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Abstract

Given a continued fraction, we construct a certain functtaat is discontinu-
ous at every rational numbeyqg. We call this discontinuity the “gap”. We then try
to characterize the gap sizes, and find, to the first ordesifteeis :qu, and that,
for higher orders, the gap appears to be perfectly randodidyributed, in that it
is Cauchy-dense on the unit square, and thus, this funcéismfiractal measure of
exactly 2. We find this result to be very intriguing, as we knaiwo other func-
tions that have this property (There are many fractaesthat have this property,
but notfunctions That is, a space-filling curve can be used to enumeRatey
R but such space-filling curves have locality properties aadlibyR that the gap
function appears not to have). When examining this funckiwrsmall rationals,
some very curious algebraic relationships appear to retateus rationals.

This paper is part of a set of chapters that explore the oslstip between the
real numbers, the modular group, and fractals.

1 Continued Fractions and Gaps

1.1 Definitions; Notation

Given a real number & x < 1, a sequence of integefa, ap, ...] can be found that
define its continued-fraction expansion:

x=1/(aa+1/(a2+1/(ag+...))) 1)

Given any particulag, this sequence is straightforward to compute. Rationaltrarm
x always have a finite number of terms in the sequence. Foranethumbex, there
are two distinct expansions that yield the same value:

Xy = [a1,az,...,an] (2)

and

X*:[alva27"'aaN_171] (3)



In the following text, we make a simplifying notational casfon: we use the same
symbols to denote a sequence and its value when expressecbasiraied fraction.
Thus, for the above sequences, we may weitex_ = x,.. It will hopefully be obvious
which is which.

Given a rationak and an arbitrary complex number w, define new sequences:

Xt (W) = [ag,82,...,an, 1/W]| 4)

and

x_(w) = [ag,a2,....,an — 1,1,1/w] (5)

These two functions are analyticwy almost trivially so, and in fact can be written as
(a+bw)/(c+ dw) for some integera, b,c,d. These integers can be readily computed
due to an interesting relationship between the Modular G®I{2,7Z) and continued
fractions. We give explicit formulas in a different chaptere also [Cut-the-Knot-UL ].
Because of this very simple form, general analytic manipoia are perfectly well-
defined on these functions. Clearly,

lim x_(w) = lim x¢(w) = x (6)

w—0 w—0
Differentiation w.r.t.w provides a handy tool for constructing various interestiniggs
and proving various limits. We give an exact expression lieisé derivatives below.
Although we've introducedv by appending it to the last term of a rational expansion,
we could, if we wanted, introduce into the N'th term of an irrational expansion.
Most of the statements we make below are for rationals. Ehis part because treat-
ing the irrationals is a bit harder and confusing, both irsth®rmulas, and in their
implementation as algorithms.

There is also an even-odd symmetry%@w) that we should be aware of, as it plays
another important role in the theory. As we point out abowe ainy given sequence,
there is a + and a - generalization. But what if the sequenedréadyx_ and we
choose the - expansion? Then we get

X = [alaa-Za"'aaN_laoal] (7)
This expansion invokes a symmetry xn(w):
X__ (W) = [a1.8p, ....an — 1,0,1, 1/W] = X. (W) (8)

Thus, we see that a double-expansion is either idempotetitesnating. To be pedan-
tic, we can complete this with the other three expressions;(w) = x;(w) and
X_4(w) = x4—(w) = x_(w). In other words, a double-expansion reflects back, and,
in this sensex, andx_ are unique.



