, by definition,

N
nZODn =N (1)

The act of bining a rationgd/q requires a division; that is, in order to determine if



n/N < p/q < (n+1)/N, a division is unavoidable. However, we can avoid numerical
imprecision by sticking to integer division; using floatipgint here potentially casts
a cloud over any results. With integer division, we are logkior n such thaing <

Np < (n+ 1)g; performing this computation requires no rounding or tatian. The
largest such integers we are likely to encounter in the prevsections are 2880
16000~ 50M, for which ordinary 32-bit math is perfectly adequate; ¢hisrno danger

of overflow. If one wanted to go deeper, one could use arlyifpagcision libraries;
for example, the Gnu Bignum Library, GMP, is freely avaiabBut the point here is
that to see these effects, one does not need to work with msrebéarge that arbitrary
precision math libraries would be required.

1.2 Some Properties of Rational Numbers

So what is it about the rational numbers that makes them ledii@vthis? Lets review
some basic properties.

We can envision an arbitrary fraction/n made out of the integens andn as
corresponding to a poirfm,n] on a square lattice. This lattice is generated by the
vectorse; = [1,0] ande; = [0,1]: these are the vectors that point along the x and y
axes. Every point on the lattice can be represented by thenmee; + ne; = [m,n] for
some integersnandn. This grid is a useful way to think about rationals: by loakin
out onto this grid, we can “see” all of the rationals, all aten

Theorem: The latticeA = {[m,n] : m,n € Z} is a group under addition. We recall
the definition of a group: a group is closed under additiom:[fi@n] € A and
[p,q] € A one hagm+ p,n—+q] € A. A group has an identity element, which,
when added to any other group element, gives that element\ fee identity is
[0,0]. Finally, for every element in the group, the inverse is atsthe group. In
other words[m,n] + [-m, —n] = [0,0] and[—m, —n] € A.

Theorem: The generators; ande; generate the lattice. That i8, = {me; + ney :
mneZ}.

Theorem A lattice pointw = me; + nez € A is visible from the origin if and only if
gcdm,n) = 1. By “visible” we mean that if one stood at the origin, andked
out on a field of pegs located at the grid corners, a given pegdwmt be behind
another peg. Here, gcd is the “greatest common divisor” sartthe statement is
that a peg is visible if and only if the fractian/n cannot be reduced.

Note thate; ande, are not the only possible generators. For examples [7,4] and
wy = [5,3] also generate the lattice. That is, every point in the kattian be written
as pw + quyp for some integerp andg. That is, givenany integersm,n then there
exist some integens,q such thatme; + ne; = pws + gwyp. There are an infinite number
of such possible generators. The rest of this section attetopdescribe this set of
generators.

Theorem: (Apostol Thm 1.1) Two vectore; andw, generate the lattice if and only if
the parallelogram formed by @y, w; + w andw, does not contain any lattice
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points in its interior, or on its boundary. Such a paralledoyg is called aell or
afundamental region.

The above theorem is not entirely obvious, and it is a gooémie to try to prove it.
Note that as a corrolary, we have that bathandw, are visible from the origin (there
would be lattice points on the boundary, if they weren’t).other words, all gener-
ators are visible: all generators can be represented byrapareducible fractions.
However, not all pairs of fractions generate the latticehasext theorem shows.

Theorem: (Apostol Thm 1.2) Lety; = ae; + cep; andw, = be; + de, for some integers
a,b,c,d. Thenw; andw, generate the lattice if and onlyafl — bc = +1.

We recognizead — bc as the determinant of the matr 2 3 . The set of all

matrices with determinant equal o1 or —1 is calledSL(2,7Z), the modular group.
Thus, the set of generators of the lattice correspond toezlésof the grousL(2,Z).

Theorem: If ( 2 3 ) € SL(2,Z) thengcda,b) = 1=gcdb,d) =gcdc,d) = gcd a, c).
That is, the fractions given by the rows and columns are albig from the ori-

gin. But we knew that already.

Note that the matrices iBL(2,Z) act on the lattice by simple multiplication: for any
pointw in the lattice, the produdw is another point in the lattice.

Theorem: If w is visible, thenAw is visible as well, for anyA € SL(2,Z). In other
words, the action of the modular group on the lattice nevaesivisible points
with invisible ones. In other words, @ is an irreducible fraction, then soAg;
and ifwis reducible, then so &w.

Theorem: (Topology) Elements dfL(2,Z) can be paramterized Iy x Z x Zy; equiv-
alently, the elements of the modular group can be thought ef@llection of a
certain special set of intervals on the real number line.

Proof: We start by freely picking ang/c € Q (understanding that we've picked so that
a/cis irreducible). For good luck, we pick so that batlandc are positive; we
return to negative values later. Thati— bc = +1 implies thatb = (ad ¥ 1) /c.
But we can't pickd freely; only certain special values dfresult inb being an
integer. Mini-theorem: there exists an integlee {1,2,...,c} such that is an
integer. Call this integedly. Than another mini-theorem: the resultingwhich
we'll call by, belongs to the seft1,2,...,a}. So we now havady + boc = +1.
Next we note that for ang € Z, the fraction

d_n - do+ nc (2)

solvesad, + byc = +1. Thus, we've picked freely a number fradfhand another
number fromZ, and so we've almost proven the paramterization. We have one
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bit of remaining freedom, and that is to pialor ¢ to be negative: all other sign
changes can be eliminated. Finally, note that the fracégns&ndb/d represent
an interval on the real number line. One endpoint of the Vraleran be picked
freely; but the other can only be choosen from a limited (bfibite) set.