If one needs to take differences, e.g. for derivatives, then@dd expansion is
more useful: Definge(w) andx,(w) as follows:

x¢(w)  ifNeven
Xe(W) :{ x_(w) ifNodd ©

and

[ x-(w) ifNeven
Xo(W) = { x.(w) if N odd (10)
These two have nice order-preserving properties:ig a positive real, then
Xo(W) < Xe(W) (11)
and, for negative rea,
Xo(W) > Xe(W) (12)
These two functions also have idempotent or parity-swapjoientities:
Xe+ (W) = Xe(W) Xe— (W) = Xo(W)
Xo- (W) = Xo(W) Xo— (W) = Xe(W)
Xee(W) = Xe(W) Xeo(W) = Xo(W) (13)
Xoe(W) = Xe(W) Xoo(W) = Xo(W)
X1e(W) = Xe(W) Xi0(W) = Xo(W)
X_e(W) = Xe(W) X_o(W) = Xo(W)
1.2 The Gap
Let use define thgapas
Mx(W) = Xe(W) — Xo(W) (14)

This gap function is, of course, highly discontinuousiand analytic inw. It is not
hard to discover that for a rationp)/q reduced so thap andq are coprime (have no
common factors), and < 1, the gaps take the form

wow
rp/q(w):¥ 2w - + = Toyg(W) (15)

where the teetiT are bounded:|T,/q(W)| < 1 (whenw < 1). Forw = O,we have
0< Tp/q(O) < 1. A derivation of these results are given in the next section

The teeth at first appear to be random: below follows a sepltg¢rshowingT for
a thousand randomly generated small-ish rationals.
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However, closer examination reveals some surprisingldetdere’s the same pic-
ture, but this time showing only the rationglgq = [1..719 /720 (all rationals with
numerator between 1 and 719 and denominator of 720:
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Notice that a Moire pattern of fringes seems to be forming at1/2. The ap-
pearance of various parabolas at various locations seeimdi¢ate that there are some

sort of curious algebraic relationships between the rat®that are worth exploring.
The factorial in the denominator seems important: the pécfor the denominator

2310 blurs out the features, and mostly looks much more rands

2-3-5-7-11

shown below:
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Now that we know what sort of pattern to look for, we can find thess-bars in

this picture, for a denominator of 1024:



Teeth Sizesz
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The analogous picture for a denominator consisting of psveér3 is

tinct. Pictures for prime denominators appear considgratdre random,

less dis-
although

containing hints of a different kind of structure. For exdemere is a picture with

denominator 1023:
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The next picture below is a scatter-plot showing all ratlerwith denominators
less than 200. This now clearly exhibits a fantastic seifilsir fractal latticework:



We will recognize in later chapters that these curves cpaed to hyperbolic
maps of the unit interval back onto itself, generated by elats of the modular group
SL(2,Z) acting on binary trees. It would be interesting to specify shapes of all
the various bifurcating curves that seem to appear in thiicdsvork, and to give the
algebraic equations whose solutions are plotted abovee that because a curve can
seemingly bifurcate into another curve in many places, earating all of them would
be a trick.

There are more interesting things to be seen, but first weldippavide a simpler
expression foll, (W) atw = 0. Recall that for any fixed rationg@l/q, thatT, q(w) is
of the form(a+ bw)/(c+ dw) for some positive integees b, c,d. For any given, fixed
p/q, there exists aa > 0 such that there are no polesTig,4(w) in the disk of radius
€ aroundw = 0 (Homework: prove this), and thus its analytic on this dishis justi-
fies an expansion iw; we’'ll give an exact expression in a later section, showirgg t
these manipulations are safe. For the continued fragtiow) = [a1,az, ...an, 1/w] we
write thek'th partial convergent ag(w) = s + Wtk + WUy + W3k + ... which obeys
the recurrence relation1(w) = ax_1 + 1/r(w) . Substituting, we get the explicit



recurrence relations for each term:

S1=a 1+ 1/ (16)
—1
tot = gk (17)
—u, t2
U1 = ?k + é (18)
— —t3
P (19)

TR e Y

which are numerically quite tractable. The boundary céodstare given by, n(w) =
an +w for thex, expansion, and_ (W) = ay — w-+w? —w? for thex_expansion. We
addag = 0 to terminate at the other end. Defining even and odd varamniefore, we
equate the gap

[ p/a(W) = W(t§ —t§) + W (u§ — ug) +w (g — §) (20)

Its becomes straightforward to numerically verify tiit-tS = 2/g% andu§ — u3 =
—1/¢? as we've noted before (Homework: provide a general proofr, far more
curious isTp/q(0) = 292 (V§ —V§) — 1, of which we drew some pictures above. The
pictures below will provide some more surprises. The firatssatter-plot color-coded
as a measure: it shows the distributiontgf, = Ty, 4(0) for all rationals with denomi-
natorq < 1800. Black indicates that there were few or no hits to thatlpthen blue,
green, yellow and red to denote lots of points hit that pideist as the earlier graphs,
shown is a perfect unit square.
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For reference, overdrawn over the image is the parabolavétigal black stripes
occur at the Farey numbers, and appear to be ordered in sipedat to the Farey
tree .e. the largest stripe is at= 1/2, the next largest at=1/3, x = 2/3 and the
next smaller ones at= 1/4 andx = 2/5 etc). The progression of the horizontal bands
are clearly related to the Farey tree through the parabdteceShe parabola gives a
rational out when fed one in, we see that we've discoveredferdnt tree of rationals
that’s related to the Farey tree. One can see that any rafmlghomials will this
give a tree of rationals. We discuss the Farey Tree (or Reonot Tree) in a different
chapter.

The filigree pattern exists only for small rationals. If warssampling larger ratio-
nals, the distribution becomes smooth. The picture belawsta random sampling of
rationals with denominators less than 2 million. The image bit grainy because the
sample size is not large enough; the graininess goes awhyasifer sample sizes.

11
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This picture tells us something that is surprising: thischion is space-filling and
dense; it has no holes or islands; it has a fractal measuré@of&¥en in the land of
fractals, this is fairly unusual, as this function is, afdfy not some self-similar curve,
but rather a ’plain-old’ map from the unit interval to the uimterval. By 'dense’, |
mean the traditional Cauchy-sequence notion of densityarig real valuesg,y € [0, 1]
and positivee > 0, we can find a rationgl/q such thatx— p/q| < € and\y— Tp/q| <Eg
. Of course, a computer generated picture is not a proof, prdaf is straight-forward,
and is discussed below. | am not aware of any other map thahlsgsroperty.

The distribution of the gapg = T, /4 can be easily found to be/2,/y which is
sharply peaked at= 0: this is the thin red stripe at the bottom of the above petur
This distribution is due to the Jacobean of a parabola, wiviellerive below.

1.3 The Gap for Finite w

One can get a better idea of the behavioxg) by graphing it, as a function o, for
a number of representative valuesxofrom the above analysis, we should suspect that
for x = p/q, the leadingv terms are of magnitude/i> which would make it hard to

12



directly compare different values ®f So instead, we introduce a 'normalized’ variant:
Ve(X = p/q, W) = X+ g[xe(W) — ] and similarlyv,(x,w). This is done below, for 200
evenly spaced values @&f On the horizontal axis i running from 0 to 1, and along
the vertical axisw, from O at bottom to 1 at top:

Clearly, it can be seen that(x,w) is a monotonically increasing function of,
which follows easily by examining the partial sumswit zthen

rv(w) =an+w<ryEz =an+z (21)
and
rn—1(w) =an—1+1/rn(w) > rn-1(2) = an—1+ 1/rn(2) (22)

Each iteration will reverse the inequality; bug by definition has an even number of
terms, and thuse(w) < ve(z). QED. Note this would be extremely non-obvious if one
just considered that is a rational polynomial.

One finds a mirror symmetry between the even and odd fovg{s; w) = —ve(1—
x,w), which is also not quite obvious, given the constructiors istclear from this

13



picture that the leadings andw? terms dominate. We can guess at the form of these
terms: we definge (X, w) = ve(x,w) —w+w? —w3/2 and graph it below, exposing the
randomness of the cubic and higher terms directly.

The seeming parallel-ness of some trajectories is an djgticsion, due to the pix-
elization of the picture. There are more pictures, with atgenumber of strands, at the
Gap Roonmhttp: //www. | i nas. org/ art-gal | ery/farey/ gap-roont gap- room htm .