What have we learned from this excercise? A new way to vizeadtionals. In grade
school, one traditionally learns to think of rationals asgesomehow laid out evenly
on the real number line. Maybe we even realize that there rédaryolved: and the
grid is comfortingly square and uniform. But in fact, the theducible rationals are
anything but square and uniform. If we look out onto the grfiggegs, we see some
that are very far away, while others are hidden by nearby.pgge look off in the
direction tar® = m/n, the distanca/nm? + n? to the first visible peg aim,n] seems to
be a completely unpredictable and indeed a very chaotidifumof 6.

Next, we've learned that the symmetries of a square gridyperbolic. Of course,
everyone knows that square grids have a translational symmee didn’t even men-
tion that. Square grids don’t have a rotational symmetrgepkfor rotations by exactly
90 degrees. But only a few seem to know about the “specidiviyéd of a square
lattice. Just like “real” special relativity, there is aatge squashing and shrinking of
lengths while a “cell” or “fundamental region” is squash®ébrse, this grouL(2,7Z),
known as thamodular group, is implicated in a wide variety of hyperbolic goings-on.
Itis a symmetry group of surfaces with constant negativeature (the Poincare upper
half-plane). All sorts of interesting chaotic phenomenpgemn on hyprbolic surfaces:
geodesics diverge from each other, and are thus said to loaitéyp Lyapunov expo-
nent, and the like. The Riemann zeta function, and its chadaiout of zeros (never
mind the chaotic layout of the prime numbers) are closebtegl. In general, whenever
one sees something hyperbolic, one sees chaos. And hereews&taing at rational
numbers and seeing something hyperbolic.

It is also worth noting that the square grid, while being aserproduct x Z of
integers, is not a free product. By this we mean that therenaléiple paths from the
origin to any given point on the grid: thus, to get[ig1], we can go right first, and
then up, or up first, and then right. Thus the grid is actuallyiatient space of a free
group. (XXX need to expand on this free vs. quotient thing).

To conclude, we've learned the following: the set of ratisfaiconsists entirely of
the set of points on the grid that are visible from the oridihe entire set of rationals
can be generated from just a pair of ratiorals andb/d, as long asd — bc = +1.
By “generated” we mean that every rational number can beemrih the form

am+ bn
cm+dn

(3)

wherem, n are integers with gdan,n) = 1. Of course, this sounds a little dumb,
because if gc@n, n) = 1, then every rational can already be writtem&®. The point
here is that the last is a special case of the previous, ayith= 1/0 andb/d = 0/1.
This is the broadest such generalization of this form.

One oddity that we should notice is the superficial resentdgdao Farey addition:
given two rational numbera/c andb/d, we add them not as normal numbers, but
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instead combining the numerator and denominator. As wesed| Farey fractions and
the modular group are intimately intertwined.

Homework: prove all of the above teorems.

1.3 Orbitsof the Modular Group

The symmetries of the histograms are giverghy?, Z), a fact that we develop in later
chapters. (XXX see the other pages on this website for nave}.td provide a taste of
what is to come, here’s a picture of the orbit of a vector urideraction of the group
elements of the dyadic representation of the modular group:

Orbit of VYector under Dyadic Rep of SLCZ,Z0
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That is, we consider how the vectpgy) = (1,0) transforms under the group ele-
ments generated by

(10 4 (10
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where we can write a general group elemenyasg®rg®rg®r...rg3. Lets avoid
some confusion: the dyadic representation is *not* the nararep ofSL(2,Z); it is
a different rep that is isomorphic; we establish this elseneh

In this representation, the only naturally occuring nurstame of the fornp/2",
and so the main sequence of the peaks are rooted at 1/2,88tc1/To get to the peaks
occuring at the Farey numbers, we need to work through thekdwiksi Question
mark function, which provides the isomorphism between taee¥ Numbers and the
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Dyadics. (This is done in the next chapter). (XXXX we reallged to re-write this
section so it doesn’t have to allude to the 'other stuff’).

As to the origin of the (white) noise, a better perspective ba gotten on the
chapter on continued fraction gaps.

1.4 Conclusion

Write me. Introduce the next chapter.

This is kind-of a to-do list.

It sure would be nice to develop a generalized theory thatveak with these pecu-
liar results, and in particular, giving insight into whalttappening near 1/2 and giving
a quantitative description of the spectra near 1/3 and 2¢3, \We want to graph the
mean-square distribution as a function of sample size. W tegperform a frequency
analysis (fourrier transform) and get the power spectrum.

f(1)= ZC(I‘]) exp(2mint)

We want to explore to what extent the power spectrum has theoapnate scaling
relationship of a modular form. (We expect this relatiopshécause the fractal self-
similarity should manifest itself in the Fourrier spectramwell, as a scaling relation-
ship. This is not merely “1/f” noise, its more than that.)

When we deal with a finite number of bins, we cannot, of cougst,the full
symmetry of the modular group. For a finite number of bins, weeet to see the
action of only some finite subgroup (or subset) of the modgtaup. What is that
subgroup (subset)? What are its properties?

We also have a deeper question: we will also need to explaintiw modular
group shows up when one is counting rationals; we will do thithe next chapter,
where we discuss the alternate representations of the ri#alalmost impossible to
avoid.
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