1.4 Exact Expressions for the Gap Size

The size of the gap can be given an exact expression in teriige afonvergents of
the continued fraction. Performing this exercise will helplain some of the fractal
behavior seen in the previous sections.

One gets the convergent of a continued fraction by evalgalia fraction only up
to then'th term, and expressing it as a rapq/q,. The convergents can be expressed
recursively:

Pn = a@nPn-1+ Pn-2 (23)

14



and

On = @nOn-1+0n-2 (24)

where we anchor the iteration by definipg, = 0 andp_1 =1 andg_» = 1 and
g-1 = 0. lterating, the next few terms apg = ap andp1 = aga; + 1 andgp = 1 and
01 = a1. Here we adopted a slightly extended notation from befoefinohgag as the
integer part of the fraction;e. x=ag+1/(a1+1/(az2+...)) = [ag; &1, 82, ...]. We then
have the convergent:

[ag;a1,@2,....an] = Ll (25)
an

Note also that for any € R, we have

PNyt PN-1

;ag,az,...,an,y| = 26
[ag;a,az,...,an, Y] Gy + O 1 (26)

Note that the convergents have the propegish 1 — pndn_1 = (—1)". We can use the
above to provide exact expressionsfqfw) andx_(w). These are:

PN N w
w) =—+(-1 27
X (W) N - 0% (1+Won-1/0n) 27)
and
PN N w
X-(w)=——(-1 28
W= o Y @i ) 29
We can then compute the gap explicitly as
w 2+w
rX(W) N Xe(W) - XO(W) - q_2 |: 29N-1 ON-1 ] (29)
where no approximation has been made. Expanding the deatoniwe get
ON-1 ON-1
Tyq0)=1-4—=(1-—= 30
p/q( ) an ( an ) (30)

From this expression, the boundedness dbllows immediately; this comes from the
fact that 2y_1 < gn (which in turn follows from 2< ay for the last ternay).

The distribution density 22v/T of the gaps on the unit square can now be un-
derstood in terms of the above parabolic formula, as a chafhgariable from the
underlying distribution oR;,/q = gn-1/0n. Numerically, we can confirm that this dis-
tribution is, in a certain sense, perfectly uniform on th#-hait square. Now that we
understand that the more fundamental quantity with regadistributions iR q, lets
repeat some of the earlier graphs. These are shown in 1 andés@ally, they don't
differ much from thier earlier analoguous, except for aretf/e rescaling of 121/T.
Nonetheless, they are presented here for reference.
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Figure 1: Ratio of Convergents for Small Rationals

The figure above shows the distribution of the ratio of thelftme convergent de-
nominatorsgy-_1/qn for all rationals with denominators less than 200. Note that
scale along the x-axis runs from 0 to 1 but along the y axisnfoto 1/2. To create
this distribution, we create an empty grid that is MxM=60086ixels in size. We
then consider a fraction= p/q and its denominator ratip= gn-1/0gn. If we have
thati < Mx<i+1andj <My < j+1 for some integerg j, then we increment the
value at pixel(i, j) by one. When we are done, we visualize the grid by assigning
black to empty pixels, blue to pixels with a very small cougreen to pixels with a
medium-small count, yellow to pixels with a medium countd aad to pixels with a
large count.

16



Figure 2: Ratio of Convergents

The figure above shows the distribution of the ratio of thel fiwma convergent denom-
inatorsgn-—1/qn for all rationals with denominators less than 1800. Not¢ tia scale
along the x-axis runs from 0 to 1 but along the y axis, from 0/& Thus, the largest
harizontal line is aty—_1/gn = 1/3, with the remaining lines distributed at the Farey
Fractions. The uniform blue color indicates a fairly evestrbution, with the coloring
as before: red indicating an excess, and black a deficit. A&goes to larger denomi-
nators, the uniformity domintes, with the distributiondémg towards even-ness.

17



Figure 3: Ratio of pre-final Convergents

! | | 1

The figure above shows the distribution of the ratio of thefpral two convergent de-
nominatorsgn-_2/qn-1 for all rationals with denominators less than 1800. Noté tha
the scale along the x and y-axis runs from 0 to 1. Note thafitpise is fundamentally
different, in a certain sense, than the previous figurese Hes one goes to the higher
denominators, one seems to develop both a uniform backdreund a filigree super-
imposed on top. This behaviour is qualitatively differdrdan what one sees when one
just considers the final ratios.

18



Figure 4: High-order pre-final convergents

The figure above shows the distribution of the ratio of thefpral two convergent
denominatorgy_2/gn-1 for all rationals with denominators less than 16200. The
uniform distrubtion,with a pattern overlay persists torhayders.

19



Figure 5: Second Convergents

The figure above shows the distribution of the ratio of thetanvergent denominators
g1/ for all rationals with denominators less than 1800, and Wiave at least two

terms (so thatp, # q1).
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Figure 6: Third Convergents

The figure above shows the distribution of the ratio of thetanvergent denominators
gz2/qs for all rationals with denominators less than 1800, and tvhiave at least three

terms (so thatjz = o).
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Figure 7: Fourth Convergents

The figure above shows the distribution of the ratio of thetanvergent denominators
gs/qa for all rationals with denominators less than 1800, and thiave at least four

terms (so thaty, #~ g3).
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Figure 8: Fifth Convergents

The figure above shows the distribution of the ratio of thetanvergent denominators
g4/0s for all rationals with denominators less than 1800, and tviniave at least five

terms (so thatjs = q4).
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1.5 Other Convergents

Itis of some interest to examine distribution of other cageats. This section reviews
some of these.

1.6 Relationship to the Modular Group

The relationship between convergemqpn 1 — pndn_1 = (—1)" implies that the matrix

Pn Pn-1
SL(2.Z 31
(qn qnl)e 2.2) (31)

whereS‘L(2,Z) is the special linear group of two-by-two matrices over thiegers,
with determinant equal to plus or minus one. The star on thlset&distinguish it from
SL(2,Z), the subgroup having determinant plus one.

1.7 Structure and Randomness

The computer efforts at first seem to paint two contradicitmgrpretations about the
distribution of the gaps. For small denominators, therenset® be a detailed and fine
structure; yet, for large denominators, this structurerse® blur away, and one gets
the impression of a perfectly uniform distribution. In fabbth conclusions are cor-
rect. Each of the pictures above and below were created withifarm pixel size:
600 pixels dividing up the interval 0 to 1. For small denonimg, each pixel may
contain only one gap, and maybe none; for large denominatach pixel may repre-
sent the average of dozens or hundreds of gaps. It seemsiaddesto conclude that
the structure of horizontal and vertical bars is in factsdabariant, and persists down
to infinitesimal scales. Looking at large-denominatorriistions with only 600x600
pixels effectively blurs all the structure away. Thus, oroarse-grain, the distribution
of the gaps appears to be perfectly random; a finer choicenaiirg, while holding
denominators fixed, would lead to pictures of detailed $tmas at finer levels, and so
on.

Thus, in order to talk about the gaps for “all rationals”, drees two competing
limits that give different answers. In one case, we take ibhe of the pixels smaller
and smaller, and find, for any fixed scale of denominators ttieae is a highly fractal
filigree. Inthe other case, we hold the size of the pixels fized take the limit of larger
and larger denominators, and find a perfectly uniform distion. It seems impossible
to define the distribution “in and of itself” without resorgj to talking about pixels at
some point.

Conjecture: The distribution of the ratio of the partial convergeREsq = gn-1/0n iS
perfectly uniform on the half-unit square, using convemdilnotions of measure,
density and distribution, when we consider all possibléoratls, rather than
rationals with small denominators.

Proof: None (currently) supplied.

24



Its not clear how to start on this proof without first develggptools that deal with the
scaling relationship of the structures. Blurriness presbignsets in when there are
two or three gaps per pixel; thus one will see structure whemnthe denominators are
at about the same scale as the pixel widths. Thus, the twe peabmeters are the
pixel size, and the ratio of pixel size to 'typical’ denomioamagnitude. A proof of
uniformity then becomes (presumably) an argument abounien-square variations
of the distribution as a function of the pixel/denom ratioe ¥kpect the mean-square
variations to be independent of the pixel size; i.e. scatkpendent, and to depend
only on this ratio.

1.8 Proof that Gaps are Cauchy-dense on the Unit Square

The incredible randomness’ of the distribution, as welkaf€auchy-sequence-density
on the unit square can now be easily understood. To do thisider the iteration of
the map

=5~ 5] (32)

This map has the property that lops off the leading term ofcietinued fraction:
h([a1,ay,...]) = [az,as,...] . Iterating this map clearly gets one further and furthew int
the continued fraction, and it is clear that two points thaittsarbitrarily close together
will have orbits under this map that eventually become uretated. That is, this map
clearly has a positive Lyapunov exponent for all irratienal

Homework: Compute the Lyapunov exponent for this map.
We can gain some intuition by comparing this map to the Bdinmap
b(x) = 2x— | 2x| (33)

which has the property of lopping off the leading digit of andniy expansion ok.
Again, two “random” irrationals that start out arbitrardiose together will eventually
have binary expansions that are uncorrelated and complesaeidom’. Even though
one may know the firsi digits of the expansion, one cannot 'predict’ the next digit
of the expansion; and this is what we mean when we say 'randoraincorrelated’.
The only problem with this is that the language used in thetlas sentances is com-
pletely loaded. If we “know” the numbet then we “know” theN'th digit in its binary
expansion; thus, how can it be “random” and “uncorrelatedts is a paradox of
deterministic chaos that is worth exploring.

Lets try to restate the paradox. We would like to be able totsay, when consid-
ering the entire set of reals on the unit interval, that, wleamining theN'th binary
digit in the expansion, tha¥l'th digit is completely random, and is uniformly dis-
tributed (equipartition of probability), with the probdibi of the digit being 0 being
1/2 and the probability of it being 1 is also 1/2. But of coytthés statement is patently
false, and therein lies the paradox. We can, of coursealiyvand exactly predict
the N'th digit, as the Bernoulli process is completely determstici. TheN'th digit is
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trivially en(x) = |2Nx| —2|2N~1x| and the graph oén () is a square-toothed comb.
One has this problem even fidrgetting very large, and approaching infinity: the comb
remains uniform and entirely “predictable” no matter hovg&N gets.

| suppose there are two ways out of this paradox. One way doitsigay something
like “Yea, Verily, Chooseth two Irrationals whose Binarygansions are Completely
Uncorrelated”, which sounds like an invocation of the AxiofmChoice. Indeed, the
set of computable numbers is countable, and is of measuw®nédhe real number line.
In order to compute th&l'th digit of x, one must somehow already 'know’ Since
the set of of unknowable numbers has measure one on the tertahof reals, one
arguably must 'choose’ if one is to get a truly random’ numbghus, we can anchor
the concept of randomness of bit-sequences of the binagnsign of real numbersin
the concept of Turing-uncomputable numbers and the Axioi@hadfice for choosing
one of these unknowable numbers. This is cleary dangeraiteig, and somewhat
tangled as a definition of randomness.

The other way out of the paradox is far more mundane, and seenstructive,
and that is to apply shop-worn statistical methods. Afteichlaos occurs in numerical
simulations, on finite and computable sets, and not in sirdtical limits. Chaos is a
computational phenomenon. What we can say is that for amngiraly andd > 0 and
€ > 0, one can always find an integdrsuch that the average value&f approaches
1/2 on the interval: that is, there exists an intelyesuch that

= — en(X)dx| < € (34)

1 y+8
]

holds true for all reay andd > 0 ande > 0. This is a constructive definition of random-
ness on the real number line that does not require an appted faxiom of Choice or
to the choosing of uncomputable (unknowable) numbers asia fma the randomness
of bit-sequences in the binary expansion of a real numbercadeapproach random-
ness through traditional delta-epsilon proofs on the etgtien values of well-defined
quantities. For the following, we are interested in “rand@wontinued fractions, and
by analogy, we extend the above definition of “randomnes#fi¢ossequence of digits
in a continued fraction expansion.

Now, to move the conversation back to the iterated contifiization map, and that
proof.

Theorem: For any real valueg € [0,1] andy € [0,1/2] and positived,& > 0, we can
find a rationalp/q such thatx— p/q| < d and|y — gn-1/0n| < €.

Proof: (partial sketch) Start by picking < 6 and some rationg¥’ /g such thaix —
p'/d| < &. Develop the continued fraction expansion of this ratiasl' /¢ =
[a1,82,...,an—2]. Then we need to show that we can always pick a positive in-
teger k such that the rationg! /q" = [a1,a, ..., an—2,an—1] Satisfies|p”/q" —
p'/d| < 8- or, equivalently|p”/q” — x| < d whenevery_1 > k. Next, we
note that if we pickan_1 > k (strictly greater than this time) and aay; € N,
thenp/q = [a1,ay,...,an—2,an—1,an] satisfies|p/q— x| < 8. Next, we notice
that this freedom to piclay_1anday allows us to jigger around the value of
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gn-1/0n to satisfy the desired result for many valueg/ofThat is, we use the
recurrence relatiogy = anOn-1 + gn-2 to deduce that

ON-1 = 1 (1_ M) (35)
aN an ON
and thus
CIE <1— 1 > (36)
N an anan-1+ 1+ angn-3/0N-2

and rearranging,

ON-1 1
v an+1/(an_1+T) 37

In this expression, the value of_3/gn—2 = r was fixed by our initial choice
of p'/d. However, we are free to pick aray_1 > k and anyay. Note that
by pickingay = 2 anday_1 very large, we can approach the upper limit of the
interval, and by pickingy very large, we can approach the lower limit of the
interval. We see that for values ptlose to ¥ mfor some positive integemn, we
can also approach arbitrarily close, thus completing tlo®fpior these values.
However, there are still 'holes’ that cannot be approachidowt jiggering the
value ofr. For that, we need to adjust our initial pick pf/d to get ther that we
want. We then find that we have to apply induction, in reveisget to there. |
believe this completes the proof.

To-Do: The above proof still involves some hand-waving, and thusiado be tight-
ened up. In particular, there are some valuey thfat are “hard”, requiring the
inductive step to be invoked. These seem to correspond todlles in the holes
in the lattice for small denominators. It's not obvious ttta inductive step is
watertight; although the computer work shows it should bedie.

We will study the iterated majp(x) in great detail in later chapters, where we shall find
that it is deeply related to the Modular Gro8(2,Z) and thus to the theory of the
symmetry of fractals, and to a variety of fascinating tocsumber theory, as well as
to the celebrated Riemann Hypothesis.

1.9 Contrast to Space-Filling Curves

The work of Cantor shows that the cardinality®f is the same as that &, namely
0:. This implies that the points &2 can be enumerated t®. Space-filling curves
such as those of Peano or Hilbert can be used to develop thatezation. However,
these curves have a locality property, in that if two points eose to each other in
R, then the points that they enumerateRA are also close to each other. This is
by construction, of course: the curves of peano or Hilbegtiaherently continuous.
We can, for example, graph the distance of the Hilbert curemfthe the x-axis as
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a function of the parameter that takes us along the curve. ddgtouction, this is a
continuous curve, and it is *not* space-filling.

By contrast, the gap function is not a curve; by constructittgeems to be discon-
tinuous everywhere.

1.10 The Parabolas in the Distribution

The cause of the principal parabola seen in the picturesvisatgo clear. Blah Blah
Blah write this section too.

The main parabola that is visible is §/4(0) = 4(x — 1/2)?, which we can solve
for directly to obtairk = qy_1/gn andx= 1—qgn-1/qn - Recalling that by definition,
X= p/q = pn/an, We find that the rationals on the main parabola are givephpy:
On-1 andpny = gy — gn—1. Blah blah blah solve these equations.

Homework: There are other parabolas visible as well, offset on otleatifvns. De-
scribe these as well. Why are these rationals interesting?

The correct avenue for describing the multitude of the palesbis to pin down the
self-symmetry relationships of the gaps. We already knomfthe study of continued
fractions and Farey Fractions that the relevant symmetymgis the Modular Group
SL(2,Z). (See the other papers in this series, duhh). Thus, we sktastby reporting
on how the gaps transform under the action of the Modular Gedements.

1.11 The Hyperbolic Maps in the Distribution

Exploring the shapes of the hyperbolic maps seen in thengigtequires the develop-
ment of the theory of these maps as the hyperbolic rotatibasinary tree, through

the action of the Modular Group. The development of this thé® done in a later

section. We only quote the results xxx here. Blah Blah BlathatWational numbers
show up on which curves? The families of the curves. Writs.tl§o this is another
to-do; maybe its own chapter. Again, a deep relationshipeatodular group.

1.12 Conclusion

The seemingly pure randomness of the gap sizes is quitguirid, and suggests pos-
sible relationships to similar phenomena in other arease (Big and little) Picard
theorems comes to mind. The little theorem states that areduainction will attain all
possible values, save one or two. The Big Picard theorerasstaat a function with
an essential singularity will attain all possible value#ifvone or two exceptions), in-
finitely often, within a finite domain of the singularity. Albugh the gap isn’t analytic,
| still find the Picard theorems suggestive. We will developtools to analyze the gap
in later chapters; in the meanwhile, we note th@t), or, if you prefer,sin(1/x), has
an essential singularity at zero, and is instrumental irctvestruction and description
of continued fractions.

We also are reminded that cryptographic hashes depend aifitg to distribute
points randomly on the unit square, although they do so amby/finite-sized (but large)
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lattice. We know that the modular group is central to the wtoidchaotic dynamical
systems and fractals; we find it intriguing that the modulaug also underpins the
study of elliptic curves, which lead to concepts of elliptierve cryptography. Perhaps
the seemingly inherent orderly randomness seen in eacliffedt manifestations of
the very complex and surprising structure of the modulaugro

I'd like to go so far as to propose the 'Fundamental Theorer@nyptography’:
Since the gaps are Cauchy-dense on the unit interval, oneaysfree to pick any
sequence of pointp/q that one may possibly wish, and then use Ry, as their
cryptographic encoding. That is, the sequence/ff is the plain-text, whereas the
sequencé q is the crypt-text. This encoding is provably unbreakabtesioy plain-
text because there exist an infinite number of possibleraglterdecodings d®,/ that
come arbitrarily close to the cryptext, but are arbitradigtant from the plaintexp/q;
indeed, this is what it means for a set of points to be Cau@nse€ on a plane. What
is truly remarkable here is th&; q is a function, and not some fractal, space-filling
curve.

As a final bit of madness, let us note that the gap containsoatiple stochas-
tic processes on the unit interval. That is, given a stoaha@socess, and the usual
0,6 > 0, one can find a sequence of strictly (monotonically) insireg rationalsp/q
that encode the 'information’ in that stochastic sequencgoime arbitrarily accurate
level. But, by construction, this sequence inherits the uterdgroup symmetry of
the continued fractions. Thus, in a certain sense, one nsigythat stochastic pro-
cesses have a (perfectly) hidden modular group symmetry.syimmetry is revealed
only when one tries to construct things out of the the staihaequence; taking, for
example, Diffusion Limited Aggregation (DLA). The selfasiarity and scaling prop-
erties become manifest. In the case of DLA, the dendriteinduerently self-similar.
By 'decoding’ a pair of dendrites to their representativitorzals, one then has a map
between the two dendrites, given by the modular group, eitiglexhibiting their self-
similarity (to within thed,e of the decoding). One could thus hand-wavingly say, the
perfectly random distribution of the gaps is the “reasonywalf-similarity and scaling
appears in systems constructed out of random numbers. Trsra#arity and scaling
are really just a manifestation of the deeper (fractal, nedgroup) symmetry of the
rationals themselves.
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